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ABSTRACT 

Freeway ramp metering is one of the major freeway management techniques used worldwide to improve safety 
and operations. However, studies have shown that ramp metering is effective only when freeway traffic flow 
reaches a certain threshold level. When freeway traffic is low, there will be enough gaps in the freeway flow to 
accommodate the ramp flow, even when ramp traffic enters the freeway in platoons. In practice, ramp metering 
threshold values are typically determined based on empirical studies. The purpose of this paper is to develop 
theoretical models based on gap-acceptance theory that can be used to determine ramp metering threshold 
values. The models take into account the effect of platoon size resulted from various ramp controls, including 
random arrivals from uncontrolled ramp, platoon arrivals from an upstream signal control, and uniform arrivals 
from a ramp metering control. Volume-based ramp metering threshold values are derived using the models under 
different ramp control situations. The study results clearly indicate that more significant disturbance on freeway 
operations exist due to large platoon arrivals resulting from an upstream traffic signal, compared to when traffic 
arrives randomly or uniformly. The models are also applied to provide quantitative assessments from the 
perspectives of freeway capacity and safety, indicating that ramp metering results in increased freeway capacity 
and safety.  
 
 
Keywords: ramp-metering threshold, gap acceptance, freeway operations 
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Determination of Probability of no Disruption and Freeway Volume Threshold for 
Ramp Metering Based on Gap Acceptance Theory 

By Ning Wu and Zong Z. Tian 
 
 

INTRODUCTION 

Freeway ramp metering is one of the major freeway management techniques used worldwide to improve safety 
and operations. However, general field studies have indicated that ramp metering is effective only when freeway 
traffic flow reaches a certain threshold level. When freeway traffic is low, there will be enough gaps in the 
freeway flow to accommodate the ramp flow, even when ramp traffic enters the freeway in platoons. In practice, 
ramp-metering threshold values are typically determined based on empirical studies. To our best of knowledge, 
no studies have been conducted to address the ramp-metering threshold issue from the theoretical point of view. 
This paper develops a new theoretical model based on gap-acceptance theory that can be used to determine 
ramp-metering threshold values.  

The traffic from a freeway on-ramp enters the freeway in different patterns, depending on the type of 
ramp control. For example, when a freeway ramp is located near an upstream signal, vehicles tend to arrive in 
large platoons, which would be difficult to accommodate on the freeway without disturbing the mainline traffic. 
When the ramp is controlled by a ramp meter, traffic would tend to enter the freeway more uniformly, where the 
ramp traffic can be accommodated more easily with the available gaps on the freeway flow. On the other hand, 
the drivers from the ramp usually adjust their speeds while seeking for a suitable gap in the mainline traffic, and 
the mainline traffic may also try to accommodate the ramp traffic by either slowing down (without affecting the 
following vehicle) or shifting to the adjacent lanes. Figure 1 illustrates some of the merging situations of how the 
ramp traffic can be accommodated without significant disturbance on the mainline traffic. These situations 
involve no more than one vehicle making a lane change or slowing down, which are defined as no disturbance 
events later in this paper. The traffic volumes on both the freeway mainline and the ramp that would result in no 
disturbance of freeway operations are defined as the volume thresholds for ramp metering. Traffic volumes 
below the threshold values are not necessary for initiating ramp metering operations because normal freeway 
operations would maintain. Gap-acceptance based models to determine the volume threshold values are 
presented in the following sections of this paper. 
 

