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Inclusion process

Interacting particle system with N particles

Vertex set S with |S| < oo

Configuration 1 = (1x)xes € {0, ..., N}°, 1, = #particles on x € S
Underlying random walk on S with transition rates r(x, y)

Inclusion process is continuous time Markov process with generator

> mxldn +my)r( ) [Fr™) = £(n)]
x,y€S
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Particle jump rates

ne(dn + ny)r(z,y)

x
Particle jump rates can be split into

Nx dy r(x,y) independent random walkers diffusion
Nx My r(x,y) attractive interaction inclusion
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Particle jump rates

ne(dn + ny)r(z,y)

x
Particle jump rates can be split into

Nx dy r(x,y) independent random walkers diffusion
Nx My r(x,y) attractive interaction inclusion

Comparison with other processes

nx (1 —ny) r(x,y) exclusion process
g(nx) r(x,y) Zero range process
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Motivation

Symmetric IP on Z introduced as dual of Brownian momentum process
Giardina, Kurchan, Redig, Vafayi, 2007-2010

Natural bosonic counterpart to the (fermionic) exclusion process

Interesting dynamical behavior: condensation / metastability
In symmetric IP: Grosskinsky, Redig, Vafayi 2011, 2013
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Motivation

Symmetric IP on Z introduced as dual of Brownian momentum process
Giardina, Kurchan, Redig, Vafayi, 2007-2010

Natural bosonic counterpart to the (fermionic) exclusion process

Interesting dynamical behavior: condensation / metastability
In symmetric IP: Grosskinsky, Redig, Vafayi 2011, 2013

Can we analyze this using the martingale approach?
Beltran, Landim, 2010

Successfully used for reversible zero range process Beltran, Landim, 2012

Can we generalize results to the reversible IP?
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Reversible inclusion process

Random walk r(-,-) reversible w.r.t. some measure m(-)

m(x)r(x,y) = m(y)r(y,x)  Vx,y €S

Normalized such that

=1
e )
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Reversible inclusion process

Random walk r(-,-) reversible w.r.t. some measure m(-)
m(x)r(x,y) = m(y)r(y,x) ~ Vx,y €S
Normalized such that

=1
e )

Then, also inclusion process reversible w.r.t. probability measure

pn(n) = 5 [T )™ ()

x€ES

where Z) is a normalization constant and

M(dn + k)

M = )
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Condensation
Let S, = {x € S: m(x) = 1} and N the configuration 1 with n, = N

Proposition
Suppose that dylog N — 0 as N — oo. Then

: XNy
Nlinooulv(n ) ’5*‘ Vx €S,
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Condensation

Let S, = {x € S: m(x) = 1} and N the configuration 1 with n, = N

Proposition
Suppose that dylog N — 0 as N — oo. Then

: XNy
Nlinooulv(n ) ’5*‘ Vx €S,

Assumption on dpy such that

B 1 r(N—l—dN)_ 1 o
= ) (V=1 _I'(dN+1)ed e N(1 4+ 0(1)) = 1

(using Stirling’s approximation)
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Movement of the condensate

Consider the following process on S, U {0}:

Xn(t) = D x Ty (0=ny

XES,

Theorem (Bianchi, D., Giardina, 2016)

Suppose that dylog N — 0 as N — oo and that 1,(0) = N for some
y € S4. Then

Xn(t/dy) converges weakly to x(t) as N — oo
where x(t) is a Markov process on S, with x(0) = y and transition rates

p(x,y) = r(x,y)
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Example
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Zero range process Beltran, Landim, 2012

Underlying reversible random walk r(-,-)

Transition rates for a particle to move from x to y

( I )ar(x,y), a>1

nx_]-

Condensate consists of at least N — ¢y particles, {n = o(N)
At timescale t N®*1 the condensate moves from x € S, to y € S, at rate

p(x,y) = Cacap(x,y)

where cap(x, y) is the capacity of the underlying random walk between
x and y
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Proof strategy

If r(-,-) is symmetric (S = S,), cite Grosskinsky, Redig, Vafayi, 2013
They analyze directly rescaled generator

Otherwise, martingale approach Beltran, Landim, 2010
Potential theory combined with martingale arguments

Successfully applied to zero range process Beltran, Landim, 2012
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Martingale approach Beltran, Landim, 2010

