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Immunology in Diabetes: An Update
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Summary. Type 1 (insulin-dependent) diabetes mellitus is strongly associated with autoimmune
phenomena connected to the loss of b-cells in the pancreatic islets. Despite considerable progress
in our understanding of genetic susceptibility factors and islet autoimmunity preceding the
clinical onset of Type 1 diabetes there are considerable gaps in our knowledge. First, the etiology
is unclear. It is speculated that multiple etiological factors may initiate a common pathogenic
pathway which results in immune-mediated b-cell destruction. In 1998 we will need to learn
more about the possible importance of gestational infections, as well as isolation of viral DNA
or RNA from the blood of new-onset patients or marker-positive individuals. The scan of the
whole genome has provided a smorgasbord of genetic regions which confer diabetes risk either
alone or in combination. HLA remains the major genetic risk factor, and while HLA peptide
binding information is considerable, we understand less of autoantigen processing and presen-
tation. Cloned autoantigens and their use in standardized autoantibody assays have improved
our ability to identify individuals at risk for diabetes. The diagnostic sensitivity and specificity
of autoantibody markers for Type 1 diabetes are high as are their predictive values. We need
methods to combine autoantibodies with genetic risk factors. The identification of individuals in
different stages of their pathogenesis, including patients with so-called slowly progressive Type 1
diabetes (SPIDDM, LADA etc.), allow approaches to novel therapeutic interventions. Insulin is
currently the therapeutic agent of choice and although spontaneous insulin-dependent diabetes
in the NOD mouse and the BB rat can be prevented by immune suppression or modulation,
this has not yet been possible in humans. The 1998 research on the interaction between
environmental factors and susceptibility genes to initiate b-cell specific autoreactivity should
allow the development of therapies for prevention, and perhaps a cure, of insulin-dependent
(Type 1) diabetes.  1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

Type 1 (insulin-dependent) diabetes mel-
litus (IDDM) is the most common chronic dis-
ease in children and young adults. The disease
may develop at any age but is most frequent
before the age of 20. The incidence varies
between countries and ethnic groups. The gen-
etic susceptibility is similar since HLA DQ2,
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DQ8 or both factors are necessary but not suf-
ficient for disease development.1,2 The HLA
susceptibility may not, however, be the same
in all countries. Environmental factors are
important but it is unclear how: are they
initiators or accelerators? Epidemiological stud-
ies are increasing our knowledge about inci-
dence rates in relation to both genetic and
environmental factors.3 In countries with well-
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developed registries it has been reported that
the incidence of IDDM has increased by about
2% per year during the last 10 years.4 The so-
called north–south gradient in incidence rate as
observed for example within Sweden5 does not
seem to be true for Europe as a whole since
Sardinia has the second highest incidence after
Finland6 and Iceland has a rate lower than both
Norway and Denmark.7 There is no explanation
for the increased incidence rate and a trend
towards an earlier age at onset in some coun-
tries.

The last 10 years of IDDM research has
further supported the strong association
between Type 1 diabetes development and islet
autoimmunity. Although it is common to assert
that Type 1 diabetes is a T-cell-mediated dis-
ease (which seems self-evident since neither
cytotoxic T-cells nor high-affinity IgG autoanti-
bodies are formed without T-cells), reproduc-
ible, precise and standardized methods to study
b-cell autoreactive T-cells in Type 1 diabetes
have yet to be developed. Such methods are
badly needed. Non-invasive analysis of insulitis
is not yet possible. The exception is a recent
biopsy investigation in a limited number of
Japanese IDDM patients.8 While we need to
develop T-cell and antigen-presenting cell
(APC) assays, the molecular cloning of islet
autoantigens resulted in a rapid development
of autoantibody radioimmunoassays. These
assays have been disseminated to the diabetes
research community following international
standardization workshops supported by the
Juvenile Diabetes Foundation International and
organized by the Immunology of Diabetes
Workshops committee.9,10 Human insulin has
been available since the description of insulin
autoantibodies11 and assays for conformation-
dependent insulin autoantibodies (enzyme-
linked immunosorbent assay (ELISA) does not
work) have been subject to standardization
workshops.12 The 64K autoantigen in Type 1
diabetes was described in 198113,14 but it was
not until the identification of the 64K protein
as glutamic acid decarboxylase (GAD) in 199015

and the cloning of a novel GAD isoform
(GAD65) in human islets in 199116 that an auto-
antibody assay could be developed and sub-
jected to standardization workshops.9,10,17–19

Similarly, the successful identification of the
64K protein tryptic fragments 40K and 37K20

as the IA-2 (ICA512)21–23 and IA-2b24–26 proteins,
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respectively, was rapidly used in autoantibody
radioautoantigen binding assays. Several stud-
ies now suggest that a combination of the three
autoantibody assays, IAA, GAD65Ab and IA-
2Ab, can replace the old ICA workhorse.27,28

The autoantibody radioautoantigen bind-
ing assays have increased our understanding
of immunological abnomalities associated with
diabetes. In particular, the use of the precise
and reproducible autoantibody assays with
recombinant autoantigens has generated novel
information not only in new-onset patients and
their first-degree relatives but also in studies
of populations of newborn children, school-
children and adult populations. In the absence
of reliable T-cell and APC tests, high-quality
antibody assays against recombinant autoanti-
gens offer a non-invasive way to study the anti-
b-cell immune response by the determination of
autoantibody subtypes, isotypes and epitope
specificity as immune markers. The current sim-
plified model of Th1 and Th2 immune
responses may be conveniently studied by iso-
type and subtype analysis as the readout since
we do not have reliable and reproducible T-cell
assays. Taken together, the new information on
islet cell autoantibodies as markers for a disease
process associated with b-cell autoimmunity
supports the view that “Immunology in Dia-
betes” is truly important to the b-cell specific
killing and life-long dependency on insulin. In
the present review we will therefore discuss
recent data on the etiology, pathogenesis and
therapy of Type 1 diabetes. Readers are referred
to several comprehensive reviews which will
also include data from animals with spon-
taneous diabetes.29–32

2. ETIOLOGICAL FACTORS

It has long been held that Type 1 diabetes
results from the influence of the environment
and that certain viruses are diabetogenic. Case–
control investigations have shown an increased
risk for Type 1 diabetes by blood group incom-
patibility,33 dietary factors and length of breast-
feeding,34 vaccinations,35,36 as well as numerous
investigations on infections Similarly, based on
animal results it is speculated that environmen-
tal factors may both accelerate and decelerate
the Type 1 diabetes process. Among virus can-
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didates the best evidence seems to be Coxsackie
virus37,38 and congenital rubella.39,40 Several
other viruses have been implicated.38,41 Studies
involve the isolation of Coxsackie virus from
the pancreas of children with new-onset Type
1 diabetes,38 the demonstration of virus DNA
in blood42 as well as of the subsequent IgM43,44

and IgG45 antibody responses. There is no con-
clusive evidence that Type 1 diabetes can be
caused by a Coxsackie virus infection and the
conflicting reports are many.44,46 The interest in
Coxsackie as a possible etiological agent was,
however, further sparked by the observation
that the PEVKEK GAD65 sequence is also
present in the Coxsackie PC-2 antigen.47 Cur-
rent studies on T-cells recognizing this
sequence have, however, given conflicting
results48–50 and Type 1 diabetes GAD65 auto-
antibodies do not seem to be able to recognize
this part of the GAD65 autoantigen.51–53 Other
infectious agents such as rubella have also been
implicated in a possible scheme of molecular
mimicry.54

Similar to other human diseases of auto-
immune character, it has also been suggested
that superantigens are of etiological importance
in Type 1 diabetes. Superantigens are protein
products of either bacteria or viruses which
show specificity to the b-chain of the T-cell
receptor (TCR).55 Multiple T-cells expressing a
certain TCR type are stimulated when super-
antigens bind to the major histocompatibility
complex (MHC). It has also been tested if
superantigens have a role in Type 1 dia-
betes.56,57 A highly selective expansion (over
30% of total) of a TCR variable segment of
the b-chain, Vb7, was reported in two newly
diagnosed Type 1 diabetic patients. The
expressed Vb7 segments were not clonal, which
suggested a superantigen as a cause of the
expansion. Furthermore, islet cell membrane
preparations from those patients but not from
MHC-matched healthy controls were able to
selectively expand Vb7-bearing T-cells from
healthy donors.56 Reverse transcriptase activity
in supernatant of cultured leukocytes from
islets of Type 1 diabetic patients also suggested
the presence of an active retrovirus.56 A retro-
virus, designated IDDMK1,222, was identified
following a complex set of PCR amplification
indicating the possible presence of a novel
retrovirus related to a family of human
endogenous retrovirus elements. The
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IDDMK1,222 sequence was cloned and the virus
was found to encode Vb7-specific superantigen.
The authors propose a model in which super-
antigen activated autoreactive T-cells can lead
to autoimmunity in susceptible patients. How-
ever, further studies on large patient popu-
lations are necessary to elucidate whether the
presence of IDDMK1,222 viral integrant is wide-
spread in Type 1 diabetic patients (and of
potential major importance in etiology) or
merely coincidental with the disease in highly
selected, small groups of patients. The possible
role of a superantigen is also difficult to under-
stand since the risk for Type 1 diabetes is
highly restricted to a limited number of HLA
DR and DQ alleles.