GAP DISTRIBUTION AND LANE VOLUME DISTRIBUTION 

In general, the gaps in a traffic stream follow a distribution function f(t) = f(t,q), where t is the length of the gap 
and q is the traffic volume. For example, the probability density function for partially bunched traffic conditions 
can be given by the Cowan's M3 model (1) shown in Equation (1) in the cumulative form: 
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where:   t is the sample gap      (s) 
∆ is the minimum gap within bunches    (s) 
α is the proportion of non-bunched vehicles    (-) 
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q is the stream flow rate      (veh/s)  
  λ is the flow rate within the bunched vehicles   (veh/s) 

Usually we can use ∆⋅−= q1α  and λ = q for normal traffic conditions without impedance of traffic 
signals (2). Thus, we should also use these parameters for freeway traffic flow. In this case Equation (1) yields 
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Given the total flow rate of a freeway qsum, the proportion of traffic flow, p1, p2,..., on different traffic lanes 1, 2... 
can be calculated based on Equation (4): 
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Of course the lane volume distribution is highly variable from section to section and different from country to 
country because of different traffic behavior and regulations. For standard motorways, the country-related lane 
volume distribution should be used for further calculations.  

In the U.S. and other North American countries, the regulation of "Keep in Lane" is common. Based on 
a sample data set collected in Canada and the U.S., Equations (5) and (6) can be established as sample regression 
functions to represent the lane flow distribution on a 2-lane (each direction) freeway and on a 3-lane (each 
direction) freeway. 
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The lane flow distribution from Equations (5) and (6) are illustrated in Figure 2. If the traffic flow rates of 
different lanes, q1, q2, ..., can be obtained directly from field measurements, they should be used for further 
calculations. 

Once the proportion of traffic flow, p1, p2,..., are given, the traffic flow of different lanes, q1, q2, ..., can 
be calculated by: 
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THE CAPACITY OF THE ON-RAMP LANE 

The capacity for a freeway on-ramp lane is usually calculated using gap-acceptance models (3, 4, 5, 6, 7, 8). For 
example, the capacity, Cramp can be expressed by  
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where tc,ramp is the critical gap for merging from the on-ramp lane to lane 1, tf,ramp is the follow-up time. 
To take into account the effect of the length of the acceleration lane, a correction factor must be applied 

to the critical gap, tc,ramp. In general, the value of tc,ramp can be modified according to the length of the acceleration 
lane and to the possible accelerating rate of the vehicle. The value of tc,ramp decreases with increasing length of 
the acceleration lane.  

In HCM (9) the capacity of the on-ramp is expressed by a linear function. The HCM-formula is given 
by 

)(4600 21 qqCramp +−=       (veh/h)  (9) 
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PROBABILITY OF NO DISRUPTION IN MAJOR FLOW DUE TO ON-RAMP TRAFFIC 

We first define a parameter, B, the required mainline gap to accommodate a particular size of traffic platoon from 
the ramp. For example, for a platoon of size N, B = (N+1)⋅h, where h is the minimum headway in the on-ramp 
stream. Considering the merge process as a floating queuing system, the average queue length in the system is L 
= (N+x) and B = L⋅h = (N+x)⋅h, where N is the average queue length of the queuing system excluding the vehicle 
in the counter (= average size of platoon), x is the degree of saturation for the on-ramp. Note, for q = 0 is Β = 0. 

The probabilities of no disruption to freeway mainline traffic are calculated for the three cases 
illustrated in Figure 1. 
 
Case a - Gap in the merge lane, hi, is no less than B = (N +x)h 

In this case, the probability of no disruption PND,a is equal to the probability that the length of a gap in the major 
stream is larger than B, i.e., the probability of no disruption is simply equal to the probability for t ≥ B. Thus,  

)Pr(, BtP aND ≥=        (-) (10) 
From Equation (1) we have 

))(exp()(1 111, ∆−⋅−⋅==−= BBtFP taND λα     (-) (11) 

where Ft(t=B) is the probability distribution function (cumulative) of gap t with a length B.  
 

