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Abstract 

In current procedures in the Highway Capacity Manual (HCM) for calculating capacities 

at unsignalized intersections, the impedance effect for estimating the capacity of high-

ranked streams is considered. Normally, the simple product of queue-free probabilities in 

single major streams is used for obtaining the total queue-free probability in all major 

streams. For minor streams of higher (>3) ranks, the queue-free probabilities in major 

streams are not independent of each other. The simple product of the single probabilities 

underestimates the total queue-free probability, and thus overestimates the total impeding 

effect. To overcome this problem, HCM uses an adjustment function based on empirical 

work in Germany. Unfortunately, for some marginal condition, the adjustment function 

delivers unrealistic results. In general, the procedure in HCM overestimate the total 

queue-free probability and therefore also the capacity of minor streams of rank 4. 

A new approach for estimating the queue-free probability in higher-ranked streams is 

introduced. The approach is derived from probability theory and is verified by 

simulations. This approach is much more accurate than the current HCM procedure and 

it can be extended to streams of arbitrarily high ranks.  
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1 INTRODUCTION 

In current procedures for calculating capacities at unsignalised intersections (HCM 1994; 

Kyte et al. 1995; HCM 1997), the impedance effect is considered for estimating the 

capacity of high-ranked streams. For example, the impedance in streams of rank 2 must 

be estimated for calculating the capacity of streams of rank 3. In general, the probability 

of queue-free state in higher-ranked major streams is used for taking the impedance effect 

into account. Normally, the product of queue-free probabilities in single higher-ranked 

major streams is used to obtain the total queue-free probability in all higher-ranked major 

streams for the case that the individual higher-ranked major streams are independent of 

each other. 

For minor streams of high (>3) ranks, the queue-free probabilities in higher-ranked major 

streams are not independent of each other. The simple product of the single probabilities 

underestimates the total queue-free probability and therefore overestimates the total 

impeding effect. To overcome this problem, an adjustment function based on empirical 

work conducted in Germany (Grossmann 1991; Harders 1968; cf. eq.(10-6) and fig.10-6 

in HCM 1994) is used for streams of rank 4. For streams of higher ranks than 4, there is 

no solution until now. The accuracy of the adjustment function in HCM (1994; 1997) is 

sufficient for the most cases in the practice. For some marginal conditions, unfortunately, 

the adjustment function delivers unrealistic results. In general, eq. (10-6) in 1994 HCM 

overestimate the total queue-free probability. 

In this paper, a new approach for estimating the queue-free probability for higher-ranked 

streams is presented. It is derived from probability theory and is verified by simulations. 

Under the assumption that the queuing systems for all streams at unsignalised 

intersections are queuing systems with equal randomness (e.g., all systems are M/M/1-

queueing systems), a very simple formula for the total queue-free probability in higher-

ranked streams is obtained. Because of the theoretical background, this approach can be 

extended to streams of arbitrarily high ranks. Therefore, one can use this approach to deal 

with more complex stream combinations, for example, intersections with priority 

pedestrian streams.  

The present approach has already been incorporated into the forthcoming new version of 

the German Highway Capacity Manual (D-HCM 1994; D-HCM  1997). 

2 IMPEDANCE FACTOR AT TWO-WAY-STOP-CONTROLLED 

INTERSECTIONS 

2.1 Minor Stream with One Higher-ranked Major Stream 

In general, the impedance effect can be considered by determining the probability of the 

state of queuing in the higher-ranked major streams. Normally, at unsignalized 

intersections, the probability of the state of queuing in a single higher-ranked major 

stream i is set equal to the degree of saturation, that is, 

 iiimp xp ,  (1) 



Accordingly, the probability p0,i of the queue-free state is equal to 

 iiimpi xpp  11 ,,0  (2) 

Thus, the probability of the queue-free state in a stream i of rank 2 is  

      
22,2,0 11




rankirankiimpranki xpp  (3) 

which is the impedance factor for the minor stream of rank 3, so that the impedance factor 

for the stream of rank 3 is, 

  
2,03  

rankirank pf  (4) 

This is the impedance factor with which the basic capacity Cbasic of the stream of rank 3 

should be multiplied for obtaining the real capacity. In the derivation, it is assumed that 

in streams of rank 1 no queue should occur. 
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Figure 1 - Basic conciliation of impedance for minor stream of rank 3 
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Figure 2 - Impedance for minor stream of rank 3 with two major streams of rank 2 