3. GENETIC SUSCEPTIBILITY

Twenty-five years ago it was first reported
that HLA is associated with Type 1 diabetes.
Among genes associated with Type 1 diabetes
mellitus (IDDM), the HLA on chromosome
6p21 is still the genetic factor with the strongest
association. The IDDM2 gene located on chro-
mosome 11p15 in the upstream region of the
insulin gene also has a significant association
with the disease. Additionally, 18 other chro-
mosome regions were tentatively linked to
Type 1 diabetes. However, only 10 of them
show statistically significant evidence for link-
age for the disease58 (Table I).

The strongest susceptibility to Type 1 dia-
betes is with HLA-DQ alleles. Caucasian suscepti-
bility is more strongly associated with DQA1*
0501–DQB1*0201/DQA1*0301–DQB1*0302 than
with DRB1*03/DRB1*04.59,60 DRB1*03 and DRB1*
04 are in strong linkage disequilibrium with class
I molecules B8 and B15, respectively. Conversely,
the DRB1*04 allele is in linkage disequilibrium
with the DQB1*0302 allele.60–62 Negative associ-
ation with Type 1 diabetes was observed for
DQA1*0102–DQB1*0602–DRB1*1501 genotype.
The DQB1*0602 allele is probably immunodomin-
ant over susceptibility DQB1 alleles and may
be protective even among islet cell autoantibody
positive first-degree relatives to patients with
Type 1 diabetes.63,64 Among people with the
DQA1*0501–DQB1*0201/DQA1*0301–DQB1*0302
genotype protection may be associated with the
DRB1*0403 allele, while the DRB1*0401 allele is
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Table I. Type 1 diabetes genes and the highest reported maximal LOD score (MLS) for the linked genetic
marker

Locus (most susceptible Highest reported
Gene Chromosome allele) MLS (ref.)

IDDM1 6p21 HLA (DRB1, DQB1) 7.3 (58)
IDDM2 11p15.5 TH/VNTR/INS (class III) 2.1 (58)
IDDM3 15q26 D15S107 (103) 0.2 (83)
IDDM4 11q13 FGF3, D11S1337 3.9 (83),
IDDM5 6q25 ESR 1.8 (84, 248)
IDDM6 18q21 D18S487 (4)/A181,2 (2) 4.5 (83)
IDDM7 2q31 D2S152 1.6 (87)
IDDM8 6q27 D6S281 1.3 (93)
IDDM9 3q21–q25 D3S1303 3.6 (83)
IDDM10 10p11 D10S193 (7) 2.1 (90)
IDDM11 14q24.3–q31 D14S67 4.6 (92)
IDDM12 2q33 CTLA-4 (G) 3.2 (94)
IDDM13 2q34 D2S164 3.3 (100)

susceptible.62,65 This negative association may,
however, not be detected in all populations.61

Also, the DQA1*0301–DQB1*0301 haplotype may
be protective, in spite of the small sequence dif-
ferences between this molecule and the suscep-
tible DQA1*0301–DQB1*0302 molecule.66 The
association of the DQ alleles with diabetes is
correlated with amino acid residue 57 on the b-
chain67 and amino acid residue 52 on the a-
chain.68 However, these individual amino acids
do not solely explain susceptibility or protection.
Many individuals develop Type 1 diabetes
despite the presence of Asp-57 on the DQ b-
chain. The presence of negatively charged
aspartic acid at position 57 of DQ b is associated
with unique peptide binding capacity69 which
may influence disease etiology, pathogenesis or
both processes.

Analysis of the HLA class II region has
led to the identification of additional genes,
such as a transporter-associated with antigen
processing (TAP1 and TAP2) genes located
between the DQ and DP regions,70 as well as
large multifunctional protease (LMP) genes.71

The comparison of the genetic susceptibility
linked to TAP in Type 1 diabetes without or
with another autoimmune endocrinopathy indi-
cated that DRB1*03 and DRB1*04 differed in
those two clinical forms of IDDM. The TAP1-
C allele occurred more often among DRB1*04
patients. However, the TAP genes are in link-
age disequilibrium with HLA DQ-DR72 and
their association may be secondary to a primary
effect of DQ-DR.

 1998 John Wiley & Sons, Ltd. Diabetes Metab. Rev. 14, 3–29 (1998)

The IDDM2 gene was initially detected in
a case–control study.73 It was mapped to the
insulin (INS) locus, located on chromosome
11p15.5, downstream to the gene encoding tyro-
sine hydrolase (TH) and upstream to the insulin
and the insulin-like growth factor II genes
(IGF2).74 The IDDM2 locus seems restricted to
the variable number of tandem repeat (VNTR)
microsatellite, located 596 bp upstreams of the
insulin gene.75–77 Among three VNTR classes,
different in the number of repeats of the vari-
able oligonucleotide, the short class I (26–63
repeats) predisposes to Type 1 diabetes while
the longest class III (140–210 repeats) is domi-
nantly protective.75 Among diabetic offspring
of class I/III heterozygous parents, class III
VNTR alleles occur less frequently.76 A possible
mechanism is that VNTR alleles regulate Type
1 diabetes susceptibility by transcriptional
effects on adjacent genes. In pancreatic islet
cells, class III VNTR correlated with approxi-
mately 30% lower levels of insulin mRNA
expression.78 It was further suggested that
lower expression of this gene can reduce the
Type 1 diabetes risk by a decrease in the levels
of circulating autoantigen (i.e. insulin). Alterna-
tively, as a response to insulin deficiency, the
expression of IGF2 would increase, together
with expression of IGF receptors. This would
mediate mitogenic and anti-apoptotic effects,
which would neutralize destruction of pancre-
atic b-cells.78 However, the proposed mech-
anisms did not provide sufficient explanation
for the dominant protection of class III allele.
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Moreover, it cannot be excluded that, due to
described heterogeneity within VNTR class III
allele, reduction of insulin mRNA expression
in pancreas can be regulated by the VNTR class
III subtype which does not protect, but in fact
increases the risk of IDDM (see below).

A more persuasive hypothesis to explain
the dominant protective effect of VNTR class
III was suggested in recent studies of the
expression of both insulin and proinsulin
mRNA in human fetal and post-natal thy-
mus.78,79 The level of INS mRNA expression,
as well as the level of insulin, were associated
with the VNTR class III allele. The amounts of
INS mRNA expressed in thymus, compared to
pancreas, were very low. The expression level
of INS mRNA in VNTR I/III heterozygotes was
approximately 2.5-fold higher than in VNTR
class I homozygotes. It was speculated that
this increase in expression may be sufficient to
induce negative selection in thymus, resulting
in deletion of autoreactive T-lymphocytes. Since
proinsulin in the thymus was expressed in lev-
els higher than insulin,79 it is likely that epi-
topes shared by proinsulin and insulin are
important in tolerance induction. Similar to
pancreas, however, some thymic glands
showed VNTR class III alleles which correlated
to a lower level of INS mRNA expression. In
those patients, class III was in linkage disequi-
librium with the Z allele of a microsatellite
neighboring the tyrosine hydrolase locus,
HUMTH01. This haplotype may represent a less
protective subtype of the VNTR class III allele.