Case b - Gap in the first lane is ∆t shorter than required. The freeway vehicle can slow down by ∆t without 
affecting the following vehicle 

In this case we are looking for the probability of t1+t2>B+∆1 under the condition of t1≤B, where t1 and t2 are two 
consecutive gaps in the freeway mainline stream in lane 1. Generally, the probability of t1+t2>B+∆1 and the 
condition t1≤B are independent of each other for freeway headway distributions, thus, we have 
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Since the probability of t1+t2 obeys the shifted Erlang distribution, we have (10) 
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Combining with Equation (1) yields 
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Case c - Gap in the first lane is smaller than required and the freeway vehicle cannot slow down without 
affecting the following vehicle. But the freeway vehicle can make a lane change to the adjacent lane 

In this case, the probability of no disruption is for t1<B, t1+t2<B+∆1, and t2>tc,2, 
)Pr()Pr()Pr( 2,21

21
1, ccND ttBttBtP >⋅∆+<+⋅<=    (-) (15) 

Using Equation (1) and Equation (13) yields 
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That total probability of no disruption is then 
PND = PND,a+ PND,b + PND,c       (-) (17)  

Where tc,1 is the critical gap for changing from lane 2 to lane 1, ∆1 is the minimum headway within bunches on 
lane 1,  tc,2 is the critical gap for changing from lane 3 to lane 2, ∆2 is the minimum headway within bunches on 
lane 2. The lanes are numbered from the shoulder to the median (cf. Figure 1). For further calculation, parameter 
tc,1=4s, ∆1=1.2s, tc,2 =4s,  and ∆2=1s are used.  

In Figure 3, the total probability of no disruption (Psum = PND) as a function of the average length (B) of 
time for accommodating the platoon is illustrated both for a two-lane freeway and a three-lane freeway under the 
sample traffic conditions in North America. It can be recognized, that the total probability of no disruption 
decreases with increasing values of B. 
 

CALCULATIONS ON PARAMETER B VALUES 

Using Equations (11), (14), (16) and (17), the probability of no disruption can be obtained if the required length 
of time (B) for accommodating the platoon is known. Because B is a function of platoon size, which is related to 
the type of ramp controls and ramp traffic arrival patterns, we need first to determine the platoon size based on 
ramp conditions. In general, the size of the platoon can be achieved using a suitable queuing theory. 
 
Uncontrolled Ramp – Random Arrival 

When a ramp is uncontrolled and is far from upstream signals, traffic enters the freeway randomly. The system 
can be represented by an M/M/1 - queuing system for simplification. Here, the average queuing length in the on-
ramp stream is given by  

x
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=+
11
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1//       (-) (18) 

Thus, we have the average length of time for accommodating the platoon 

x
hxB

−
⋅

=
12          (s) (19) 

 

Ramp with Metering – Uniform Arrival 

When a ramp has ramp metering in operation, the output of the metering is the input of the queuing system 
(ramp). This input is in this case a uniform input. The system can be then classified as a D/M/1-queuing system 
for simplification. Despite of the metering, there still will be platoon before the merge point if the capacity of the 
merge point is relatively low. For a D/M/1-queuing system, the average queuing length in the on-ramp stream 
(before the merge point) is given by  

)1(2)1(2
2 2

1// x
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x
xxxN MD −

=+
−
−

=+       (-) (20) 

where x is the degree of saturation of the on-ramp. Thus, we have the average length of time for accommodating 
the platoon (the headway in the queuing platoon remains h) 

)1(21 x
hxB

−
⋅

=          (s) (21) 

We can recognize that B2 is only the half of B1. That is, the average length of platoon can be cut in half 
by ramp metering. 
 
Ramp with Upstream Signal – Large Platoon Arrival 

When a ramp is located close to an upstream traffic signal, traffic enters the freeway in bunches (i.e., large 
platoons). In this case, the average length of time for accommodating the platoon can be calculated by (cf. Figure 
4) 

Β3 ≈ [m⋅Pbunch + N⋅Pfree+x] ⋅h      (s) (22) 
where Pbunch is the proportion of bunched time, m is the number of bunched traffic volume, and Pfree is the 
proportion of time for free traffic. N can be calculated from an M/M/1 queuing system by 
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For normal signalized, not coordinated intersections we have 
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where qs is the saturation flow, c is the cycle length, and r is the red time.  
Here, only the case for one single movement is considered. However, it can be extended to model a 

more general case with more than one feeding traffic movement based on the same principle. 
 