2.2 Minor Stream with More than One Major Stream of Same Rank in a Parallel 

Group 

If there are two higher-ranked major streams of rank 2 (see Figure 2), the probabilities of 

the queue-free state in the single higher-ranked streams should be logically combined for 

determining the total queue-free state in both streams of rank 2. Since the queue-free 

states in streams of the same rank (here rank 2) are independent of each other, one can 

use the arithmetic product for calculating the logical product of the probabilities. Thus, 

the probability of queue-free state in both streams of rank 2 yields   

        
22,021,0
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1
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The impedance factor for the minor stream of rank 3 becomes 

      
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rankrankrankrank pppf  (6) 

Generally, the probability that in n higher-ranked streams of the same rank r no 

impedance occurs is 
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The impedance factor for the minor stream of rank r+1 yields 
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i
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2.3 Minor Stream with More than One Higher-ranked Major Streams of 

Different Ranks in a Serial Sequence 

The queue-free states in higher-ranked streams of different ranks are not independent of 

each other. For example, the queue-free state in stream of rank 3 is normally a function 

of the queue-free state in stream 2 (see Figure 3). Thus, it is not possible to use the simple 

product of probabilities that represent the queue-free states in streams of different ranks 

for determining the total probability of queue-free state in all streams. That is, for stream 

of rank 4 the factor 

    
30204  

rankrankrank ppf  (9) 

does not represent the impedance effect correctly. 
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Figure 3 - Impedance for minor stream of rank 4 with two major streams of 

rank 2 and 3 
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Figure 4:  Queues in steams of different ranks and their sequence of operation 

 

To handle this problem, a new model is introduced here. In this model the queues in 

higher-ranked streams (higher ranked than the subject stream, here rank 2 and 3) are 

considered as one big queue (Figure 4). That means, one imagines that the conflict area 

can be passed by vehicles in steams of different ranks, one after the other. The order of 

the departures of the vehicles is not important for the derivation. Queuing vehicles thus 

form one common queue with rank 2 in front and followed by rank 3. Furthermore, the 

queues in the streams of different ranks and the big queue are considered as M/G/1-



queueing systems with sufficient approximation. Thus, one obtains for the stream of rank 

r the average queue length Nrank=r 
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where Crank=r is the factor of randomness of the queuing system (e.g., C = 1: completely 

random  M/M/1 system; C = 0.5: partly random  M/D/1 system, see also Kimber and 

Hollis 1979). Accordingly, one obtains for the big queue with k-1 streams of different 

ranks the average total queue length NT 
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Solving this equation for  p
T0  yields the probability that in all streams of rank < k no 

queue occurs, 
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Assuming that all queuing systems have the same constant factor of randomness (e.g., all 

systems as M/M/1-systems), i.e., setting all Crank=i = CT = const., yields 
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For example, the probability that both in streams of rank 2 and in streams of rank 3 no 

queue occurs is  
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Thus, the impedance factor for the stream of rank 4 is 
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2.4 Minor Stream with Higher-ranked Major Stream Groups of Different Ranks 

To generalize the theory, a system with l higher-ranked stream groups, which consists of 

n2 streams of rank 2, n3 streams of rank 3, ..., and nl streams of rank l is considered. The 

probability that in a stream group of rank r no impedance occurs is (see eq.(7) ) 
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The probability that in all l stream groups no impedance occurs becomes (see eq.(13) ) 
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Analogously, for a system with one group of m sequences, which consist of l1, l2, ..., and 

ln, streams of rank (2, 3, ..., and l1), (2, 3, ..., and l2), ..., (2, 3, ..., and lm), the probability 

that in a stream sequence with l streams of different ranks is (see eq.(13) ) 
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The probability that in all n sequences no impedance occurs becomes (see (see eq.(7) ) 
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In general, for a system with arbitrary stream configuration, the formula for estimating 

the probability of queue-free state in higher-ranked streams can be represented as  
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Theoretically, Equation (20) can have arbitrary many levels of groups and sequences of 

stream combinations. 