IDDM1 and IDDM2 are estimated to con-
tribute to about 40% and 10%, respectively, of
familial clustering of Type 1 diabetes. Other
contributing genes are therefore suspected
especially to explain the predominating number
of patients who developed diabetes without
having a first-degree relative with the disease.
The combination of HLA with contributing
genes may be viewed as a punitive model for
the disease. HLA is necessary but not sufficient.
HLA in combination with one or several con-
tributing genes will contribute to the risk. It is
important that genetic polymorphisms rather
than genetic defects caused by mutations are
likely to be important to this punitive model
of diabetes risk. Linkage analysis of affected
sibling pairs from Canadian, British and Amer-
ican families allowed the identification of sev-
eral Type 1 diabetes contributing genetic fac-
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tors.80 Some of these contributing factors have
been confirmed in the same or in other data
sets, others have not. We will shortly review
the regions reported so far whether replicated
or not.

A locus located near the D15S107 marker
(IDDM3) on chromosome 15q2681 was also
found in Danish families,82 using case–control
and intrafamilial association studies, as well
as the transmission disequilibrium test (TDT),
which allowed it to be established that the
allele D15S107*130 was the most significantly
associated with Type 1 diabetes. However, sig-
nificance of linkage for IDDM3 remains ques-
tionable, since additional data sets obtained
from affected sibling pairs from American and
Italian families did not confirm linkage.83

In the same affected sib pairs, linkage was
also observed for markers on chromosome
11q13 (IDDM4) near the fibroblast growth fac-
tor 3, FGF3.81,84 The addition of additional mar-
kers centromeric to the FGF3 region (near
D11S1337) improved linkage.83 Although po-
sitional cloning is required for a final answer,
it is tantalizing that the Fas-associated death
domain protein (FADD) maps to 11q13.3.85

FADD is a 23 kDa cytoplasmic protein which
interacts with Fas intracellular domain and
transduces an apoptosis signal which is leading
to T-cell destruction mediated by IL-1 b-con-
verting enzyme-like proteases. It cannot be
excluded that regulation of T-lymphocytes
apoptosis may be important to Type 1 dia-
betes pathogenesis.85

IDDM5 was localized to chromosome 6q25
using a marker in the estrogen receptor locus
(ESR).58 The linkage was first merely sugges-
tive,58,84 but was lately confirmed.83,86 Another
contributing factor, IDDM8, was mapped 28
cM more telomeric than ESR, near D6S264–
D6S446 on chromosome 6q27.83,84 The D6S281
(IDDM8) marker region contributed signifi-
cantly to familial IDDM clustering by multipo-
int linkage mapping.86

The linkage analysis of affected sib pairs
to identify yet other contributing genetic factors
are complemented by analysis of transmission
disequilibrium tests (TDT). TDT detected a sig-
nificant contribution to a marker on chromo-
some 18q12–q21 (IDDM6).87 This factor was
reported 15 years earlier using classical analysis
of protein polymorphisms.88 Analysis of 12
markers in the region spanning the Kidd blood
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cell surface antigen (Jk) confirmed positive link-
age to allele 4 of D18S487. An additional
marker located 60 kb from D18S487, allele 2 of
A181,2, proved stronger linkage in one group
of 1067 families but not in second group of 390
families.87 It is therefore questionable how
much Jk on chromosome 18q12 contribute to
Type 1 diabetes. There was no bias in the
transmission of the Jkb allele to diabetic off-
spring along with no linkage of the Jka/Jkb poly-
morphism to Type 1 diabetes.89

Another region detected in the first gen-
ome-wide search for Type 1 diabetes genes
was IDDM10. The region of markers tested
is spanning between D10S197 to D10S220 on
chromosome 10p11–q11. Multipoint affected sib
pairs and TDT linkage analysis revealed evi-
dence for linkage of allele 7 of D10S193 and
weak linkage of allele 4 of D10S588. However,
this allele was more frequently transmitted to
non-diabetic siblings. There was no linkage to
a chromosome 10 GAD65 microsatellite,90 which
is consistent with a previous study.91

An extensive search for contributing genes
on chromosome 14q resulted in strong disease
linkage to D14S67 on 14q24.3–q31, located
between the CCC1 and D14S128 microsatellite
markers.92 Among affected siblings with no
HLA sharing, the reported linkage was stronger
than any other non-HLA genes. The same
analysis in a different set of Canadian families,
however, did not confirm linkage.92 These
results from the same authors illustrate that
there are problems in the current approach to
identify Type 1 diabetes-contributing genes. It
is as yet unclear how these problems of lack
of replication will be resolved, except that many
more sib pairs may need to be analyzed.

Another approach to identify diabetes-con-
tributing genes is to test whether genetic factors
in the NOD mouse or the BB rat also contribute
to the human disease. This test is possible
because of widespread synteny between rodent
and human genomes. This approach to hom-
ology mapping has indicated the following.
Chromosome 1 markers were linked to NOD
mouse diabetes.3 A syntenic region on human
chromosome 2q was searched and initially two
loci were detected: one near the microsatellite
marker D2S152 on chromosome 2q31, IDDM7,93

and another, IDDM12, at the chromosome 2q33
region encoding the genes of CTLA-4 and
CD28.94 The association between IDDM7 and

 1998 John Wiley & Sons, Ltd. Diabetes Metab. Rev. 14, 3–29 (1998)

Type 1 diabetes is unclear and the distance to
IDDM12 is approximately 10.7 cM. In all ana-
lyzed data sets, the linkage between D2S152
and Type 1 diabetes remains either weak84,93 or
show no linkage.83

The evidence for linkage to CTLA-4 is also
controversial. CTLA-4, expressed on stimulated
T-lymphocytes, is a negative regulator of T-
cell activation. The binding of CTLA-4 to B7
molecules triggers T-cell apoptosis. CTLA-4
could potentially play an important role in
Type 1 diabetes susceptibility. Studies in CTLA-
4 knockout mice support this view since these
mice have islet lymphocytic infiltration
(insulitis) as well as to up to 100-fold increase
of serum immunoglobulin level.95,96

In addition to linkage between CTLA-4 and
diabetes, there is also evidence for linkage to
Graves’ disease.94 The contribution of CTLA-4
for Type 1 diabetes is a biallelic variant (G to
C) in exon 1 at position 49 which results in
treonine to alanine substitution in the leader
peptide. The G allele was more often trans-
mitted to diabetic offspring among Caucasian
Type 1 diabetic patients.94 The G allele does
not show linkage in all studied ethnic groups,
and further studies are needed to confirm link-
age or show association. Linkage of the G allele
was verified in German and Canadian popu-
lations.97 Stronger linkage to Graves’ disease,
particularly among HLA DQA1*0501 patients,
was also observed.97 In an American sib pair
analysis there was no evidence for linkage of
CTLA-4 to Type 1 diabetes.98 In the same study
a few more candidate genes on chromosome
2q31–35 were tested by the TDT for their sus-
ceptibility to Type 1 diabetes. Among them
were: HOXD gene cluster, b2, CD28, IGFBP2
and IGFBP5. Similarly to CTLA-4, none of those
genes displayed any association with Type 1
diabetes.99

An additional search of chromosome 2q
identified linkage on chromosome 2q34 to
D2A164 (IDDM13).100 Linkage was strongest in
families with a preponderance of affected
females, as well as among individuals who
had islet cell antibodies (ICA) with no clinical
symptoms of Type 1 diabetes. This is of poten-
tial interest since it indicates that autoimmune
phenomena which are associated with or pre-
dict Type 1 diabetes in fact may show stronger
genetic linkage compared to Type 1 diabetes
as the end-point.
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Taken together, in 1998 it needs to be
worked out how the major genetic factor, HLA-
DQ, contributes to diabetes risk. HLA is neces-
sary but not sufficient and we still don’t under-
stand how. Are HLA-DQ 8, 2 or 2/8 presenting
diabetogenic peptides? How do we explain the
potentiated but age-dependent risk of HLA-
DQ2/8 heterozygotes? We need to find out if
DQ2-DR3 is predisposing for one subgroup of
Type 1 diabetes and DQ8 for another. DQ2/8
individuals may in these model have propen-
sity for two types of Type 1 diabetes.