MODEL APPLICATIONS 

For all the three cases mentioned in the previous section, the freeway volume threshold can be obtained 
implicitly from Equation (17) based on certain PND values. It is noted that these threshold values are determined 
based on the conditions of no disruption to freeway traffic as defined early in this paper. They are not exactly the 
volume threshold for ramp metering applications. In order to derive the threshold for ramp metering applications, 
the relationship between freeway breakdown and the probability of no disruption must be established. Such a 
relationship needs to be verified based on field studies.  

The freeway volume threshold is a function of the on-ramp volume. The threshold can be easily 
obtained from the graphs developed below. The graphs are developed based on the sample traffic characteristics 
in North America. In General, the value of the threshold depends on the major flow volume on the freeway, the 
volume of the on-ramp and the predefined probability PND for no disruption. To obtain the practical threshold 
values for ramp metering, these parameters must be calibrated based on field conditions. 
 
Two-lane freeway 

Using the following parameter values and based on the sample traffic characteristics in North America: 
qramp=700 veh/h, c=60s and r=30s, p1 and p2 from Equation (5) and Cramp from Equation  (9), the average length 
(B) of time for accommodating the platoon and the probability of no-disruption (PND) for different on-ramp 
traffic conditions are depicted in Figure 5. 

If a probability of no disruption PND=0.8 is predefined, we have a freeway volume threshold of 2648 
(qramp+qsum=3348) veh/h for randomly arriving ramp traffic (Figure 5, a), 3274 (qramp+qsum=3974) veh/h for 
uniformly (equivalent to ramp metering) arriving ramp traffic (Figure 5, b), and only 1082 (qramp+qsum=1782) 
veh/h for ramp traffic arriving in platoons due to upstream traffic signals (Figure 5, c). 
 
Three-lane freeway 

Using the same parameter values as in the case of two-lane freeway (except for p1, p2, and p3 from Equation (6)), 
the average length (B) of time for accommodating the platoon and the probability of no-disruption (PND) for 
different on-ramp traffic conditions are depicted in Figure 6.  

Again, if a probability of no disruption PND=0.8 is predefined, we have a freeway volume threshold of 
4875 (qramp+qsum=5575) veh/h for randomly arriving ramp traffic (Figure 6, a) 5932 (qramp+qsum=6632) veh/h for 
uniformly (equivalent to ramp metering) arriving ramp traffic (Figure 6, b), and only 1780 (qramp+qsum=2480) 
veh/h for ramp traffic arriving in platoons due to upstream traffic signals (Figure 6, c).  
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DISCUSSIONS  

Effect of Ramp Control Conditions 

The modeling process presented previously can be directly applied to analyze the effect of different ramp control 
conditions. Figure 7 illustrates the total probabilities of no-disruption (PND=Psum) for different ramp traffic 
arriving conditions for the case with a ramp flow rate qramp=700 veh/h. It can be clearly seen that ramp metering 
results in the highest PND values, while ramp with upstream signals results in the lowest PND.  

The effect of different ramp control conditions could also be analyzed from the freeway capacity 
perspective. The capacity of a freeway is a stochastically varying value, which depends on the actual traffic 
conditions (11, 12, 13, 14, 15). Particularly the capacity in no disrupted state, CND (corresponding to the capacity 
before breakdown), has a higher value than the capacity in the disrupted state, CD (similar to the capacity after 
breakdown, because the disrupted vehicles have to decelerate and re-accelerate in order to follow the vehicle in 
the front. This behavior causes larger headway between two consecutive vehicles similar to a congested traffic 
flow). The difference is called "capacity drop", Cdrop = CND - CD. The actual capacity of a freeway is then a 
function of the probability of no disruption, PND. That is 

