4. Vorlesung

Ykalor produlet

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cdot \cos (x) \\
& |\vec{a} \cdot \vec{b}|=|\vec{a}||\vec{b}| \underbrace{|\cos (x)|}_{\epsilon[0,1]}
\end{aligned}
$$

$|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}| \quad$ CaUChy-Schwarzsche Ungleichung

Antal von \vec{a} in Richtung \vec{b}

$$
|\vec{a}| \vec{b}|=|\vec{a}|| \cos (x) \left\lvert\,=\frac{|\vec{a} \cdot \vec{b}|}{|\vec{b}|}\right.
$$

Orthogonale Zerlegung von \vec{a} längs \vec{b}, falls $\vec{b} \neq 0$:

$$
\vec{a}=\vec{a}_{\vec{b}}+\vec{a}_{\vec{b}}^{\perp}
$$

mit den Komponenten

$$
\vec{a}_{\vec{b}}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}} \vec{b}=\left(\vec{a} \cdot \frac{\vec{b}}{|\vec{b}|}\right) \frac{\vec{b}}{|\vec{b}|}
$$

in Richtung \vec{b} und

$$
\vec{a}_{\vec{b}}^{\perp}=\vec{a}-\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}} \vec{b}
$$

orthogonal zu \vec{b}.

Das Vekherprodurt "x im Raum

$$
\vec{a} \times \vec{b}
$$

Parallelogramun A

$$
\begin{aligned}
& \vec{n} \perp \vec{a} \\
& \vec{n} \perp \vec{b} \\
& |\vec{n}|=1
\end{aligned}
$$

"redite Handregel

$$
\vec{a} \times \vec{b}=|A| \vec{n}
$$

mit anderen Wooten
(1) Es ist $\vec{a} \times \vec{b}=0$, falls $\vec{a}=0$ oder $\vec{b}=0$ oder \vec{a} parallel zu \vec{b} ist.
(2) In allen anderen Fällen ist $\vec{a} \times \vec{b}$ der Vektor, der orthogonal zu \vec{a} und \vec{b} ist, mit dem $\vec{a}, \vec{b}, \vec{a} \times \vec{b}$ ein Rechtssystem bilden und dessen Betrag gleich dem Flächeninhalt des von \vec{a}, \vec{b} aufgespannten Parallelogramms ist.
zut Berechnung von A

\vec{a}

$$
\begin{aligned}
&|\vec{a} \times \vec{b}|=|A|=|\vec{a}| \cdot h \\
&-|\vec{a}| \underbrace{|\sin (x)||\vec{b}|}_{\sqrt{1-\cos ^{2}(x)}} \\
& \begin{aligned}
&|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2} \\
&\left.=\left|1-\vec{a}^{2}\right|^{2}|\vec{b}|^{2}(x)\right) \\
&\left.\left|\overrightarrow{a^{2}}\right| \vec{b}\right|^{2} \cos ^{2}(x)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
&=|\vec{a}|^{2}|\vec{b}|^{2}-(\underbrace{|\vec{b}| \cos (x)}_{\vec{a} \cdot \vec{b}})^{2} \\
& \vec{a} \times \vec{a}=\overrightarrow{0} \\
& \vec{a} \times \vec{b}=-\vec{b} \times \vec{a} \\
& \alpha(\vec{a} \times \vec{b})=(\alpha \vec{a}) \times \vec{b} \\
&=\vec{a} \times(\alpha \vec{b}) \\
& \vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c}) \\
&(\vec{a}+\vec{b}) \times \vec{c}=(\vec{a} \times \vec{c})+(\vec{b} \times \vec{c}) \\
& \vec{a} \times \vec{b}=0 \Longleftrightarrow \vec{a}=\overrightarrow{0} \text { oder } \vec{b}=0 \text { oder } \vec{a} \text { parallel zu } \vec{b} \\
&|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2} .
\end{aligned}
$$

Beinpiel

$$
\frac{\hat{\rho}_{e_{1}}^{\overrightarrow{e_{2}}}}{\overrightarrow{e_{2}}}
$$

$$
\begin{aligned}
& \overrightarrow{l_{1}} \times \overrightarrow{l_{1}}=\overrightarrow{0} \\
& \overrightarrow{l_{1}} \times \overrightarrow{l_{3}}=-\overrightarrow{l_{2}}
\end{aligned}
$$