To prove the theorem we need to check the following three hypotheses:

(HO)  limnosoe o pn (7N, 7N) = plx,y) = r(x,y)

where py (7N, 1n7°N) rate to go from 7N to N
in original process

(H1) All states in each metastable set are visited before exiting

MN(W:ﬂy€S*377y:N):O Vx €S,

H2 lim
H2) o m, pn (V)
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Martingale approach Beltran, Landim, 2010

To prove the theorem we need to check the following three hypotheses:

(HO)  limnosoe o pn (7N, 7N) = plx,y) = r(x,y)

where py (7N, 1n7°N) rate to go from 7N to N
in original process

(H1) All states in each metastable set are visited before exiting  Trivial

MN(W:ﬂy€S*377y:N):O Vx €S,

H2 lim
H2) o m, pn (V)
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Martingale approach Beltran, Landim, 2010

To prove the theorem we need to check the following three hypotheses:

(HO)  limnosoe o pn (7N, 7N) = plx,y) = r(x,y)

where py (7N, 1n7°N) rate to go from 7N to N
in original process

(H1) All states in each metastable set are visited before exiting  Trivial

MN(W:ﬂy€S*377y:N)

=0 VxeS Eas
pn (M) ) Y

(2) fim
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Potential theory

Relation between random walks and electric networks
Doyle, Snell, 1984

For reversible dynamics we can define conductances (=1/resistance)

c(x,y) = u(x)p(x, y)

If A, B disjoint, let ha g be the equilibrium potential, i.e., the solution to
the Dirichlet problem

=0 ifx¢ AUB
1 ifxeA
0 ifxeB

Lha p(x)

)
)=
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Potential theory

Probabilistic interpretation
hag(x) = Px[ra < 78]
where 74 is the hitting time of A

Ta = inf{t >0 : x(t) € A}
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Capacities

Important quantity is the capacity (=1/effective resistance) between
A and B, given by

Cap(A, B) = Dl(has) = 5 3 clx.y)lhas(x) ~ has(y)P

D(F) is called the Dirichlet form

If A and B are disjoint sets, then

w(ha,g)

EVA,B[TB] = m

Bovier, Eckhoff, Gayrard, Klein, 2001-2004
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Variational principles

Capacity can be computed using Dirichlet principle
Cap(A,B) =inf{D(F) : F(x)=1Vxe€ A F(x)=0Vx € B}
Minimizer is F = ha g, but get upper bound for any test function F

There also exist variational principles, the Thomson and Berman-Konsowa
principle, where the capacity is expressed as a supremum over flows
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Capacities in inclusion process

Capacities satisfy
Capy(A,B) =inf{Dn(F): F(n) =1Vne A F({)=0Vne B}

where Dy (F) is the Dirichlet form

ZMN > mxldn + ) r(x )IF () = F(n)?

x,y€S
Lemma (Beltran, Landim, 2010)
v (M) o (N )

= Hoan(tr™, U ™) + oo (0, U 0e™)

z€S5,,z#x z€S84,z7y

—Capy (MM U M)}

ZE€S54,zF#X,y
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Capacities in inclusion process

Proposition
Let S} C S, and S? = S, \ S}. Then, for dylog N — 0,

im_—Capu(( U ) U ) = 57 5 X )
yes? )

N—oo dpy

xeSt xeSt yeS2

Combining this proposition and the previous lemma indeed gives

1
lim ——pn (N, n”N) = r(x,y)
N—oo dpy
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Lower bound on Dirichlet form

Fix any function F such that F(V) =1V x € S! and
Fip'N)y=0Vy e S?

Sufficient to show that

Dn(F Z > rxy)(1+o(1))

XES1 y€S?2
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Lower bound on Dirichlet form

Fix any function F such that F(V) =1V x € S! and
F(pNy=0Vy e S?

Sufficient to show that
Dn(F Z > r(xy)(1+0(1))
X651y652

For lower bound we can throw away terms in the Dirichlet form

= nln) X mldn + m)r(x V() — FO)P
n

X, y€S

>3 > roy) Yo pw(mnk(dn +ny)[F(7™) — F(n)]?

xeS} yeS? Nx+ny=N

If condensates jumps from x to y all particles will move from x to y
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Lower bound on Dirichlet form (continued)

Fix x € S},y € S2. If ny + 1, = N it is sufficient to know how many
particles are on x

> un(mnadn + 0y IF) = F(n)P?
nx+ny=N

wy (k)wn (N — k)
Zn

k(dy + N — K)[G(k — 1) — G(k)]?