We also need to understand contributing
diabetes genes. Novel methods of statistical
genetics which take multiple risk factors into
account should be useful to generate novel
hypotheses on the complex interaction between
HLA and contributing genetic factors in
response to environmental factors.

4. PATHOGENESIS

The pathogenesis of Type 1 diabetes is
strongly associated with a high diagnostic sen-
sitivity and specificity of ICA and autoanti-
bodies to specific autoantigens which primarily
include GAD65, insulin and ICA512 (IA-2). The
nature of the initiating or triggering antigen(s)
still remains to be determined. A large variety
of autoantibodies have been reported (Tables II
and III). Some of these antibodies have been
confirmed by many investigators (Table II),
others have not (Table III). It is reasonable
therefore to discuss, in immunology of diabetes
in 1998, whether the autoantigen has been
identified and prepared in large quantities
(“recombinant autoantigens”) or not
(“candidate autoantigens”) . A different type of
autoantigens are those detected by T-cells (T-
cell autoantigens) (Table III). These autoanti-
gens or T-cell epitopes differ whether the pep-
tides are presented by HLA class I or class II
molecules. The T-cell responses are different as
well, since the former are recognized by cyto-
toxic T-lymphocytes (CTL), and the latter by T-
helper cells.

The presence of an islet cell autoantibody
signifys that an autoimmune reaction has taken
place. We view the islet cell autoantibodies as
markers of this anti-islet autoimmune reaction.
Once a triggering antigen has been identified,

 1998 John Wiley & Sons, Ltd. Diabetes Metab. Rev. 14, 3–29 (1998)

Table II. Recombinant b-cell autoantigens used in
standardized radioimmunoassays for conformation-

dependent autoantibodies

Antigen Autoantibody assay

Insulin Standardized radioligand (125I-insulin)
assay detects insulin autoantibodies
(IAA) in about 50% of new-onset
Type 1 diabetic children. Less in
adults

GAD Standardized radioligand (35S- or 3H-
GAD65) assay detects autoantibodies
(GAD65Ab) in about 80% of new-
onset Type 1 diabetic children and
adults. GAD67Ab are found primarily
in GAD65Ab-positive sera

ICA512/ Standardized radioligand (35S- or 3H-
IA-2 IA-2) assay detects autoantibodies

(ICA512Ab or IA-2Ab) in about 50%
of new-onset Type 1 diabetic children
and adults. ICA512Ab are unique to
Type 1 diabetes, develop after
GAD65Ab and are closer to the
clinical onset

IA-2b IA-2b is 74% homologous to IA-2 and
Phogrin the two molecules share most of the

autoantibody epitopes. Radioligand
(35S- or 3H-IA-2) assay detects
autoantibodies (IA-2bAb) in about
50% of new-onset Type 1 diabetic
children and adults. Remains to be
standardized

it will be critical to elucidate the mechanisms
by which that antigen is able to induce b-cell
killing and subsequent development of auto-
reactive antibodies and T-cells. In the following
we will discuss the different autoantigens ident-
ified so far and future directions for im-
munology of diabetes in 1998.

A. Recombinant Autoantigens

Autoantigens associated with the patho-
genesis of Type 1 diabetes have been identified
using methods described by one of us by using
serum or plasma by immunoprecipitation.14,101

The highest diagnostic sensitivity and speci-
ficity have been achieved when the autoanti-
body analyses are carried out as radioim-
munoassay with recombinant autoantigens.12,102
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Table III. Candidate recombinant islet cell autoanti-
gens with low or controversial diagnostic sensitivity

for Type 1 diabetes

Antigen Nature, location and autoantibody
assay

ICA69 Western blotting but not radioligand
assay detected ICA69Ab in 30% of
ICA-positive first-degree relatives later
developing Type 1 diabetes. Assay
not standardized

38 kDa T-cell responses found in recent-onset
jun-B Type 1 diabetes patients.

Immunoblotting detected jun-BAb in
33% of new-onset patients. Assays not
standardized

Carboxy- Immunoblotting detected CPHAb
peptidase among ICA-positive first-degree
H relatives but a radioligand assay

failed to detect an increased frequency
of CPHAb in new-onset patients.
Assays not standardized.

Heat shock ELISA test with recombinant murine
protein hsp60 indicates an increased

frequency of antibodies in Japanese
type diabetes and rheumatoid arthritis
patients. Assay not standardized.

Aromatic Radioligand (35S-AADC) assay detects
l-amino autoantibodies (AADCAb) in 51% of
acid APS-1 patients without and with Type
decarboxyl- 1 diabetes but not necessarily in new-
ase onset Type 1 diabetic patients. Assay
(AADC) not standardized

DNA Autoantibodies to both full-length and
topoisomer- fragments of DNA topoisomerase type
ase II II have been detected in 48% of Type

1 diabetes patients. Assay not
standardized

Glima 38 Amphiphilic 38K membrane
glycoprotein expressed in islet and
neuroendocrine cells. Glima 38Ab
were reported among 19% of new-
onset Type 1 diabetes patients.

Imogen 38 Imogen 38 was detected in a peptide
display library screened with a T-cell
clone from a Type 1 diabetes patient.
T-cell and autoantibody determination
remains to be determined

 1998 John Wiley & Sons, Ltd. Diabetes Metab. Rev. 14, 3–29 (1998)

Three autoantigens, GAD65, insulin and
ICA512 (IA-2 and IA-2b), are showing the most
reproducible results (Table II).

i. Insulin

Insulin autoantibodies (IAA) were not con-
vincingly demonstrated until 125I-insulin was
used in a radioligand binding assay.11 In the
first study, it was carefully documented that
the patients with IAA had not been given insu-
lin before the clinical diagnosis. The prevalence
of IAA at clinical diagnosis was about 40%;
however, later studies in an assay with pro-
longed incubation increased the IAA frequency
at onset.103,104 The overall prevalence is depen-
dent on age since IAA are more common
among young children than among adolescents
or adults.105,106 So far, it has not been possible
to distinguish IAA from insulin antibodies
formed in response to daily insulin injections.

The radioimmunoassay for insulin reached
the highest diagnostic sensitivity and specificity
in several international standardization work-
shops.12,107 After the ELISA tests or similar
solid-phase analyses had failed,108,109 there are
two steps to the IAA radiobinding assay used.
The first is to treat the serum or plasma with
acid charcoal to displace antibody-bound insu-
lin and to remove free insulin, which otherwise
would compete with the radioactive insulin.
The samples are next incubated with or without
an excess of non-radioactive insulin to demon-
strate specific binding. Free and antibody-
bound insulin is finally separated by polyethyl-
ene glycol (PEG) in the presence of carrier
immunoglobulin.12 Prolonged incubation and
the use of larger volumes of sera seem to
increase the sensitivity of the assay.104,106,110

The role of insulin as an autoantigen in
the pathogenesis of Type 1 diabetes is still not
understood. It remains to be determined when
and why (prepro)insulin is processed and
(prepro)insulin peptides presented. Perhaps the
most immunogenic molecule is proinsulin or
preproinsulin.111,112 An IAA epitope was tenta-
tively located to the B chain using insulin ana-
logues and mutated insulin in the IAA
assays.113 The association between IAA and
HLA may help to define epitope restriction.
Among first-degree relatives to IDDM patients,
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IAA was reported to be associated with DR4.114

A possible DR4 subtype or a linked DQA1
allele needs to be identified.115 Among new-
onset Type 1 diabetic children, IAA was asso-
ciated with DQ8 rather than DQ2.64 Further
studies are required to identify IAA autoepi-
topes and their HLA restriction. Many more B-
lymphocytes are committed to production of
anti-insulin IgG among new-onset IDDM
patients compared to controls.116 It is not yet
clear to what extent the immune response to
injected human insulin differs from endogen-
ously autopresented insulin or proinsulin.