3 PROBABILITY OF QUEUE-FREE STATE FOR STREAMS OF RANK 4 IN 

THE CURRENT HCM 

In the existing calculation guidelines the capacity for streams of high ranks (higher than 

2) is calculated by using a impedance factor to the basic capacity. This impedance factor 

fk is formed from the probabilities p0 that no vehicle is queuing in streams of higher-

ranked priority. For the usual calculation procedures the p0 in all streams with higher-

ranked priority is multiplied together. Therefore, the impedance factor for stream of rank 

k, frank=k can be expressed as  
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where (p0,j)i is the probability that stream j of rank i is in a queue-free state. Equation (21) 

can only be carelessly used for streams of low ranks. For streams of rank 4, Equation (21) 

overestimates the impeding effects, because the probabilities of queue-free state in 

streams of rank 2 and 3 are not independent of each other. This was found by (Grossmann 

1991). To overcome this stochastical dependence between queues in streams of rank 2 

and 3, a correction function based on simulations has been proposed. This correction 

function (used in the 1994 HCM chapter 10 as eq.10-6 or fig.10-6) is given as 
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with 

    
30204  

rankrankrank ppf  (23) 

Equation (22) does not fulfill the necessary boundary conditions 

    
201|

*

4 30  
 rankprank pf

rank
    and       

301|
*

4 20  
 rankprank pf

rank
 (24) 

and it overestimates the probability of the queue-free state. Furthermore, in some extreme 

cases, Equation (22) gives values that are not plausible to the real-world conditions. For 

example, using two single queue-free probabilities (p0)rank=2=0.7 and (p0)rank=3=0.3, a total 

queue-free probability (p0)T=(p0)rank=2 and 3=0.346 would be obtained. That is not plausible, 

because the total queue-free probability may not be greater than the single queue-free 

probabilities. 

According to the present theory, the probability that both in streams of rank 2 and in 

streams of rank 3 no queue occurs is equal to (see eqs.(13) and (15) ) 
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This corresponds, in the same terminology of HCM (1994), to 
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where  p' =  adjustment to major street left, minor street through impedance factor; 

 p0,j =  probability of queue-free state for conflicting major street left-turning 

traffic (product of the p0 for both directions, rank 2); 

 p0,k =  probability of queue-free state for conflicting minor street through traffic 

from the opposite direction (rank 3). 

Equation (26) instead of eq.10-6 in the 1994 HCM is used in the forthcoming German 

Highway Capacity Manual (D-HCM  1997). 

4 TEST OF THE THEORY THROUGH SIMULATIONS 

For testing the derived theory, simulation studies was undertaken. For this purpose a 

simulation model was especially developed. The basic structure of the model is closely 

related to the ideas of KNOSIMO (Grossmann 1991). The important features can be 

characterized as follows: 

 The headways in the major-street streams are distributed according to a hyperlang 

distribution. 

 The critical gaps and the follow-up times are distributed according to an Erlang 

distribution with the parameters given by Grossmann (1991) that are also used in 

KNOSIMO. 

Both these assumptions together relate the model closer to real world condition than the 

theoretical derivations mentioned earlier. 

Altogether, 1348 combinations of different traffic volumes in stream 1 (rank 1), stream 2 

(rank 2), and stream 3 (rank 3) were simulated. From the simulation, the probabilities of 

queue-free state in stream 2 (p0)rank=2, and in stream 3 (p0)rank=3, and the total probability 

in both streams 2 and 3 (p0)T=(p0)rank=2 and 3 can be obtained. With the simulated total 

probability (p0)T, different procedures for estimating the total probability of queue-free 

state were tested.   

 Total queue-free probability as simple product of the single queue-free 

probabilities 

First, the simple product of single queue-free probabilities as a approximation of the total 

queue-free probability is tested. That is, it is assumed 
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Figure 5 - Comparison between simulations and (p0)T=(p0)rank=2  (p0)rank=3 

 

 

Figure 6 - Comparison between simulations and HCM 
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In Figure 5, the simulated total queue-free probabilities and the total queue-free 

probabilities calculated from Equation (27) are compared with each other. It shows 

systematically lower values from the calculation versus the simulation. That means, 

Equation (27) underestimates the total queue-free probability or, in other words, it 

overestimates the total impedance effect. 

 

 Total queue-free probability from HCM (1994, 1997) 

To overcome the disadvantage of underestimating the queue-free probability by Equation 

(27), a correction function is introduced in HCM (1994, 1997). This correction function 

is expressed by Equation (22). 

Figure 6 shows the comparison between the simulated total queue-free probabilities and 

the total queue-free probabilities calculated from Equation (22). It shows now 

systematically higher values by the calculation versus the simulation. That is, the 

Equation (22) overcorrects the total queue-free probability or it underestimates the total 

impedance effect. 