)1(
)1(

NDdropND

NDDNDNDreal

PCC
PCPCC

−⋅−=
−⋅+⋅=

     (veh/h)  (27) 

If the probability of no disruption can be increased by ∆PND, the capacity can be increased by 

NDdropreal PCC ∆⋅=∆        (veh/h)  (28) 
For example, a "capacity drop" of Cdrop = ca. 20% can be observed on certain two-lane freeways (i.e. we 

use the capacity drop from free flow capacity down to queue discharge capacity for simplification). Thus, for a 
total flow of 3200 veh/h (qsum=2500, qramp=700) we can obtain an increase of the probability of no disruption, 
∆PND=PND,metering-PND,no metering = 0.92-0.83 = 0.09 (cf. Figure 7). Therefore, we can obtain a capacity enhancement 
of 20%*0.09≈2% using ramp metering in this case. For a total flow of 3700 veh/h (qsum=3000, qramp=700) we can 
obtain an increase of the probability of no disruption, ∆PND=0.20 (cf. Figure 7). The capacity enhancement is 
than 20%*0.2=4%. These increases of capacity could be crucial for reducing the probability of breakdowns. 
 
Safety Measures 

The probability of disruption, PD = 1-PND , can be considered as a safety measure. If the probability of disruption 
PD, is high, the drivers are likely to be forced slowing down and changing lanes. This can directly raise the 
chance of accidents. The absolute increase of this type of safety due to the metering is  

merteringnoNDmerteringNDNDDsafety PPPP ,, −=== ∆∆∆     (29) 

The relative enhancement of safety is 

merteringnoND

ND

merteringnoD

D
safety P

P
P

PE
,, 1−

∆
=

∆
=      (30) 

It is to be pointed out, that different parts of the probability of disruption represent different dangers in 
the ramp area. From Equation (17), the total probability of disruption can be obtained. However, some vehicles 
still need braking or changing lane in order to avoid a collision. Thus, for evaluating different dangers caused by 
the merge process, different probabilities of disruption must be used. 

Danger caused by breakdown, by forced breaking, and by forced lane changing 

This danger can be expressed by the probability that the gap in the major stream is larger than the length of time 
for accommodating the platoon. This corresponds exactly to case (a). Thus, the danger can be expressed by PD,a = 
1-PND,a, where the value of PND,a is calculated by Equation (11). 

Danger caused by breakdown and by forced lane changing  

This danger correspondents exactly case (a) + case (b). Thus, the danger can be expressed by PD,a+b = 1-PND,a-
PND,b, where the values of PND,a and PND,b are calculated by Equation (11) and Equation (14). Here the danger 
caused by forced breaking is excluded. 

Danger caused by breakdown  

The danger caused by breakdown can be expressed by the total probability of disruption, PD = 1-PND, where the 
value of PND is calculated by Equation (17). Here the dangers caused by forced lane changing and by forced 
breaking are excluded. 
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For the same case used in analyzing capacity enhancement, we have for qsum+qramp=3200 veh/h an 
increase of absolute increase of safety (danger caused by breakdown), ∆PND =PND,metering-PND,no metering = 0.92-0.83 
= 0.09. That is, the dangers due to disruption caused by the on-ramp traffic is reduced by 0.09/(1-0.83)=53%. 
Here, the dangers caused by forced breaking and by forced lane changing are not taken into account. If these 
dangers have to be considered, we have ∆PND,a =PND,a,metering-PNDa,,no metering = 0.79-0.60 = 0.19 (cf. Figure 5). That 
is, the total danger due to disruption (by breakdown, by forced lane changing, and by forced breaking) caused by 
the on-ramp traffic is reduced by 0.19/(1-0.60)=48%. For qsum+qramp=3700 veh/h an increase of absolute increase 
of safety (danger caused by breakdown), ∆PND = 0.20, can be obtained. The dangers due to disruption caused by 
the on-ramp traffic can be reduced by 59%. The total danger due to disruption (by breakdown, by forced lane 
changing, and by forced breaking) caused by the on-ramp traffic can be reduced by 64% (cf. Figure 5). 

