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Analysis of Capacity Enhancement and Disruption Probability for Freeway 
Ramp Controls Based on Gap-Acceptance and Queuing Models 

 

ABSTRACT 

Gap-acceptance and queuing theory based models are proposed to model the effect of ramp 
controls on freeway operations. The models are developed for three types of ramp control and 
traffic flow patterns, namely the uniform arrival with ramp-metering, the random arrival without 
ramp-metering, and platoon arrival without ramp-metering but with an upstream signalized 
intersection. One of the applications of these models is to address, from the theoretical point of 
view, one of the practical issues regarding freeway ramp-metering thresholds and the 
corresponding disruption probability. Studies have shown that ramp-metering is effective in 
reducing vehicle delays only when freeway traffic flow rate reaches a certain flow threshold 
level. When freeway traffic is low, there will be enough gaps in the freeway flow to 
accommodate the ramp flow, even when ramp traffic enters the freeway in platoons. The 
presented models take into account the effect of platoon size resulted from the three ramp 
controls and arrival flow patterns. The study results clearly indicate that more significant 
disruption on freeway operations exist due to large platoon arrivals resulting from an upstream 
traffic signal, compared to when traffic arrives randomly or uniformly. The models are also 
applied to provide quantitative assessments from the perspectives of freeway capacity, indicating 
that ramp-metering results in increased freeway capacity and decreased disruption probability.  
 
Keywords: Ramp-metering Threshold, Gap Acceptance, Freeway Operations, Disturbance 
Probability, Disruption Probability 
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Analysis of Capacity Enhancement and Disruption Probability for Freeway 
Ramp Controls Based on Gap-Acceptance and Queuing Models  

INTRODUCTION 

Freeway entrance ramps are likely bottleneck locations where most disruptions on freeway 
operations occur (1, 2, 3, 4, 5). Different traffic flow patterns exist at freeway ramps depending 
on the type of ramp control and location. When ramp-metering is installed at a freeway ramp, it 
creates nearly uniform vehicle entries to the freeway mainline, thus resulting in fewer disruptions 
to freeway mainline (6). When a ramp is far from an upstream signal and no ramp-metering is 
installed, vehicles enter the freeway mainline in a nearly random fashion. When the ramp is near 
an upstream signal and no ramp-metering is installed, traffic tends to enter the freeway mainline 
in platoons, which results in the highest level of disruption to freeway mainline operations.  
 
Although freeway ramp-metering has been used worldwide as an effective means of improving 
safety and operations general field studies have indicated that ramp-metering is effective only 
when freeway traffic flow rate reaches a certain threshold level. When freeway traffic is low, 
there will be enough gaps in the freeway flow to accommodate the ramp flow, even when ramp 
traffic enters the freeway in platoons. In the practice, ramp-metering threshold values are 
typically determined based on empirical studies. This paper develops a new theoretical model 
based on gap-acceptance and queuing theory that addresses the impacts of the three types of ramp 
control and traffic arrival patterns, where the model can be used to determine ramp-metering 
threshold values.  
 
Figure 1 illustrates some of the merging situations of how the ramp traffic can be accommodated 
without significant disruption on the mainline traffic. These situations involve no more than one 
vehicle making a lane change or slowing down, which are defined as no disruption events later in 
this paper. The traffic flow rates on both the freeway mainline and the ramp that would result in 
no-disruption of freeway operations are defined as the flow thresholds for ramp-metering. Traffic 
flow rates below the threshold values are not necessary for initiating ramp-metering operations 
because normal freeway operations would maintain. Gap-acceptance based models to determine 
the flow threshold values are presented in the following sections of this paper. 
 