The diagnostic sensitivity and specificity of
IAA for IDDM have been assessed in numerous
studies of selected patients.104,110,117 population-
and Diabetes Registry-based studies of consecu-
tively diagnosed patients and matched con-
trols,64,105,118,119 as well as among first-degree
relatives progressing103,120,121 or not122,123 to
Type 1 diabetes (Table IV). While the diagnostic
specificity is high (99%), there are major differ-
ences in sensitivity (40–80%) dependent on the
type of assay used.105,106,118,124 Although Type 1
diabetes primarily develops among children
and young adults who do not have a family
history of the disease, there are more studies
on select first-degree relatives followed to diag-
nosis than on individuals in the general popu-
lation. IAA has low predictive value (3%) in
children and young adults in the general popu-
lation.64,105 Large follow-up studies of marker-
positive individuals detected by screening the
general population125,126 will be required to
define the predictive values of IAA for Type 1
diabetes alone or in combination with other

Table IV. Diagnostic sensitivity, specificity and pre-
dictive value in autoantibody assays with recombi-

nant b-cell autoantigens

Autoantigen Sensitivity Specificity Predictive
value

Insulin 40–80% 99% 30%
GAD65 70–80% 99% 60%
GAD67 10–20% 99% Very low
IA-2 50–60% 98–99% 30%
IA-2b 50% 99% 30%

The predictive values are estimated from studies of
ICA-positive first-degree relatives, not for individ-
uals in the general population. GAD67-specific auto-
antibodies are rarely found in Type 1 diabetes. Their
presence signifies high-titer GAD65 autoantibodies.

 1998 John Wiley & Sons, Ltd. Diabetes Metab. Rev. 14, 3–29 (1998)

autoantibodies (GAD65 and ICA512) and gen-
etic markers.

A recurrent problem in Type 1 diabetes
research is the difficulty in identifying and
cloning T-cells with specific T-cell receptors
(TCR) to autoantigen peptides or epitopes.
Experiments in the mouse are less problematic
and T-cell clones have been produced in the
spontaneously diabetic NOD mouse.127,128 Insu-
lin, perhaps proinsulin,129,130 is an important
autoantigen in Type 1 diabetes. The positive
predictive value of IAA for Type 1 diabetes in
the general population is still not fully estab-
lished but current data indicate that IAA in
combination with GAD65 or ICA512 may have
predictive values for Type 1 diabetes among
first-degree relatives as high as 50–70%.27 The
mechanisms of insulin autoantigen processing,
HLA class II presentation and susceptibility in
DR4-DQ8-positive individuals need to be estab-
lished.

ii. Glutamic Acid Decarboxylase (GAD)

Cloning of GAD in human islets showed
that the previously described 64K protein14 rep-
resented a novel isoform of GAD, GAD65,16

also present in human brain.131 The two iso-
forms of GAD—GAD65 and GAD67—are both
expressed in neurons and are both catalyzing
the formation of the main neuroinhibitor g-
aminobutyric acid (GABA) from l-gluta-
mate.132,133 The role of GAD65 and GABA in
the islets of Langerhans is still unclear.134–136 It
remains to be determined if b-cell GABA is
important to signaling, for fuel, for growth or
all three. Following the demonstration of
GAD65 as the major autoantigen in Type 1
diabetes,16,18,19,47,137 special interest has been
focused on this autoantigen. The use of
GAD65138,139 or GAD67140 to prevent or delay
the onset of diabetes in the spontaneously dia-
betic NOD mice did not decrease the interest.
The observation that GAD65 plays a primary
role in the initial stages of NOD mouse Type
1 diabetes pathogenesis is still being pursued
by several investigators. The BB rat is also
investigated; however, in this more robust
model of Type 1 diabetes, the disease process
was not halted by early intavenous or intra-
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thymic GAD65 injections (Bieg and Lernmark,
unpublished observations).

The GAD65 and GAD67 isoforms associate
into dimers of approximately 120K, but differ
in their interaction with the GAD co-factor,
pyridoxal l-phosphate (PLP). GAD67 mRNA
levels are relatively stable while GAD65 mRNA
seems more regulated.135,141–144 GAD65 consists
of two subunits—an a and a b subunit,145,146

whereas GAD67 is recognized as a single entity
following immunoprecipitation or Western blot-
ting.137,147 Further studies are needed to clarify
which transcription factors regulate the
expression of the two GAD isoforms, including
elements that may be sensitive to glucose and
pro-inflammatory cytokines. The mechanisms
of intracellular sorting148 as well as the possi-
bility that GAD65 can be discharged from the
b-cells149,150 also needs to be clarified.

Although high activity of GAD, GAD65
mRNA and high concentrations of GABA have
been detected in islets at levels comparable to
those in the central nervous system (CNS), the
importance of GAD and GABA for the function
of the pancreatic b-cells remains unclear.151,152

GABA can be used for both regulatory and
trophic reactions, and both paracrine and meta-
bolic effects of islet GABA have been
reported.152,153 Co-secretion with insulin does
not seem to occur151 and insulin secretagogues
do not affect GABA secretion.154 It was pro-
posed that GABA inhibition of arginine-stimu-
lated glucagon secretion would be explained
by the binding of GABA to GABAA receptors
present on a-cells.155 However, inhibiting the
binding of GABA to its receptor with bicucul-
line, which specifically interferes with the post-
synaptic GABAA receptors, did not influence
glucose-induced inhibition of glucagon
release.154 It has been speculated that GABA
is important to b-cell energy metabolism by
generating NADH and ATP in the GABA
shunt.152,156

The autoantibody response to GAD in
Type 1 diabetes was complicated since immun-
oprecipitation assays demonstrated the com-
bined precipitation of GAD65 and GAD67 in
metabolically labeled rat but not human islets
of Langerhans.137,157,158 Comparing GAD65 and
GAD67 expressed after transfection to a fibro-
blast cell line137 or expressed by in vitro tran-
scription and translation18,159 revealed that 70–
80% of Type 1 diabetes sera recognized GAD65

 1998 John Wiley & Sons, Ltd. Diabetes Metab. Rev. 14, 3–29 (1998)

whereas only 10–20% recognize GAD67.159–161

Shortly after the report that the 64K protein
had GAD activity,15 several assays to detect
GAD autoantibodies were developed including
ELISA,162 enzymatic activity in immunoprecipit-
ates163,164 or radioimmunoassays165 using widely
different antigen sources including brain homo-
genates and recombinant GAD. The availability
of recombinant human GAD65 cDNA made it
possible to label GAD65 with either 35S, 3H
or 14C by coupled in vitro transcription and
translation.17–19 This approach allowed the
development of precise and reproducible radio-
ligand binding assays to detect GAD65Ab as
demonstrated in two international standardiza-
tion workshops9,10 This assay system is now
widely employed to detect a variety of auto-
antibodies including ICA512.27,28,166 ICA69167 or
21-hydroxylase in Addison’s disease.168 The
advantage of the in vitro generated labeled
autoantigen seems to be the direct labeling dur-
ing biosynthesis which may not harm critical
conformational epitopes otherwise affected by
iodination or biotinylation and perhaps lost
when recombinant GAD is absorbed to ELISA
plates.