Beinpiel Hebel

$$
\begin{aligned}
& |\vec{M}|=|\vec{F}| \cdot\left|S_{\vec{F}}^{\frac{1}{\vec{F}}}\right| \\
& \vec{M}=\vec{F} \times \vec{s}
\end{aligned}
$$

In Koordimaten

$$
\begin{aligned}
& \overrightarrow{3}\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \times\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right)=\operatorname{det}\left(\begin{array}{lll}
\overrightarrow{e_{n}} & a_{1} & b_{1} \\
\overrightarrow{e_{2}} & a_{2} & b_{2} \\
\overrightarrow{l_{3}} & a_{3} & b_{3}
\end{array}\right) \\
& \left(a_{1} \vec{e}_{1}+a_{2} \vec{e}_{2}+a_{3} \vec{e}_{3}\right) \times\left(b_{1} \vec{e}_{1}+b_{2} \vec{e}_{2}+b_{3} \vec{e}_{3}\right) \\
& =a_{1} b_{2} \underbrace{\overrightarrow{l_{3}}}_{\overrightarrow{l_{1}} \times \overrightarrow{l_{2}}}+a_{1} b_{3} \vec{l}_{1} \times \overrightarrow{l_{1}}+a_{2} b_{1} \underbrace{\overrightarrow{l_{2}} \times \overrightarrow{l_{1}}}_{-\overrightarrow{l_{3}}}+a_{2} b_{3} \underbrace{\overrightarrow{l_{1}} \times \overrightarrow{l_{3}}}_{\overrightarrow{l_{1}}} \\
& +a_{3} b_{1} \vec{l}_{\overrightarrow{e_{2}}}^{\overrightarrow{e_{1}}}+\vec{l}_{1}+a_{3} b_{2} \underbrace{\overrightarrow{e_{3}} \times \overrightarrow{e_{2}}}_{-\overrightarrow{e_{1}}} \\
& \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c} \\
& (\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{d}) . \\
& \overrightarrow{3} \vec{a}_{\vec{b}}^{\perp}=\frac{1}{|b|^{2}} \vec{b} \times(\vec{a} \times \vec{b})=\frac{\vec{b}}{|\vec{b}|} \times\left(\vec{a} \times \frac{\vec{b}}{|\vec{b}|}\right)
\end{aligned}
$$

Das Ypatprodukt

$$
\begin{aligned}
& V=\text { grundflache } \text {. Hohe } \\
& =|\vec{a} \times \vec{b}| \cdot \underbrace{h} \\
& \cos (x) \cdot|\vec{c}| \\
& =\mid \underbrace{(\vec{a}+\vec{b}) \cdot \vec{c} \mid}_{\vec{a}+\vec{b}]} \\
& {[\vec{a}, \vec{b}, \vec{c}]}
\end{aligned}
$$

Der von den drei Vektoren $\vec{a}, \vec{b}, \vec{c}$ aufgespannte Spat (auch PARallelfläche oder Parallelepiped genannt) hat das Volumen

$$
V=|[\vec{a}, \vec{b}, \vec{c}]| .
$$

$$
[\vec{a}, \vec{b}, \vec{c}]=\vec{a} \cdot(\vec{b} \times \vec{c})
$$

$$
\begin{aligned}
& {\left[\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right),\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right),\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)\right]=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)+a_{2}\left(b_{3} c_{1}-b_{1} c_{3}\right)}
\end{aligned}
$$

Betppiel Tetracler

$$
\begin{aligned}
& V=\frac{1}{3} \cdot G_{\Delta} h \quad \vec{c} \\
& =\frac{1}{6} G_{\square} \cdot h \\
& =\frac{1}{6}[\vec{a}, \vec{b}, \vec{c}] \\
& \vec{a}=\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right), \vec{b}=\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right), \vec{c}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \\
& {[\vec{a}, \vec{b}, \vec{c}]=\operatorname{det}\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)=8, V=\frac{4}{3}}
\end{aligned}
$$