GAP DISTRIBUTION AND LANE FLOW DISTRIBUTION 

In general, the gaps in a traffic stream follow a distribution function f(t) = f(t, q), where t is the 
length of the gap and q is the traffic flow rate. For example, the probability density function for 
partially bunched traffic conditions can be given by the Cowan's M3 model (7) shown in 
Equation (1) in the cumulative form: 









tfor

tfort
tF

0

))(exp(1
)(     (-) (1) 

where:   t is the sample gap      (s) 
 is the minimum gap within bunches   (s) 
 is the proportion of non-bunched vehicles   (-) 
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q is the stream flow rate     (veh/s)  
  is the flow rate within the bunched vehicles  (veh/s) 
 
Usually we can use  q1  and = q for normal traffic conditions without impedance of 
traffic signals (cf. 8). Thus, we should also use these parameters for freeway traffic flow. In this 
case Equation (1) yields 
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Given the total flow rate of a freeway qsum, the proportion of traffic flow rates, p1, p2,..., on 
different traffic lanes 1, 2... can be calculated based on Equation (4): 
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In general the lane flow distribution can also be modeled by gap-acceptance theory (9). In the 
practice, regression models are common for describing the lane flow distribution. Of course the 
lane flow distribution is highly variable from segment to segment and different from country to 
country because of different traffic behaviors and regulations. For standard motorways, the 
country-related lane flow distribution should be used for further calculations.  
 
In the North American countries, the regulation of "Keep in Lane" is common. Based on a sample 
data set collected in Canada and the U.S., Equations (5) and (6) can be established as sample 
regression functions to represent the lane flow distribution on a 2-lane (each direction) freeway 
and on a 3-lane (each direction) freeway. 
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The lane flow distribution from Equations (5) and (6) are illustrated in Figure 2. If the traffic flow 
rates of different lanes, q1, q2, ..., can be obtained directly from field measurements, they should 
be used for further calculations. 
 
Once the proportion of traffic flow rates, p1, p2, ..., are given, the traffic flow rates of different 
lanes, q1, q2, ..., can be calculated by: 



Wu and  Tian 

   5













...

...
22

11

sum

sum

qpq

qpq

        (veh/s)  (7) 

THE CAPACITY OF THE ON-RAMP LANE 

The capacity for a freeway on-ramp lane is usually calculated using gap-acceptance models (10, 
11, 12, 13, 14). For example, the capacity, Cramp can be expressed by 


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t
t

t
C             (veh/h) or (veh/s) (8) 

where tc,ramp is the critical gap for merging from the on-ramp lane to lane 1, tf,ramp is the follow-up 
time (cf. 9). 
 
To take into account the effect of the length of the acceleration lane, a correction factor must be 
applied to the critical gap, tc,ramp. In general, the value of tc,ramp can be modified according to the 
length of the acceleration lane and to the possible accelerating rate of the vehicle. The value of 
tc,ramp decreases with increasing length of the acceleration lane.  
 
In the existing highway capacity manuals (15, 16), the capacity of the on-ramp is normally 
expressed by a linear function. The HCM-formula is given by 

)(4600 21 qqCramp        (veh/h)  (9) 

 

PROBABILITY OF NO-DISRUPTION IN MAJOR FLOW DUE TO ON-RAMP 
TRAFFIC 

We first define a parameter, B, the required mainline gap to accommodate a particular size of 
traffic platoon from the ramp. For example, for a platoon of size N, B = (N+1)  h, where h is the 
minimum headway in the on-ramp stream. Considering the merge process as a floating queuing 
system, the average queue length in the system is L = (N + x) and B = L  h = (N + x)  h, where N 
is the average queue length of the queuing system excluding the vehicle in the counter (= average 
size of platoon), x is the degree of saturation for the on-ramp. Note, for q = 0 is = 0. 
 
The probabilities of no-disruption to freeway mainline traffic are calculated for the three cases 
illustrated in Figure 1. 
 
Case a - Gap in the merge lane, hi, is no less than B = (N +x)  h (cf. Figure 1, a) 

In this case, the probability of no-disruption PND,a is equal to the probability that the length of a 
gap in the major stream is larger than B, i.e., the probability of no-disruption is simply equal to 
the probability for t  B. Thus,  

)Pr(, BtP aND         (-) (10) 

From Equation (1) we have 
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 )(exp)(1 111,  BBtFP taND    (-) (11) 

where Ft(t=B) is the probability distribution function (cumulative) of gap t with a length B.  
 