The highest diagnostic sensitivity of
GAD65Ab has been found at onset of
IDDM159,160,163,167 and typically about 80% of the
patients have GAD65Ab (Table IV). The sensi-
tivity is lower in young boys159,163 but does not
seem to decrease with increasing age as is the
case for IAA and ICA512Ab.160,169 The fre-
quency of GAD65Ab is increased among first-
degree relatives and predicts IDDM.27,47,167,170

The positive predictive value for IDDM of
GAD65Ab alone or in combination with other
islet autoantibodies is most likely as high as
50–60%; however, prospective studies in which
all first-degree relatives and not only those
identified because of ICA positivity and loss of
b-cell function are needed. Investigations of
antibody-positive individuals following screen-
ing in the general population are also needed.
The diagnostic specificity is about 99% in the
general population.18,160 The frequency (about
1%) is the same as that of all newborns who
will develop diabetes over a lifetime.156

Although newborn children may have
GAD65Ab,171,172 it is unclear to what extent
they predict Type 1 diabetes and if they are
evanescent.173 The presence of GAD65 autoanti-
bodies at diagnosis has been suggested to be
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associated with a more rapid loss of b-cell
function.19,174 Within 2 years after diagnosis,
levels of GAD65Ab decrease somewhat, but the
prevalence of GAD65Ab in long-term patients
is still surprisingly high.47,175

The availability of simple, precise and
reproducible assays has made it possible to
analyze GAD65Ab and GAD67Ab in a large
variety of disorders to better understand their
diagnostic sensitivity. The presence of
GAD65Ab is very high among patients with
the autoimmune polyendocrine syndrome 1
(APS-1) whether the patients develop diabetes
or not.176,177 Both GAD65- and GAD67-specific
autoantibodies were detected in Swedish non-
diabetic patients with Grave’s disease178 and
also in Japanese, who more often have both
diseases.174,179 GAD65Ab were not increased in
frequency among patients with idiopathic
Addison’s disease without diabetes.168,180

The availability of GAD65 and GAD67
cDNA has made it possible to mutate GAD65
to study the autoantibody epitopes.181–184 It is
important in this respect that Type 1 diabetes-
associated GAD65Ab do not recognize linear
GAD65 epitopes, for example, when the antigen
is blotted onto nitrocellulose since confor-
mational epitopes are lost.181,185 Deletion
mutants which, for example, can be used with
sera from stiff man syndrome53,185,186 did not
yield interpretable results with diabetes sera.
Using 10 different human monoclonal ICA
(MICA 1–10)52,187,188 several GAD65 epitopes
have been identified: N-terminal region
(starting at position 39 for MICA 8/9); middle
region (amino acid position 245–449 for MICA
4/6 and 10) and C-terminal region (amino acid
position 450–570 for MICA 1/3 and 7). The
results of these MICA isolated from three adult
Type 1 diabetic patients were supported in a
study with GAD65/67 chimeric molecules
using sera from consecutively diagnosed Type
1 diabetic children,182 demonstrating that the
middle (E1) and C-terminal (E2) region anti-
bodies dominate. In addition, it was observed
that an increase in titer levels to the C-terminal
(E2) region was associated with conversion to
diabetes.182 In these studies, the GAD65Ab epi-
topes are detected by IgG anti-GAD65; how-
ever, the epitope specificity as well as speci-
ficity for IgM, IgA and IgE as well as for IgG
1–4 subtypes need to be determined. It cannot
be excluded that isotype- and subtype-specific
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anti-GAD65 immunoglobulin may better pre-
dict disease and reflect distinct pathogenetic
processes. Since somatic mutations of the
GAD65 antibody molecules most likely are anti-
gen driven by CD4-positive T-cell-dependent
mechanisms188,189 it is also critical to determine
GAD65 T-cell receptor epitopes.

Peripheral blood mononuclear cell (PBMC)
reactivity to GAD65 at onset of Type 1 diabetes
and in high-risk relatives has been reported.190–192

Significant proliferation expressed as a stimulation
index was reported in 47–67% of newly diagnosed
IDDM patients, and was higher among ICA-posi-
tive (63–68%) compared to ICA-negative relatives
(11%) without an effect of ICA titer, HLA type
or gender.190 GAD67-reactive PBMC have also
been demonstrated in both pre-diabetic (40%) and
diabetic patients (38%).193,194 The relevance of T-
cells proliferating in response to GAD67 is unclear
and GAD67 immunodominant epitopes have not
been identified.195 Overlapping GAD65 peptides
were used to study binding to HLA-DQ196,197

and DR.50 In the DQ molecules peptide-binding
experiments, it was found that GAD65 peptides
with strong homology to the PC-2 Coxsackie virus
antigen were binders to DQ8 but not to DQ7
or DQ9.69,197 No DQ-restricted T-cell proliferative
responses have been detected so far to this epi-
tope.48–50 DRB1*0401-restricted GAD epitopes
were, however, defined by T-cell hybridomas.50,198

One of these T-cell epitopes was also detected by
T-cells isolated from an adult Type 1 diabetic
patient but none of the T-cell lines were proliferat-
ing in response to the Coxsackie B4 PCV-2 antigen
peptide.49 It is possible that the binding is not
strong enough to induce tolerance by positive
selection in the thymus. The mechanisms by
which GAD65 autoantigen is processed and
presented on HLA DR or DQ molecules remain
to be elucidated. The possible role of molecular
mimicry is still unclear.47 Experiments in the
spontaneously diabetic NOD mice suggest that
immunizations with peptides from either insulin
or GAD65 prevent Type 1 diabetes.138,139,199 Pep-
tides have been eluted and sequenced from both
DQ8 and DQ2 molecules to define peptide-bind-
ing motifs of these IDDM-associated HLA class
II molecules.200 Such motifs may be useful to
identify GAD peptides which may be involved
in IDDM pathogenesis or perhaps of etiological
importance. Similar approaches will be needed to
determine GAD65 peptide binding to HLA class
I molecules to define GAD65-dependent CTL.201
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CD8+ T-cells have been observed in insulitis but
their peptide dependence and HLA class I restric-
tion have yet to be elucidated.

iii. IA-2/ICA512

Antibodies to islet proteins were identified
in human diabetic sera by trypsin treatment of
the 64K immunoprecipitation product202 also
using radiolabeled rat insulinoma cells which
lack expression of both GAD65 and
GAD67.20,203 The limited proteolytic cleavage of
the immunoprecipitate revealed three different
antibody specificities binding fragments of mol-
ecular mass (Mr) 37K, 40K and 50K. The 50K
component was removed by GAD65 antibodies
whereas the 37K and 40K fragments appeared
to be derived from a different protein since
neither recombinant GAD65 nor GAD67 com-
peted for autoantibody binding to their 64K
precursor.204 Islet cell antigen 512 (ICA512) was
independently identified from an islet cDNA
expression library by screening with sera from
Type 1 diabetic patients.21,205 ICA512 was also
isolated and expressed in a human insulinoma
subtraction library, and designated islet antigen
2 (IA-2).23 The 3.6 kb cDNA of IA-2/ICA512
showed a 979-amino acid protein homologous
to receptor-type protein tyrosine phosphatases
(PTP).23,24 The IA-2 gene is on chromosome
2q35.206 IA-2 has also been found in normal
human brain, pituitary, pancreas and different
cell lines.207 The function of IA-2 in the islet b-
cells remains unknown, but transmembrane
PTP may regulate cell growth and proliferation,
cell cycle and cytoskeletal integrity in response
to external stimuli.208 Since IA-2 is an integral
membrane protein in the insulin secretion ves-
icle it is possible that it is of importance to
signal internalization of vesicular membrane
components.207

Further analysis of the association between
IA-2 and the 37K and 40K tryptic fragments of
immunoprecipitated 64K revealed that the 40K
moiety is a product of the intracellular domain
of IA-2.22,24 The 37K fragment was identified
as derived from a different, although related
protein, IA-2b (see below). IA-2 and IA-2b
share common epitopes.209,210

Initially autoantibodies against islet tryptic
fragments of 37K/40K protein were detected in
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50% of new-onset IDDM patients and 67% of
pre-diabetic twins.20,211 Recent data with IA-2
demonstrate a diagnostic sensitivity of about
50–60% and specificity of 98–99%22,212,213

(Table IV). Several investigators believe that the
combined GAD65Ab, IAA and IA-2Ab tests
may replace ICA testing.27,28,213 Although the
cytoplasmic PTP-like domain is homologous to
other tyrosine phosphatases, phosphatase
activity has not been detected.21,22 The autoanti-
body reactivity is directed to the cytoplasmic
domain. In new-onset IDDM sera there are
antibodies which react to at least four cytoplas-
mic domains.214 Two were mapped to the juxta-
membrane domain (amino acid positions 605–
620 and 605–682) and an additional two in the
PTP-like domain (amino acid positions 777–937
and 687–979). The majority of IDDM sera (83%)
reacted at the PTP-like domain followed by the
juxtamembrane (56%) and reactivity with both
(39%).209,214 This heterogeneity is not under-
stood but may be explained by HLA restriction
since IA-2 (ICA512) in IDDM is associated with
DQ8.213,215 Before a discussion of diagnostic sen-
sitivity, specificity and predictive value of
ICA512/IA-2 autoantibodies for IDDM, a novel
isoform of IA-2, IA-2b, will next be discussed.