 

 Total queue-free probability according to the new theory 

Figure 7 shows the comparison between the simulated total queue-free probabilities and 

the total queue-free probabilities calculated from the derived theory (Equation (25) ). It 

shows now much smaller differences between the calculation and simulation. Figure 8 

shows these differences on a larger scale. The new theory delivers a much better estimate 

than the correction function in HCM (1994, 1997) for calculating the total queue-free 

probability in higher-ranked streams. This is expected due to the more accurate derivation 

of the new theory. However, there are still systematically small deviations between the 

simulated results and the theoretical results (see Figure 8), because the assumption that 

all queuing systems in streams at unsignalized intersections have the same constant 

randomness (e.g., as M/M/1-systems) does not agree with the real-world queuing systems 

at unsignalized intersections. For practical applications, the accuracy of the new theory 

can be considered as sufficient.  

 



 

Figure 7 - Comparison between simulations and the new theory 

 

 

Figure 8 - Comparison between simulations and the new theory on large scale 
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In Table 1, the statistical key values for the results of all the comparisons are assembled. 

It shows again that the new theory describes the results of simulation much better than 

the correction function in the HCM (1994, 1997). 

 

 procedures 

Statistical key values simple product HCM  

(1994, 1997) 

new theory 

Multiple correlation coefficient [-] 0.9973 0.9969 0.9994 

Certainty [-] 0.9946 0.9937 0.9988 

Adjusted certainty [-] 0.9946 0.9937 0.9988 

Standard errors [-] 0.0180 0.0179 0.0080 

maximal absolute deviation [-] 0.0770 0.1270 0.0470 

Observations [-] 1348 

Table 1 - Statistical key values for different calculation procedures 

 

5 APPLICATIONS OF THE THEORY 

In order to show the applications of the new theory, an ideal unsignalized intersection 

with 12 streams is considered. For simplicity, it is assumed that every stream has its own 

exclusive traffic lane (Figure 9). The enumeration of the streams is show in the figure and 

is used in the following equations. 

For the ideal unsignalized intersection (Figure 9), the ranks of the streams and their 

higher-ranked streams is assembled in Table 2.  
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Figure 9 - Streams at unsignalized intersections 

 

No. of the 
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stream 

s 

Rank of 

the subject 

stream 

r 

No. of 

streams of 

rank r-1 

No. of 

streams 

of rank r-

2 

No. of 

streams of 

rank r-3 

Note. 

1 2 8,9   left from left 

2 1    through from left 

3 1    right from left 

4 4 11 1,7,12 2,8 subject left 

5 3 1,7 2,8,9  subject through 

6 2 2   subject right 

7 2 2,3   left from right 

8 1    through from right 

9 1    right from right 

10 4 5 1,7,6 2,8 opposing left 

11 3 1,7 2,3,8  opposing through 

12 2 8   opposing right 

Table 2 - Hierarchy of streams at a ideal unsignalized intersection 
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Table 3 - Scheme for calculating the queue-free states in the higher-ranked streams 



The relationship between queues in the higher-ranked streams (parallel groups and/or 

serial sequences) can be illustrated in Table 3 according to their geometrical position.  

The capacity of the streams must be calculated according to the precedence of ranks. That 

means, at first the capacities should be calculated for all steams of rank 1 (if a queue is 

expected there), then for streams of rank 2 and so on. 

For instance, for calculating the capacity of stream 4 (subject left-turning stream, rank 4), 

at first the capacities of streams 2 and 8 (rank 1), then the capacities of streams 1,7, and 

12 (rank 2), and then the capacity of stream 11 (rank 3) must be calculated in advance 

(see also Table 3, row 4). 

Thus, for stream 4, the probability of queue-free state in all higher-ranked streams is 
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  (28) 

where p0,i is the probability that in stream i no queue occurs. Equation (28) is a very 

complicated equation because in this equation also queues in streams of rank 1 are 

considered. In the real world, however, there are normally no queues in streams of rank 1 

except pedestrians crossing the major street should be considered as streams of higher 

priority. If it is not the case, the probabilities of queue-free state in streams of rank 1 can 

be set to 1. Setting p0,2 and p0,8 equal to 1 for no queues in streams 2 and 8, the Equation 

(28) yields 
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Thus, the capacity of stream 4 is  
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6 SUMMARY 

A new theory for estimating the probability of queue-free state in higher-ranked streams 

is presented. The theory is verified through simulations. The derived theory for estimating 

the probability of queue-free state in higher-ranked streams can be used for queue-

systems with 

 streams of arbitrary high rank,  

 arbitrary many higher-ranked streams of different ranks, 

 any configurations of streams (in parallel groups or serial sequences) for higher-

ranked streams, and 

 any predefined queue-free states in higher-ranked streams. 

A direct application of this theory is the estimate of the impedance factor for streams of 

rank 4 at unsignalized intersections. In this case, the expression according to the new 

theory is much simpler and more accurate than the approach in the HCM (1994, 1997).  
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