Case b - Gap in the first lane is Δt shorter than required. The freeway vehicle can slow 
down by Δt without affecting the following vehicle (cf. Figure 1, b) 

In this case we are looking for the probability of t1 + t2 > B + 1 under the condition of t1  B, 
where t1 and t2 are two consecutive gaps in the freeway mainline stream in lane 1. Normally, in 
free flow traffic, we can assume that the probability of t1 + t2 > B + 1 and the probability of t1  B 
are independent of each other for freeway headway distributions. Thus, we have 
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Since the probability of t1 + t2 obeys the shifted Erlang distribution, we have (9) 
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Combining with Equation (1) yields 
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Case c - Gap in the first lane is smaller than required and the freeway vehicle cannot slow 
down without affecting the following vehicle. But the freeway vehicle can make a lane 
change to the adjacent lane (cf. Figure 1, c) 

In this case, the probability of no-disruption is, 
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That total probability of no-disruption is then 

PND = PND,a+ PND,b + PND,c      (-) (16)  

where  is the minimum headway within bunches on lane 1,  tc,2 is the critical gap for changing 
from lane 1 to lane 2,  is the minimum headway within bunches on lane 2. The lanes are 
numbered from the shoulder to the median (cf. Figure 1). For further calculation, parameters 
=1.2s, tc,2=4s, and =1s are used.  
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In Figure 3, the total probability of no-disruption (Psum = PND) as a function of the average length 
(B) of time for accommodating the platoon is illustrated both for a two-lane freeway and a three-
lane freeway under the sample traffic conditions in North America. It can be recognized, that the 
total probability of no-disruption decreases with increasing values of B. 
 

CALCULATIONS ON PARAMETER B VALUES 

Using Equations (11), (14), (15) and (16), the probability of no-disruption can be obtained if the 
required length of time (B) for accommodating the platoon is known. Because B is a function of 
platoon size, which is related to the type of ramp controls and ramp traffic arrival patterns, we 
need first to determine the mean platoon size based on ramp conditions. In general, the size of the 
platoon can be achieved using a suitable queuing theory. 
 
According to the Pollaczek - Khinchin formula (cf. 17), the average number of customers L in a 
M/G/1 queuing system (waiting or in service)  

)1(2

222

1//1// x

qx
xNxL b

GMGM 


       (-) (17) 

with x = degree of saturation of the on-ramp, q = flow rate of the on-ramp, and 2
b  = variance of 

the service time for the on-ramp. More general, according to the heavy-traffic approximation (cf. 
17), the average number of customers L in a G/G/1 queuing system can be estimated by 

)1(2

)( 222

1//1// x

q
xNxL ba

GGGG 


      (-) (18) 

for x => 1 with 2
a  = variance of the headway in the on-ramp flow. Because we are mostly 

interested in the area of x  1 for capacity analysis, this presumption is not critical for our 
derivation. 
 
If the variance of the service time 2

b  and the variance of the headway in the on-ramp flow 2
a  

are known, the number of customers L in the system and thus the average length of the platoon B 
can achieved. 
 
Uncontrolled Ramp – Random Arrival 

When a ramp is uncontrolled and is far from upstream signals, traffic enters the freeway 
randomly. The system can be represented by an M/M/1 - queuing system for simplification. Here, 
the average queuing length in the on-ramp stream is given by  

x

x

x

x
xNxL MMMM 





1)1(2

2 2

1//1//     (-) (19) 

Thus, we have the average length of time for accommodating the platoon 

x

hx
B





12          (s) (20) 
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Ramp with Metering – Uniform Arrival 

When a ramp has ramp-metering in operation, the output of the metering is the input of the 
queuing system (ramp). This input is in this case a uniform input. The system can be then 
classified as a D/M/1-queuing system for simplification. Despite of the metering, there still will 
be platoon before the merge point if the capacity of the merge point is relatively low. For a 
D/M/1-queuing system, the average queuing length in the on-ramp stream (before the merge 
point) is given by  

)
2

1(
1)1(2

)2(

)1(2

2

1//

x

x

x

x

xx

x

x
xNxL MD 


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





   (-) (21) 

where x is the degree of saturation of the on-ramp. Thus, we have the average length of time for 
accommodating the platoon (the headway in the queuing platoon remains h) 

h
x

x

x
B 


 )

2
1(

11        (s) (22) 

 
We can recognize that B2 is always smaller than B1. That is, the average length of platoon can be 
reduced by ramp-metering. 
 