1.5 Geraden und Ebenen

Parameter darstell my

$$
\overrightarrow{P A} \quad \dot{P}(\text { germe } P=0)
$$

$$
g=\left\{X \in \mathbb{R}^{3} \mid \overrightarrow{P X}=\overrightarrow{P A}+t \cdot \vec{c} \quad\right. \text { fov }
$$

$\sin t \in \mathbb{R}\}$
Beispil
$A=(0,-1,2)$
$B=(3,1,1)$
$R=(-6,-5,4)$
liest R anf
der Guaden duach A, B

Riditumpretar

$$
\begin{aligned}
& \begin{array}{l}
(P=0) \\
\left(\begin{array}{c}
-6 \\
-5 \\
-4
\end{array}\right) \overrightarrow{O R}=\overrightarrow{O A}+t \cdot \overbrace{\overrightarrow{A B}}^{\text {Riddrumporetto }}=\left(\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right)+t \cdot\left(\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right)
\end{array} \\
& \left(\begin{array}{l}
-6 \\
-4 \\
2
\end{array}\right)=t \cdot\left(\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
t \cdot 3 \\
t \cdot 2 \\
-t
\end{array}\right) \\
& \left.\begin{array}{r}
\Leftrightarrow-6=3 t,-4=2 t,-t=2 \\
\Leftrightarrow \begin{array}{c}
t=-2
\end{array}
\end{array}\right\} R \in g
\end{aligned}
$$

Parameter darstellung von Geraden:
Punkt-Richtungs-Gleichung:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)+t\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

Berusppuna

$$
P=0
$$

Zwei-Punkte-Gleichung:

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)+t\left(\begin{array}{l}
b_{1}-a_{1} \\
b_{2}-a_{2} \\
b_{3}-a_{3}
\end{array}\right) \\
& \overrightarrow{O X}=\overrightarrow{O A}+\overrightarrow{A B} \\
& X_{1}=a_{1}+t\left(b_{1}-a_{1}\right) \\
& X_{2}=a_{2}+t\left(b_{2}-a_{2}\right) \\
& X_{3}=a_{3}+t\left(b_{3}-a_{3}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
:\left(b_{1}-a_{1}\right) \\
\because\left(b_{2}-a_{2}\right) \\
:\left(b_{3}-a_{3}\right)
\end{array}\right.
$$

Koordimatenglidung eiver yeraden:
(A) $\frac{x_{1}-a_{1}}{b_{1}-a_{1}}=\frac{x_{2}-a_{2}}{b_{2}-a_{2}}=\frac{x_{3}-a_{3}}{b_{3}-a_{3}}, \quad$ falls $a_{i} \neq b_{i}, i=1,2,3$
(B) $\frac{x_{1}-a_{1}}{b_{1}-a_{1}}=\frac{x_{2}-a_{2}}{b_{2}-a_{2}}, x_{3}=a_{3}$,
falls $a_{3}=b_{3}$
$\frac{x_{1}-a_{1}}{b_{1}-a_{1}}=\frac{x_{3}-a_{3}}{b_{3}-a_{3}}, x_{2}=a_{2}$,
falls $a_{2}=b_{2}$
$\frac{x_{2}-a_{2}}{b_{2}-a_{2}}=\frac{x_{3}-a_{3}}{b_{3}-a_{3}}, x_{1}=a_{1}$,
falls $a_{1}=b_{1}$
(c)

$$
\begin{aligned}
& x_{1}=a_{1}, x_{2}=a_{2}, \\
& x_{2}=a_{2}, x_{3}=a_{3}, \\
& x_{3}=a_{3}, x_{1}=a_{1},
\end{aligned}
$$

$$
\text { falls } a_{1}=b_{1}, a_{2}=b_{2}, a_{3} \neq b_{3}
$$

falls $a_{2}=b_{2}, a_{3}=b_{3}, a_{1} \neq b_{1}$
falls $a_{1}=b_{1}, a_{3}=b_{3}, a_{2} \neq b_{2}$

Moment gleichning einer Geraden
Momentengleichung bzgl. des Bezugspunktes P :

$$
\overrightarrow{P X} \times \vec{c}=\vec{m}_{P} \quad \text { mit } \vec{m}_{P}=\overrightarrow{P A} \times \vec{c}
$$

$$
g=\{x \mid \overrightarrow{P X} \times \vec{c}=\overrightarrow{P A} \times \vec{c}\}
$$

