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Abstract: Optimization of signal timing plans is normally based on operation 
research methods. In this paper, a new optimization technique is introduced. As a 
basic idea, the signal timing plan is considered as an analogy to a construction 
structure. Therefore, all of the basic concepts and methods of the structural analysis 
can be used for solving the optimal timing of the signal timing plans. The only 
difference compared to the conventional structural mechanics is the non-linear 
"elasticity" of the signal timing plans. As an objective function of the optimization, 
either the sum of delays or the fuel consumption or other variables like air pollutants 
can be used. For the solution of this equilibrium problem, algorithms from structural 
engineering can be applied. These algorithms are very efficient in term of 
computation converge very quickly. Therefore, rather complex intersection 
structures can be optimised with quite short computer times. Also an on-line rolling 
optimization of signal timing plans with measured traffic flows can easily be 
realised. This technique is proven to be very effective for practical applications. The 
new method is capable of extending the optimization from single intersections 
(including optimization of the cycle time) to network of traffic signals and to traffic-
actuated controllers.  
Keywords: Signalized intersection, Optimization of signal timing plans, delays at 
traffic signals 
  
1 Introduction 

Optimization of signal timing plans is a frequently discussed topic in traffic 
engineering. Optimization means, above all, minimization of the sum of delays. 
Webster was the first one to formulate an analytical solution for minimization of the 
sum of delays for a two-stage traffic signal in 1958 (Webster, 1958). Using some 
simplifications, he was able to give the optimum cycle time and the optimum stage 
green times. Since then, numerous papers have been published on theoretical 
analyses and practical applications of signal timing optimizations. In the field of 
theoretical researches, publications from Allsop (1971, 1992) and Tully (1976) 
should be mentioned at the first place. Concerning the practical applications of signal 
timing optimization, different models and computer programs were developed. The 
most among them are e.g. the AMPEL program package in German-speaking 
countries and the SIGSIGN package (Silcock and Sang, 1990) from Great Britain.  

 



The existing procedures for signal timing optimization can be distinguished into 
two groups: stage-oriented optimization and signal-group-oriented optimization. 
Most of the previous authors first treated the stage-oriented optimization due to its 
simple applicability. This simple applicability was necessary and made sense, since 
traffic signals were stage-oriented themselves until the seventies. Due to 
development of modern signal controllers, signal groups can nowadays be controlled 
individually. Thus, an optimization which takes into account the green time and 
traffic characteristics of each individual signalized movement at the intersection, 
becomes necessary.  

 
Most of the existing models for signal-group-oriented optimization were based 

on the theory of "Operations Research" (OR method) or on "Trial and Error" 
methods. Since the maximization of capacity is a linear optimization problem, it can 
easily be handled with OR methods. The minimization of the sum of delays, 
however, is a non-linear problem. Here, most of the current methods are based on 
numeric solutions. These numeric solutions are normally quite time-consuming and 
can, therefore, only be used for off-line calculations of signal timing plans.  

 
This paper presents a new optimization model in which the signal timing plan is 

treated as a mechanical system and its optimization is achieved by determining the 
state of equilibrium of the mechanical system. The optimization, i.e. the state of 
equilibrium, is determined using the so-called moment distribution method from 
Cross (cf. Beaufait, 1972) in classical structure mechanics. In this mechanism the 
connections (connection between two or more signal groups) of signal groups 
(=constraints of the structure) are used as the variables for the optimization in place 
of the green times. Thus, the free degrees of the system can be drastically reduced. 
Since this procedure is very efficient (because of less free degrees) and since all 
characteristic information of the signal timing plan is passed on with every further 
step of optimization, this optimization procedure is particularly suitable for a 
dynamic optimization, i.e. for an on-line optimization (adaptive control) of signal 
timing plans. The principle of the new model can also be transferred to optimizing 
large scaled, coordinated networks.  

 
This paper is the partial result of a project sponsored by the German Research 

Community for a two year period.  
 