Ramp with Upstream Signal – Large Platoon Arrival 

When a ramp is located close to an upstream traffic signal, traffic enters the freeway in bunches 
(i.e., large platoons). In this case, the average length of time for accommodating the platoon can 
be calculated by (cf. Figure 4) 

3  [m  Pbunch + N  Pfree + x]  h     (s) (23) 

where Pbunch is the proportion of bunched time, m is the number of bunched traffic flow, and Pfree 
is the proportion of time for free traffic. N can be calculated from an M/M/1 queuing system by 

x

x
N MM 


1

2

1//         (-) (24) 

For normal signalized, not coordinated intersections we have 
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and 
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m

/1/1

/


        (-) (27) 

where qs is the saturation flow rate, c is the cycle length, and r is the red time.  
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Here, only the case for one single movement is considered. However, it can be extended to model 
a more general case with more than one feeding traffic movement based on the same principle. 
 

MODEL APPLICATIONS 

For all the three cases mentioned in the previous section, the freeway flow threshold can be 
obtained implicitly from Equation (16) based on certain PND values. It is noted that these 
threshold values are determined based on the conditions of no-disruption to freeway traffic as 
defined early in this paper. They are not exactly the flow threshold for ramp-metering 
applications. In order to derive the threshold for ramp-metering applications, the relationship 
between freeway breakdown and the probability of no-disruption must be established. Such a 
relationship needs to be verified based on field studies.  
 
The freeway flow threshold is a function of the on-ramp flow rate. The threshold can be easily 
obtained from the graphs developed below. The graphs are developed based on the sample traffic 
characteristics in North America. In General, the value of the flow threshold depends on the 
major flow rate on the freeway, the flow rate of the on-ramp and the predefined probability PND 
for no-disruption. To obtain the practical flow threshold values for ramp-metering, these 
parameters must be calibrated based on field conditions. 
 
Two-lane freeway 

Using the following parameter values and based on the sample traffic characteristics in North 
America: qramp = 700 veh/h, c = 60s and r = 30s, p1 and p2 from Equation (5) and Cramp from 
Equation  (9), the average length (B) of time for accommodating the platoon and the probability 
of no-disruption (PND) for different on-ramp traffic conditions are depicted in Figure 5. 
 
If a required probability of no-disruption PND = 0.8 is predefined, we have a freeway flow 
threshold of 2648 (qramp + qsum = 3348) veh/h for randomly arriving ramp traffic (Figure 5, a), 
3274 (qramp + qsum = 3974) veh/h for uniformly (equivalent to ramp-metering) arriving ramp 
traffic (Figure 5, b), and only 1082 (qramp + qsum = 1782) veh/h for ramp traffic arriving in 
platoons due to upstream traffic signals (Figure 5, c). 
 
Three-lane freeway 

Using the same parameter values as in the case of two-lane freeway (except for p1, p2, and p3 
from Equation (6)), the average length (B) of time for accommodating the platoon and the 
probability of no-disruption (PND) for different on-ramp traffic conditions are depicted in Figure 
6.  
 
Again, if a required probability of no-disruption PND = 0.8 is predefined, we have a freeway flow 
threshold of 4875 (qramp + qsum = 5575) veh/h for randomly arriving ramp traffic (Figure 6, a) 
5932 (qramp + qsum = 6632) veh/h for uniformly (equivalent to ramp-metering) arriving ramp 
traffic (Figure 6, b), and only 1780 (qramp + qsum = 2480) veh/h for ramp traffic arriving in 
platoons due to upstream traffic signals (Figure 6, c).  
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METERING THRESHOLD 