N
k=

1

where G(k) = F(nx = k,n, = N — k) and where we used
m(x) = m(y) = 1since x € Sl,y € S?
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Lower bound on Dirichlet form (continued)

Fix x € S},y € S2. If ny + 1, = N it is sufficient to know how many
particles are on x

> un(mnx(dn + ) [F(7) = F(n)]?

nx+ny=N

N
_y k)WN (V=K) f(y + N — K)[Gk — 1) — Gk
o

(1+0(1))

Lower bound follows from capacity of linear chain
and asymptotics of wy and Zy
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Lower bound on Dirichlet form (conclusion)

Hence, indeed,

1
— D(
dy w(

Taking infimum and limit on both sides indeed proves that

Jim apy (U ) U0 )) = 5 20 8 rxn)

xeS} y€S?2 x€St yeS2
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Upper bound on Dirichlet form

Need to construct test function F(7)
Good guess inside tubes 7, + 1, = N: F(n) =~ n/N

In fact better to choose smooth monotone function ¢(t),t € [0, 1] with

(t)y=1—¢(1—t)Vte]0,1] o(t)
t)y=0ift<e Y
1

¢
9

and set F(n) = ¢ (nx/N)

For general 1 we set

F(n) = ¢(nx/N)

xeSt
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Observations for upper bound on Dy(F)

Dn(F) = %Zum(n) > mxldn +ny)r(x )IF () = F(n)?
n x,y€S

F(n) =Y &(m/N)

xeSt

By construction particles moving from x € S! to y € S? give correct
contribution

If numbers of particles on sites in S* don't change, or if particles move
between sites in S}, F is constant

Unlikely to be in config. with particles on three sites / sites not in S,

Unlikely for a particle to escape from a tube
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Capacities in inclusion process (conclusion)

Combining the lower and upper bound indeed this proposition follows

Proposition
Let S C S, and S? = S, \ S}. Then, for dylog N — 0,

Nlinoo —CapN( U {r"y, U {Uy’N}> ’5 | Z Z r(x,y)

xeS} x€S} yes?

And the transition rates indeed satisfy

1
lim ——pn(N, " N) = r(x,y)

N—o0 dN

proving the theorem
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Longer timescales

If induced random walk on S, is not connected, condensate jumps on
longer timescales

We focus on simple case where the graph is a line
S={1,...,L} S, ={1,L} r(x,y) #0iff [x —y| =1
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Second timescale

For L = 3 jumps occur at rate d,%,/N

Theorem (Bianchi, D., Giardina, 2016)

Suppose that dylog N — 0 as N — oo, dy decays subexponentially and
that 1,(0) = N for some y € S,.. Then, for L =3,

Xn(tN/d3) converges weakly to x(t) as N — oo

where x(t) is a Markov process on S, with x(0) = y and transition rates

-1
p(1,3) = p(3,1) = (, 1 +r(312)> 1—;*(2)
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Third timescale

For L > 4 jumps occur at rate d> /N2

Theorem (Bianchi, D., Giardina, 2016)

Suppose that dylog N — 0 as N — oo, dy decays subexponentially.
Then, for L > 4, there exist constants 0 < C; < Cy < oo such that

3 3

d
G < I|m mf IE g [Tyen] < I|m sup NAé]Enl,N[TnL,N] <G

Conjectured transition rates of time-rescaled process

-1
(1—me(0))(1—me(£+1))
Pl L) =p(L1) =3 (Ze S m,(0)r(¢, 0+ 1) )
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Open problems / future work

Complete picture in case vertices in S,
are not connected
Conjecture: Only these 3 timescales

Compute relaxation time

Compute thermodynamic limit
Zero-range process: Armendariz, Grosskinsky, Loulakis, 2015

Study formation of the condensate
Studied for SIP in Grosskinsky, Redig, Vafayi, 2013

Study behavior for non-reversible dynamics
e.g. (T)ASIP on Z/L7Z. Heuristics: Cao, Chleboun, Grosskinsky, 2014
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