Vorlesung 7
Lineare ylichunpsystane
in Matrixoduriburise

$$
\underbrace{\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)}_{\underset{A}{\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)}}=\underbrace{\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)}_{\overrightarrow{\mathrm{b}}}
$$

$A \vec{x}=\vec{b}$

Das Yaußore Eleminations vefohven
Behpiel

$$
\begin{aligned}
x_{1}+x_{2} & =3 \Leftrightarrow x_{1}=3-x_{2} \\
x_{1}-2 x_{2} & =4 \\
\Leftrightarrow 3-x_{2}-2 x_{2} & =4 \\
\Leftrightarrow \quad-3 x_{2} & =1 \\
x_{2} & =-\frac{1}{3}, x_{1}=3 \frac{1}{3}
\end{aligned}
$$

Merke Fir lineare Yleysteme gilt inuwer genan eine der folgenden Móglichkenter:

- $L=\varnothing$ es gibt keive Lóseng
- $L=\{\vec{x}\} \quad$ genan ine
- $\# L=\infty$ unondlich viele Lósmigen
$\left.\left.\begin{array}{cc}\begin{array}{c}x_{1}+x_{2}+x_{3}=2 \\ \text { Beapich }\end{array} \\ \begin{array}{c}\text { iquivalente } \\ \text { informung } \\ \text { igleiche }\end{array} & -x_{1}+x_{2}+3 x_{5}=-2 \\ 2 x_{1}-x_{2}+x_{3}=-1\end{array}\right]+\right]$ Lösungsmengel

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =2 \\
2 x_{2}+4 x_{3} & =0 \quad \mid: 2 \\
-3 x_{2}-x_{3} & =-5 \\
x_{1}+x_{2}+x_{3} & =2 \\
x_{2}+2 x_{3} & =0 \quad \quad \quad \\
-3 x_{2}-x_{3} & =-5 \quad 3 \\
x_{1}+x_{2}+x_{3} & =2 \\
x_{2}+2 x_{3} & =0 \\
5 x_{3} & =-5 \quad l: 5
\end{aligned}
$$

eindentige

$$
x_{1}=1
$$

Lósung!

$$
\begin{gathered}
x_{2}=2 \\
x_{3}=-1
\end{gathered}
$$

$A: \quad x_{4}+1000=x_{1}+500$
$B: x_{1}+350=x_{2}+750$
C: $x_{2}+700=x_{3}+850$
$D: \quad x_{3}+650=x_{4}+600$

$$
\begin{aligned}
-x_{1} & +x_{4}= \\
x_{1}-x_{2} & -500 \\
& =400 \\
x_{2}-x_{3} & =150 \\
x_{3}-x_{4} & =-50
\end{aligned}
$$

$$
\begin{gathered}
\left(\begin{array}{cccc:c}
-1 & 0 & 0 & 1 & -500 \\
1 & -1 & 0 & 0 & 400 \\
0 & 1 & -1 & 0 & 150 \\
0 & 0 & 1 & -1 & -50
\end{array}\right) \\
\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 400 \\
-1 & 0 & 0 & 1 & -500 \\
0 & 1 & -1 & 0 & 150 \\
0 & 0 & 1 & -1 & -50
\end{array}\right) \\
\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 400 \\
0 & -1 & 0 & 1 & -100 \\
0 & 1 & -1 & 0 & 150 \\
0 & 0 & 1 & -1 & -50
\end{array}\right)+1 \\
\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 400 \\
0 & 1 & -1 & 0 & 180 \\
0 & -1 & 0 & 1 & -100 \\
0 & 0 & 1 & -1 & -50
\end{array}\right) \\
\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 400 \\
0 & 1 & -1 & 0 & 150 \\
0 & 0 & -1 & 1 & 50 \\
0 & 0 & 1 & -1 & -50
\end{array}\right)+ \\
(+)+\left(\begin{array}{cccc:c}
1 & -1 & 0 & 0 & 400 \\
0 & 1 & -1 & 0 & 180 \\
0 & 0 & 1 & -1 & -50 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Biel war line Matrix der Form
(t)

$$
\left(\begin{array}{cccccc}
1 & & * & & & \\
0 & \ddots & & & & * \\
0 & 0 & \ddots & & & \\
0 & 0 & 1 & & & \\
0 & 0 & \cdots & \cdots & - & 0 \\
0 & \cdots & \cdots & \cdots & -0
\end{array}\right)
$$

$$
x_{1}-x_{2} \quad=400
$$

$$
x_{2}-x_{3}=150
$$

$$
x_{3}-x_{4}=-50
$$

$$
0=0
$$

$$
\begin{aligned}
& x_{1}=500+5 \\
& x_{2}=100+5 \\
& x_{3}=5-50 \\
& x_{4}=5 \\
& L=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid \vec{x}\right.\left.=\left(\begin{array}{c}
500 \\
100 \\
-50 \\
0
\end{array}\right)+5\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

mendlich vile Lōsungen

Das Gaußsche Eliminationsverfahren beruht auf folgenden Grundoperationen: A. Wurden zwei Spalten vertauscht, mlissen die Komponenten des Vektors x der Unbekannten entsprechend umnummeriert werden.

- Multiplikation einer Zeile von (A, \mathbf{b}) mit einer von Null verschiedenen Zahl.
- Addition bzw. Subtraktion des α-fachen einer Zeile von (A, \mathbf{b}) von einer anderen Zeile.

$$
\begin{aligned}
& \text { Beizpil } x_{1}+x_{2}+x_{3}=18 \\
& x_{1}+x_{2}-2 x_{3}=0 \\
& x_{1}+x_{2}-x_{3}=\alpha \\
& \left.\left(\begin{array}{ccc:c}
1 & 1 & 1 & 18 \\
1 & 1 & -2 & 0 \\
1 & 1 & -1 & \alpha
\end{array}\right)\right]^{(-1)}{ }^{(-1)} \\
& \left.\left(\begin{array}{cccc}
1 & 1 & 1 & 18 \\
0 & 0 & -3 & -18 \\
0 & 0 & -2 & \alpha-18
\end{array}\right) \quad \right\rvert\,:(-3) \\
& \begin{array}{l}
\text { Falles } \alpha=6 \\
\Rightarrow x_{2}=5, x_{3}=6 \\
x_{1}=12-5
\end{array}\left(\begin{array}{cccc}
1 & 1 & 1 & 18 \\
0 & 0 & 1 & 6 \\
0 & 0 & 0 & \alpha-6
\end{array}\right) \\
& \begin{aligned}
\frac{x_{1}}{}=12-5 \\
\hline \text { Falles } \alpha \neq 6 \\
\text { beime Losury }
\end{aligned}\left\{\begin{aligned}
x_{1}+x_{2}+x_{3} & =18 \\
x_{3} & =6 \\
0 & =\alpha-6
\end{aligned}\right.
\end{aligned}
$$