Metering threshold for random on-ramp flow 

In the United States, different flow thresholds have been used for ramp-meriting on freeways. For 
example, Wisconsin uses the flow-to-capacity (q/C) ratio 0.7 for urban and 0.6 - 0.65 for rural 
areas. The capacity C is based on HCM, the flow rate q includes both the on-ramp flow rate and 
the mainline flow rate. Illinois uses occupancy of 11.7% (upstream of meter). Denver uses the 
flow rate, occupancy, and speed, whichever is controlling, and the values are measured 
downstream of meter and must last for 3 consecutive minutes. The threshold for flow rate is 1900 
veh/h/ln (average of all lanes), for occupancy is 20%, and for speed is 35 mph. In general, the 
downstream flow rate or the q/C ratio is considered to be suitable parameters for metering 
control. The occupancy can be considered as a function of the flow rate q. 
 
From the proposed method in this paper, the probability of no-disruption PND as a function of the 
total downstream flow rate qsum+qramp can be estimated. In Figure 7, this functional relationship is 
illustrated. In case of a two-lane freeway (cf. Figure 7, a), the relationship is nearly independent 
of the individual on-ramp flow rate qramp. Thus, for any on-ramp flow rate, the downstream flow 
threshold can be simply defined as a function of the probability of no-disruption. For example, 
using a predefined probability of no-disruption PND = 0.8, the downstream flow threshold is ca. 
3400 veh/h. This correspondents to a lane flow rate of 1700 veh/h/ln and a q/C ratio of 0.74 (for 
C = 2300 veh/h/ln). Unfortunately, for a three-lane freeway, the independence between PND and 
qramp does not exist (cf. Figure 7, b). Thus, for different on-ramp flow rates, different downstream 
flow thresholds must be used if the constant value of PND is predefined. For example, with 
PND = 0.8, the downstream flow threshold varies from 5100 through 5900 veh/h or 1700 through 
1967 veh/h/ln (qramp from 1100 to 500 veh/h). This correspondents to q/C ratios ranging between 
0.74 and 0.85 (for C = 2300 veh/h/ln). On the other hand, if a downstream flow threshold of 1700 
veh/h/ln is used, the value of the probability of no-disruption PND would vary from 0.8 through 
0.91 (cf. Figure 7, b). For simplification, a downstream flow threshold of 1700 veh/h/ln can be 
used both for two-lane and three-lane freeway. In this case, the probability of no-disruption is 
always equal to or greater than 0.8. 
 
Metering threshold for ramp traffic arriving in platoons (upstream signal) 

The probability of no-disruption PND is dependent on the cycle time c and the red time r of the 
upstream signal. As an example for the sample North America conditions, the probability of no-
disruption PND as a function of the total downstream flow rate qsum+qramp is illustrated in Figure 8 
for c = 60s and r = 30s. It can be seen, that the independence between PND and qramp does not 
exist both for the two-lane and the three-lane freeway. With PND = 0.8, the downstream flow 
threshold varies from 1700 through 2300 veh/h/ln or 750 through 1150 veh/h/ln (qramp from 800 
to 500 veh/h) for a two-lane freeway. For a three-lane freeway, the downstream flow threshold 
varies from 1600 through 3900 veh/h or 533 through 1300 veh/h/ln (qramp from 1100 to 500 
veh/h).  
 
Because the thresholds depend strongly on the upstream signal parameters, no general 
recommendations can be made for the metering control. For practical applications, Figure 3 (for 
sample North America conditions) can be used for estimating the downstream flow threshold if 
the average size of platoon B can be measured or estimated prior to the calculation.  
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CONCLUSIONS AND OUTLOOK 

Using the gap-acceptance and queuing theory, the probability of no-disruption caused by on-ramp 
traffic can be evaluated in details. Equations (11), (14), (15), (22), (20), and (23) are the most 
critical elements for the developed models. From these equations, the probability of no-disruption 
for three different on-ramp traffic conditions of a) randomly arriving, b) uniformly arriving 
(equivalent to ramp metering), and c) arriving in platoons (e.g., different size of platoons resulted 
from an upstream signal) can be obtained. From these probabilities of no-disruption, the control 
thresholds of the freeway flow rate can be determined. Furthermore, these probabilities of no-
disruption can also be associated to the bottleneck capacity and safety measures in the merge 
area. The results indicate that ramp-metering significantly enhances the probability of no-
disruption and thus improve the operations and safety for freeways. Another important finding is 
that the effect of upstream signals on the merge operation can be positive or negative, depending 
on the traffic flow level on the freeway. For normal traffic conditions, thresholds of freeway flow 
rate for the case with ramp-metering control are lower than those with upstream signals and 
uncontrolled random arrivals.  
 