iv. IA-2b

Another transmembrane PTP, IA-2b, was
identified from cDNA libraries of a mouse neo-
natal brain,24 human colon carcinoma cells25 or
of human islets.26,216 The intracellular domain
of the two b-cell IA-2 isoforms shows 74%
amino acid identity compared to only 26% in
the extracellular domain. Similar to IA-2, IA-
2b is primarily expressed in pancreatic islets
and brain. IA-2b, also referred to as IAR or
phogrin, cDNA was used in in vitro transcrip-
tion and translation to prepare a radiolabeled
autoantigen to demonstrate that about 50% of
new-onset patients have IA-2b autoanti-
bodies.22,25,26,216 Most IA-2 autoantibody-posi-
tive sera react with both isoforms; however,
some IDDM sera have been found which dis-
tinguish between unique epitopes on either IA-
2 or IA-2b.26

The successful cloning of IA-2b also seems
to solve the problem of the origin of the 37K
fragment22 since limited proteolysis suggests
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that the IA-2b is the precursor of the 37K
fragment.24,25 IA-2b autoantibodies have a diag-
nostic sensitivity of about 30–50% and a speci-
ficity of 99% (Table IV). It needs to be carefully
determined if IA-2bAb should be included in
the panel of autoantigens to increase the predic-
tive value for Type 1 diabetes. It will, for
example, be of interest to test to what extent
an IA-2/IA-2b hybrid molecule can be con-
structed and used as an autoantigen that would
maximize IA-2bAb sensitivity and specificity.
Future studies also need to define T-cell epi-
topes and the apparent effect of age at onset
on diagnostic sensitivity.

B. Other Autoantigens

The following cloned proteins have been
implicated as candidate autoantigens (Table III).
The importance of this group of putative auto-
antigens remains to be determined since many
are only based on a single publication which
has not yet been confirmed. Since these auto-
antigens have been cloned it will be possible
to resolve these uncertainties.

i. ICA69

The islet cell antigen of 69K (ICA69) was
first detected in rat insulinoma cells by cross-
reactivity with antibodies to bovine serum albu-
min.217 ICA69 was cloned from a human islet
cDNA expression library; the structural gene
was designated ICA1, and it was mapped to
human chromosome 7p22.218 The open reading
frame of ICA69 predicts a 482-amino acid pro-
tein with some sequence homology to bovine
serum albumin that was proposed to trigger
Type 1 diabetes.217,219 There was no specificity
in the expression since ICA69 mRNA was
reported in human pancreatic islets and brain,
and in rodent islet cell lines, testis, islets and
brain.218,220 Western blot analysis of human and
mouse tissue also revealed high levels of ICA69
in brain, testis, pancreas and islet cell lines.221

The function of ICA69 remains to be clarified.
Autoantibodies against ICA69 detected by

immunoblotting with sera from pre-diabetic
individuals and in recent-onset patients
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amounts to 20–30% and was independent of
other islet autoantibodies such as ICA or
IAA.218 However, another study showed that
less than 5% of newly diagnosed IDDM
patients immunoprecipitated in vitro translated
ICA69.167 ICA69 antibodies were also reported
in patients with rheumatoid arthritis.222 The
utility of ICA69 as a humoral marker for Type
1 diabetes is therefore controversial.

T-cell proliferation to ICA69 was most pro-
nounced in recent-onset Type 1 diabetes
patients compared to patients with the disease
or to non-diabetic first-degree relatives.223 An
inverse correlation between T-cell and autoanti-
body responsiveness to ICA69 was also
observed. Although available as a recombinant
protein, the ICA69 autoantibody reactivity has
not been easily reproduced and the role of
ICA69 in the pathogenesis of Type 1 diabetes
needs further studies.

ii. Glima 38

Glima 38 is a 38K amphiphilic membrane
glycoprotein expressed in islet cells and neu-
ronal cell lines and is immunoprecipitated in
about 20% of new-onset IDDM children and
14% of pre-diabetic first-degree relatives224

(Table III). A 38K protein had already been
described in the initial study of the 64K auto-
antigen.14 Glima 38 shares the neuroendocrine
expression pattern characteristic of GAD65 and
IA-2. Deglycosylation with N-glycanase
reduced the molecular mass to 22K. Glima 38
has yet to be cloned and the immunoprecipit-
ation assay in Triton X-114 is preliminary to
establish diagnostic sensitivity and specificity
of glima 38 autoantibodies for IDDM. While
the prevalence of glima 38 autoantibodies in
new-onset IDDM patients was 19%, it is poss-
ible that the combination of GAD65Ab, IA-2Ab
and glima 38 will yield a diagnostic sensitivity
well above 90%. The specificity needs to be
established since in the initial study too few
healthy controls were tested.224 Sera which were
positive by immunoprecipitation were negative
in a Western blot analysis, indicating that the
Type 1 diabetes autoantibody epitopes are con-
formational.224 The presence of autoantibodies
to the glima 38 autoantigen has not been con-
firmed by others.
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iii. 38K-jun-B

T-cell reactivity to the early-response
nuclear transcription protein jun-B (38K) was
reported in Type 1 diabetes225 (Table III). Using
a 180 N-terminal amino acid recombinant jun-
B preparation, peripheral blood T-cell reactivity
was demonstrated in 71% of recent-onset IDDM
patients, 50% ICA-positive first-degree relatives,
25% other autoimmune disease subjects but not
in healthy controls. Autoantibodies against jun-
B were reported to co-precipitate in 33% of
GAD65Ab-positive sera from IDDM patients.
The jun-B antigen is most likely different from
glima 38 since the former is a non-glycosylated
nuclear protein and the latter a glycosylated
membrane protein. Antibodies against an islet
protein of 38K were found in Type 1 diabetes
patients with cytomegalovirus antibodies. Jun-
B shares sequences with human cytomegalo-
virus and also with related herpes virus anti-
gens.225 Again, jun-B autoreactivity in Type 1
diabetes is only reported once and confirmatory
studies are needed.

iv. Carboxypeptidase H (CPH)

CPH, also known as enkephalin con-
vertase, is a 52K enzyme expressed in islet
and neuroendocrine cells (Table III). CPH exists
both as a membrane-bound and a soluble form
which is co-secreted with insulin.226 The serum
used for screening an islet cell tumor library
was from a single ICA-positive first-degree rela-
tive. Immunoprecipitation of the in vitro tran-
scribed and translated CPH did not reveal a
difference in antibody frequency between new-
onset Type 1 diabetic patients and controls.167

This autoantigen has not been subjected to
autoantibody standardization.

v. Heat Shock Proteins (HSP)

HSP are stress proteins ubiquitously pro-
duced by cells in response to, for example,
an increase in temperature, cytokines or free
radicals. HSP have been implicated in the
pathogenesis of several autoimmune diseases.
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It is thought to be important to NOD mouse
diabetes.139,227 Sequence homology to GAD65
suggested molecular mimicry to an epitope of
the 65 kDa HSP. HSP65 may be expressed on
the b-cell surface and may be a target for
islet cell autoantibodies.228 Recombinant murine
hsp60 used in ELISA (Table III) detected hsp60
antibodies in 16% of Type 1 diabetes and 20%
of rheumatoid arthritis patients, 1% of healthy
controls but not in slowly progressive Type 1
patients, Type 2 patients or in patients with
autoimmune thyroid disease.229 This report
warrants further investigation also in other eth-
nic groups to establish the possible role of HSP
as autoantigens in Type 1 diabetes.

vi. Aromatic l-Amino Acid Decarboxylase
(AADC)