The capacity enhancement and the reduction of disruption probability confirm the empirical results 
from Trupat (16) very well. In a comprehensive investigation, he observed for a German freeway metering 
system a capacity increase of ca. 3-5% and a disruption decrease of ca. 50%. The frequency of heavy accidents 
was reduced by 30-40%. 
 

METERING THRESHOLD 

Metering threshold for random on-ramp flow 

In the United States, different thresholds have been used for ramp meriting on freeways. For example, Wisconsin 
uses the volume-to-capacity (q/C) ratio 0.7 for urban and 0.6 - 0.65 for rural areas. The capacity C is based on 
HCM, the flow rate q includes both the on-ramp flow and the mainline flow. Illinois uses occupancy of 11.7% 
(upstream of meter). Denver uses the volume, occupancy, and speed, whichever is controlling, and the values are 
measured downstream of meter and must last for 3 consecutive minutes. The threshold for volume is 1900 
veh/h/ln (average of all lanes), for occupancy is 20%, and for speed is 35 mph. In general, the downstream 
volume or the q/C ratio is considered to be suitable parameters for metering control. The occupancy can be 
considered as a function of the flow rate q. 

From the proposed method in this paper, the probability of no-disruption PND as a function of the total 
downstream volume qsum+qramp can be estimated. In Figure 8, this functional relationship is illustrated. In case of 
a two-lane freeway (cf. Figure 8, a), the relationship is nearly independent of the individual on-ramp volume 
qramp. Thus, for any on-ramp volume, the downstream volume threshold can be simply defined as a function of 
the probability of no-disruption. For example, using a predefined probability of no-disruption PND=0.8, the 
downstream volume threshold is 3400 veh/h. This correspondents to a lane volume of 1700 veh/h/ln and a q/C 
ratio of 0.74 (for C=2300 veh/h/ln). Unfortunately, for a three-lane freeway, the independence between PND and 
qramp does not exist (cf. Figure 8, b). Thus, for different on-ramp volumes, different downstream volume 
thresholds must be used if the constant value of PND is predefined. For example, with PND=0.8, the downstream 
volume threshold varies from 5100 through 5900 veh/h or 1700 through 1967 veh/h/ln (qramp from 1100 to 500 
veh/h). This correspondents to q/C ratios ranging between 0.74 and 0.85 (for C=2300 veh/h/ln). On the other 
hand, if a downstream volume threshold of 1700 veh/h/ln is used, the value of the probability of no-disruption 
PND would vary from 0.8 through 0.91 (cf. Figure 8, b). For simplification, a downstream volume threshold of 
1700 veh/h/ln can be used both for two-lane and three-lane freeway. In this case, the probability of no-disruption 
is always equal to or greater than 0.8. 

 
Metering threshold for ramp traffic arriving in platoons (upstream signal) 

The probability of no-disruption PND is dependent on the cycle time c and the red time r of the upstream signal. 
As an example for the sample North America conditions, the probability of no-disruption PND as a function of the 
total downstream volume qsum+qramp is illustrated in Figure 9 for c=60s and r=30s. It can be seen, that the 
independence between PND and qramp does not exist both for the two-lane and the three-lane freeway. With 
PND=0.8, the downstream volume threshold varies from 1700 through 2300 veh/h/ln or 750 through 1150 
veh/h/ln (qramp from 800 to 500 veh/h) for a two-lane freeway. For a three-lane freeway, the downstream volume 
threshold varies from 1600 through 3900 veh/h or 533 through 1300 veh/h/ln (qramp from 1100 to 500 veh/h).  
Because the thresholds depend strongly on the upstream signal parameters, no general recommendations can be 
made for the metering control. For practical applications, Figure 3 (for sample North America conditions) can be 
used for estimating the downstream volume threshold if the size of platoon B can be measured or estimated prior 
to the calculation.  
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CONCLUSIONS AND OUTLOOK 