Most importantly, the study delivers a theoretical framework for estimating the probability of no-
disruption in the merge area on freeways, thus providing a theoretical basis for determining ramp-
metering threshold values in practice. It is recommended that the models be calibrated based on 
country-specific conditions before being applied in the practice. Furthermore, for every particular 
traffic regulation, the capacity formula (cf. eq.(8)) and the formulae for calculation of the lane 
flow distribution must be carefully calibrated against more field measurements. 
 
As a reference, Figure 7 is useful for estimating downstream flow thresholds for freeways in 
North America with random on-ramp flows. For on-ramp flow under other conditions (e.g. 
upstream signals), Figure 3 can be used in case that the average size of the platoon can be 
measured or estimated prior to the calculation. 
 

REFERENCES 

1. Cassidy, M.J., and Bertini, R.L. (1999). Some Traffic Features at Freeway Bottlenecks. 
Transportation Research, B 33, pp. 25-42. 

2. Elefteriadou, L., Roess, R.P., and McShane, W.R. (1995). Probabilistic Nature of 
Breakdown at Freeway Merge Junctions. Transportation Research Record, 1484, pp. 80-
89. 

3. Persaud, B., Yagar, S., and Brownlee, R.( 1998). Exploration of the Breakdown 
Phenomenon in Freeway Traffic. Transportation Research Record, 1634, pp. 64-69. 

4. Persaud, B., Yagar, S., Tsui, D., and Look, H. (2001). Breakdown-Related Capacity for 
Freeway with Ramp Metering. Transportation Research Record, 1748, pp. 110-115. 

5. Brilon, W., J. Geistefeldt, and M. Regler (2005). Reliability of Freeway Traffic Flow: A 
Stochastic Concept of Capacity. Proceedings of the 16th International Symposium on 
Transportation and Traffic Theory, pp. 125 – 144, College Park, Maryland, USA. 

6.  Trupat, S. (2001). Prinzip und Wirksamkeit von Zuflussregelungsanlagen an 
hochbelasteten Autobahnzufahrten (Principle and efficiency of ramp metering on high 
volume freeway entries). Strassverkehrstechnik, No. 9.  

7.   Cowan R.J. (1975). Useful headway models. Transportation Research, 9/6, 371-375. 



Wu and  Tian 

   12

8.  Tanner, J.C. (1962). A theoretical analysis of delays at an uncontrolled intersection. 
Biometrica, 49, 163-170. 

9. Wu, N. (2006). Equilibrium of Lane Flow-Distribution on Motorways. Transportation 
Research Record, 1965 (06-0287). TRB, National Research Council, Washington, D.C. 

10.   Harders, J. (1968). Die Leistungsfähigkeit nicht signalgeregelter städtischer 
Verkehrsknoten (Capacity of unsignalized urban intersections). Schriftenreihe Straßenbau 
und Straßenverkehrstechnik, No. 76.  

11.  Siegloch, W. (1973). Die Leistungsermittlung an Knotenpunkten ohne 
Lichtsignalsteuerung (Capacity calculations for unsignalized intersections). Schriftenreihe 
Strassenbau und Strassenverkehrstechnik, No. 154. 

12.  Wu, N. (2001). A Universal Procedure for Capacity Determination at Unsignalized 
(priority-controlled) Intersections. Transportation Research, B 35, Issue 3. 

13. Troutbeck R.J. (2002). The performance of uncontrolled merges using a limited priority 
process. Proceedings of the 15th International Symposium on Transportation and Traffic 
Theory (Taylor, Ed), Adelaide, Australia. 