Patients with autoimmune polyendocrine
syndrome type 1 (APS-1) are often positive for
autoantibodies against GAD65 and an unre-
lated 51K b-cell protein.230 The 51K protein
was identified as AADC by screening a rat
insulinoma expression library.231 AADC cata-
lyzes the decarboxylation of aromatic l-amino
acids which are intermediates in the synthesis
of catecholamines and indolamine neuro-
transmitters. AADC uses pyridoxal l-phosphate
(PLP) as co-factor, and is a cytosolic enzyme.
Apart from the active site, there is little
sequence similarity between AADC and
GAD65. AADC is also present in the peripheral
and central nervous systems, liver, intestine
and kidney. Using in vitro transcribed and
translated AADC, AADC autoantibodies were
detected in 51% of APS-1 patients but neither
in 138 Type 1 diabetes patients nor in the
controls232 (Table III). This study seems to
exclude AADC as an autoantigen in Type 1
diabetes. Since AADCAb are associated with
APS-1176 but not with Type 1 diabetes, this
autoantigen may be useful to analyze differ-
ences in pathogenesis.

vii. DNA Topoisomerase II

An increased frequency of nucleoprotein
antibodies in Type 1 diabetes and in first-
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degree relatives was reported233 (Table III). As
a possible confirmation, it was recently found
that 48% of Type 1 diabetic patients have auto-
antibodies to both full-length and fragments of
DNA topoisomerase type II.234 In contrast to
ICA and IAA, the frequency of DNA topoiso-
merase type II antibodies was unaffected by
gender, disease duration or age. Comparing the
amino acid sequence of DNA topoisomerase
type II with insulin, HSP65 and GAD revealed
sequences which shared up to 64% homology.
Whether the autoantibodies develop as a result
of cross-reactive autoantibodies or show HLA-
dependent specificity remains to be determined.
It was speculated that the antigenicity of DNA
topoisomerase type II is stronger due to its
nuclear location and large molecular mass.234

The recombinant protein needs be used in a
standardized assay to determine the diagnostic
sensitivity and specificity of DNA topoisomer-
ase antibodies for Type 1 diabetes.

viii. Glycolipids: The Elusive ICA Antigen

It has long been debated whether the ICA
indirect immunofluorescence reaction is
explained by non-protein autoantibodies.
Organic solvents were used to extract pancre-
atic tissue to produce glycolipid-containing
fractions depleted of protein.235,236 These frac-
tions blocked the fluorescence reaction of ICA-
positive sera to human pancreatic sections, sug-
gesting that the target antigen of ICA was a
sialoglycoconjugate. The autoantigenic epitopes
were recovered by borohydride treatment, sug-
gesting the presence of glycolipids rather than
glycoproteins. Comparing the co-migration of
both human whole pancreas and islet extracts
with ganglioside markers suggested that islets
differentially express monosialoganglioside.236

A GM2–1 pancreatic islet ganglioside has been
identified as a putative ICA autoantigen;237

however, further studies are needed to identify
this potentially interesting autoantigen.

ix. T-Cell Reactive Autoantigens

Islet mitochondrial antigen 38K (Imogen 38). A
human diabetic T-cell clone was used to screen
a recombinant antigen epitope library to iden-
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tify Imogen 38238 (Table III). The cDNA of
Imogen 38 was isolated using a bTC3 mouse
insulinoma cDNA library. Due to its broad
tissue distribution, it was speculated that
Imogen 38 is a target for bystander auto-
immune attacks rather than a primary autoanti-
gen.238 However, mitochondrial antigens such
as the pyruvate dehydrogenase complex are
important to other HLA-DR3-DQ2-associated
organ-specific autoimmune diseases such as
primary biliary cirrhosis239 and further studies
are therefore required to disclose the role of
Imogen 38 and similar T-cell-defined autoanti-
gens in Type 1 diabetes.

5. THERAPY

A. Primary Intervention

Studies of immunology of diabetes in 1998
will continue with analyses of the healthy
population to better understand possible ways
by which islet autoimmunity can be prevented
altogether. Since we do not fully understand if
there is a single or multiple factors which trig-
ger islet autoimmunity and the subsequent
development of a progressive inflammatory
lesion in genetically susceptible individuals,
further studies on environmental factors are
badly needed. Screening newborns for the islet
cell autoantibody markers suggests that in
some children, the autoimmunity might have
been initiated already in utero.171,172,240 Primary
intervention will therefore depend on an
increased understanding of a variety of risk
factors which may initiate the disease and also
on our ability to distinguish them from
environmental factors which may accelerate
islet autoimmunity.

B. Secondary Intervention

The development of reliable assays for
humoral immune markers has been a most
rewarding development in Type 1 diabetes
research during the past few years. Further
progress is expected if the standardized assays
are disseminated to the medical community at
large. Analysis of autoantibodies to GAD65, IA-
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2 and insulin has shown that these markers
may be present several years before the onset
of the clinical disease. Early detection and treat-
ment of relatives of Type 1 diabetic patients
are now possible by GAD65, IA-2 and insulin
antibody analyses. In 1998, it will be important
to establish diagnostic sensitivity, specificity
and predictive values in different countries and
ethnic groups. Studies need to be expanded
beyond first-degree relatives. In Swedish new-
onset Type 1 diabetic children and young
adults it was found that 87% had one or several
autoantibodies at the time of clinical diag-
nosis.169 Almost 20% had autoantibodies against
all three autoantigens. Prospective studies are
needed to establish the positive predictive
value for Type 1 diabetes in the population. It
will be an important task since the incidence
rate varies with age241,242 but the initiation of
such studies is critical since more than 85–90%
of new-onset Type 1 diabetes patients do not
have a first-degree relative with the dis-
ease.5,7,243

Several autoantibody workshops have
taken place in order to standardize the different
antibody assays.9,10 A first attempt has been
made also to standardize the T-cell proliferation
test, with ambiguous results. Before using these
procedures for routine screening of, for
example, school children or first-degree rela-
tives for identifying subjects at high risk for
the disease, it will be important to define assay
quality and concordance by proficiency testing
in particular, if immune intervention therapy
is contemplated. Several prevention trials are
already under way and these are reviewed else-
where. In first-degree relatives with ICA posi-
tivity, a controlled, randomized clinical trial is
in progress to determine if nicotinamide is able
to reduce the conversion rate to Type 1 dia-
betes. This multinational study is important
since it involves an attempt to screen for ICA
and test b-cell function with standardized
methods. The protocol used is a paradigm for
future intervention trials with antigen-specific
immuno- therapies, as has already been
attempted in the NOD mouse and the BB rat
with insulin or insulin fragments or with
GAD.199,244–246 These animal data and prelimi-
nary results in man247 resulted in the Diabetes
Prevention Trial (DPT-1) in which some 60,000
relatives to Type 1 diabetic patients are cur-
rently screened for ICA and randomized to
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both parenteral and oral insulin treatment. Sev-
eral such studies, also including nasal insulin,
are under way in other countries. Although the
results are not going to be known in 1998, the
protocols used serve as an important incitement
to initiate similar clinical trials based on the
new more reliable screening assays for auto-
antibody markers alone or in combination with
genetic markers.

6. CONCLUSIONS

There are considerable gaps in our know-
ledge about Type 1 diabetes that we need to
fill in 1998. Despite considerable progress in
our understanding of genetic susceptibility fac-
tors in the HLA region we need to fully identify
the other contributing genes and find out what
they do. The environmental influences are
unclear. Do they initiate or accelerate the dis-
ease process? It is speculated that multiple eti-
ological factors may initiate a common patho-
genic pathway which results in immune-
mediated b-cell destruction. In 1998 we need
to learn more about the possible importance of
gestational infections, as well as isolation of
viral DNA or RNA from the blood of new-
onset patients or marker-positive individuals.
Cloned autoantigens and their use in stan-
dardized autoantibody assays are reaching
state-of-the-art but we need to maintain stan-
dardization workshops and proficiency testing.
The diagnostic sensitivity and specificity of
autoantibody markers for Type 1 diabetes are
high, as are their predictive values. We need
statistical methods to combine autoantibody
information with genetic risk factors. Novel
therapeutic interventions are now possible pro-
vided they are safe and ethical. Insulin is the
therapeutic agent of choice since we have 75
years experience with this hormone albeit not
in non-diabetic individuals. The 1998 research
on the interaction between environmental fac-
tors and susceptibility genes to initiate b-cell-
specific autoreactivity should allow the devel-
opment of therapies for secondary prevention,
perhaps also a cure for insulin-dependent (Type
1) diabetes.
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