Using the gap-acceptance theory, the probability of no disruption caused by on-ramp traffic can be evaluated in 
details. Equations (11), (14), (16), (21), (19), and (22) are the most critical elements for the developed models. 
From these equations, the probability of no disruption for three different on-ramp traffic conditions of a) 
randomly arriving, b) uniformly arriving (equivalent to ramp metering), and c) arriving in platoons (e.g., 
different size of platoons resulted from an upstream signal) can be obtained. From these probabilities of no 
disruption, the control thresholds of the freeway volume can be determined. Furthermore, these probabilities of 
no disruption can also be associated to the bottleneck capacity and safety measures in the merge area. The 
modelings results indicate that ramp metering significantly enhances the probability of no disruption and thus 
improve the operations and safety for freeways. Another important finding is that the effect of upstream signals 
on the merge operation can be positive or negative, depending on the traffic volume level on the freeway. For 
normal traffic conditions, thresholds of freeway volume for the case with ramp metering control are lower than 
those with upstream signals and uncontrolled random arrivals.  

Most importantly, the study delivers a theoretical framework for estimating the probability of no 
disruption in the merge area on freeways, thus providing a theoretical basis for determining ramp metering 
threshold values in practice. It is recommended that the models be calibrated based on country-specific 
conditions before being applied in the practice. Furthermore, for every particular traffic regulation, the capacity 
formula (cf. eq. (8)) and the formulae for calculation of the lane volume distribution must be carefully calibrated 
against field more measurements. 

As a reference, Figure 8 is useful for estimating downstream volume thresholds for freeways in North 
America with random on-ramp flows. For on-ramp flow under other conditions (e.g. upstream signals), Figure 3 
can be used in case that the size of the platoon can be measured or estimated prior to the calculation. 
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Figure 1 - Three different cases of disruption in major stream (here we use h=gap=headway) 
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Figure 2 - Lane volume distribution for typical freeways in North America: a) two-lane freeway (Regression: 
eq.(5), 15-min-Intervals), b) three-lane freeway (Regression: eq.(6), 20-sec-Intervals) 
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Figure 3 - Total probability of no disruption (Psum = PND) as a function of parameter B for typical freeways in 
North America: a) two-lane freeway, b) three-lane freeway 
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Figure 4 - Output behind a traffic signal  
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Figure 5 - Average length (B) of time for accommodating the platoon and probability of no-disruption (PND) for a 
typical two-lane freeway in North America: a) randomly arriving ramp traffic, b) for uniformly (equivalent to 
ramp metering) arriving ramp traffic, c) ramp traffic arriving in platoons (e.g., different size of platoons resulted 
from an upstream signal) 
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Figure 6 - Average length (B) of time for accommodating the platoon and probability of no-disruption (PND) for a 
typical three-lane freeway in North America: a) randomly arriving ramp traffic, b) for uniformly (equivalent to 
ramp metering) arriving ramp traffic, c) ramp traffic arriving in platoons (e.g., different size of platoons resulted 
from an upstream signal) 
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Figure 7 - Total probability of no-disruption (PND= Psum) for different ramp traffic arriving conditions with a 
ramp flow rate qramp=700 veh/h for typical freeways in North America (c=60s, r=30s): a) two-lane freeway, b) 
three-lane freeway 
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Figure 8 - Total probability of no-disruption (PND= Psum) in case without metering as a function of the total 
downstream volume qsum+qramp for typical freeways in North America: a) two-lane freeway, b) three-lane 
freeway 
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Figure 9 - Total probability of no-disruption (PND= Psum) for ramp traffic with upstream signal as a function of 
the total downstream volume qsum+qramp for ramp traffic arriving in platoons for typical freeways in North 
America (c=60s, r=30s): a) two-lane freeway, b) three-lane freeway 