14. Grossmann. M. (1991). Methoden zur Berechnung und Beurteilung von 
Leistungsfähigkeit und Verkehrsqualität an Knotenpunkten ohne Lichtsignalanlagen 
(Methods for calculation and judgement of capacity and traffic quality at intersections 
without traffic signals). Schriftenreihe Lehrstuhl für Verkehrswesen Ruhr-Universität 
Bochum, No. 9. 

15. FGSV (2001). Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS 2001, 
German HCM). Forschungsgesellschaft für Straßen- und Verkehrswesen (ed.), Nr. 299, 
FGSV Verlag GmbH, Köln. 

16. TRB (2000). Highway Capacity Manual. National Research Council, Washington D.C. 
17. Kleinrock, L. (1975). Queueing Systems. Volume I+II: Theory. John Wiley & Sons, New 

York. 
 



Wu and  Tian 

   13

List of Tales and Fiqures 

 

 

FIGURE 1 - Three different cases of disruption in major stream (here we use h=gap=headway) 

FIGURE 2 - Lane flow (volume) distribution for typical freeways in North America: a) two-lane 
freeway (Regression: eq.(5), 15-min-Intervals), b) three-lane freeway (Regression: eq.(6), 20-
sec-Intervals) 

FIGURE 3 - Total probability of no-disruption (Psum = PND) as a function of parameter B for 
typical freeways in North America: a) two-lane freeway, b) three-lane freeway 

FIGURE 4 - Output behind a traffic signal 

FIGURE 5 - Average length (B) of time for accommodating the platoon and probability of no-
disruption (PND) for a typical two-lane freeway in North America: a) randomly arriving ramp 
traffic, b) for uniformly (equivalent to ramp metering) arriving ramp traffic, c) ramp traffic 
arriving in platoons (e.g., different size of platoons resulted from an upstream signal) 

FIGURE 6 - Average length (B) of time for accommodating the platoon and probability of no-
disruption (PND) for a typical three-lane freeway in North America: a) randomly arriving 
ramp traffic, b) for uniformly (equivalent to ramp metering) arriving ramp traffic, c) ramp 
traffic arriving in platoons (e.g., different size of platoons resulted from an upstream signal) 

FIGURE 7 - Total probability of no-disruption (PND= Psum) in case without metering as a function 
of the total downstream flow rate qsum+qramp for typical freeways in North America: a) two-
lane freeway, b) three-lane freeway 

FIGURE 8 - Total probability of no-disruption (PND= Psum) for ramp traffic with upstream signal 
as a function of the total downstream flow rate qsum+qramp for ramp traffic arriving in platoons 
for typical freeways in North America (c=60s, r=30s): a) two-lane freeway, b) three-lane 
freeway 
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FIGURE 1 - Three different cases of disruption in major stream (here we use 

h=gap=headway) 
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FIGURE 2 - Lane flow (volume) distribution for typical freeways in North America: a) two-

lane freeway (Regression: eq.(5), 15-min-Intervals), b) three-lane freeway (Regression: 
eq.(6), 20-sec-Intervals) 
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FIGURE 3 - Total probability of no-disruption (Psum = PND) as a function of parameter B for 

typical freeways in North America: a) two-lane freeway, b) three-lane freeway 
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FIGURE 4 - Output behind a traffic signal 
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no-disruption (PND) for a typical two-lane freeway in North America: a) randomly arriving 
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FIGURE 6 - Average length (B) of time for accommodating the platoon and probability of 

no-disruption (PND) for a typical three-lane freeway in North America: a) randomly 
arriving ramp traffic, b) for uniformly (equivalent to ramp metering) arriving ramp traffic, 

c) ramp traffic arriving in platoons (e.g., different size of platoons resulted from an 
upstream signal) 
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FIGURE 7 - Total probability of no-disruption (PND= Psum) in case without metering as a 
function of the total downstream flow rate qsum+qramp for typical freeways in North America: 

a) two-lane freeway, b) three-lane freeway 
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FIGURE 8 - Total probability of no-disruption (PND= Psum) for ramp traffic with upstream 
signal as a function of the total downstream flow rate qsum+qramp for ramp traffic arriving in 

platoons for typical freeways in North America (c=60s, r=30s): a) two-lane freeway, b) 
three-lane freeway 