2 The Signal Timing Plan as a Mechanical System  
In the theory of elasto-mechanics (cf. Lehmann 1979), Dirichlet formulated the 

theorem on the minimum of total potential in stable equilibrium:  
 

If a system is in a state of stable equilibrium, the total potential (or total 
potential energy) of this system has its minimum value 

 
Normally, one of several possible local minima of the total potential in the 

mechanical system can be determined if the corresponding state of equilibrium is 
ascertained. If one compares the objective function (e.g. sum of delays) for the 



optimization of a signal timing plan with the total potential of a mechanical system, 
the minimization of the objective function can be achieved by transferring the signal 
timing plan into the "state of equilibrium".  

 
Figure 1 shows a basic element of a signal timing plan and a basic element of a 

mechanical spring system. It demonstrates that, in analogy to mechanics, the green 
time can be described as an elastic spring.  

 

 
 

Figure 1. Comparison between a green time and a spring  
 
Denote B the demand for more green time in a signal group. With increasing 

green time, the capacity is increased and the delay W is reduced. Therefore, B can be 
defined as the conservative force of the potential function W. Thus, Β is the 
derivative of W towards G, i.e. B=W′(G).  

 
Therefore, the following analogies between the two elements can be 

established:  
 

 Green time Spring system 
 

 Duration of the green time G Length of the spring x 
 Cycle time C Length in original state l 
 Traffic volume q Specific elasticity k 
 Delay W Potential U 
 Green time demand B Spring force F 
 Slope of B M Stiffness coefficient K 
 Point of reference G0 Point of reference x0 

 
G0 or x0 are the points of reference, at which the potential (W or U) is defined as 

zero. They are chosen so that the force F and the "green time demand" B is zero. 
That is,  
 
 G0 = C     (or G0 = ∞) x0 = l 



 
It is true 

 
 B = f(q,G,C) F = f(k,x,l) 
 W = f(q,G,C) U = f(k,x,l) 
 M = f(q,G,C) K = f(k,x,l)   , 

 
where f is the abbreviation for "function". It can be seen that 
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With the Eq. (1) and (2) we are able to transform a problem of investigating the 

maximum (or minimum) of the potential function (objective function) into a problem 
of investigating the equilibrium of the corresponding virtual forces and vice versa. 
Under some conditions we want to investigate the maximum (or minimum) of the 
potential function for achieving the equilibrium of the virtual forces and under other 
conditions we want to investigate the equilibrium of the virtual forces for achieving 
the maximum (or minimum) of the potential function.  

 
Figure 2 schematically shows the typical curves of the delay W and the green 

time demand B of a signal group in analogy to the potential U and the spring force F 
of a spring system. Both have the same characteristics as following:  
 (1) B and F are monotonically falling, i.e.: f′(G)<0 
 (2) W and U are strictly convex, i.e.: f′′(x)>0 

 



 
 

Figure 2. Characteristics of a green time and a spring  
 
The second characteristic is sufficient but not necessary for the existence and 

uniqueness of an optimum solution and for the convergence of the optimization 
procedure.  

 

 
Figure 3. Signal timing plan with two incompatible and competing signal groups 

 
According to the analogy defined above, every signal timing plan can 

considered as a mechanical system of springs. The springs can be linked in a serial 
way, one after another, or in a parallel way, side by side. The arrangement of such 
spring systems (analogy to signal groups in a signal timing plan) can be defined by 
the sequence of stages and by the restrictions (intergreens etc.)  



 
The simplest example in this analogy is a signal timing plan with two 

incompatible and competing signal groups. Figure 3 shows this example. Here G1 
and G2 are the green times of the two signal groups, tz12 and tz21 are the intergreens 
between the signal groups, and C is the cycle time. Respectively, the spring system 
can be described by x1, x2 (length of the springs), l12, lz21 (inflexible connections 
between the springs) and L (total length of the spring system).  

 

 
 

Figure 4. Simplified intersection with 6 signal groups 
 



Figure 4 depicts a simplified intersection with 6 signal groups as a realistic 
example. The signal timing plan shows that the signal groups in a stage have not 
always the same length. For example, the signal group K1 has extended beyond the 
stage area and has displaced the green time of signal group K5. However, the signal 
timing plan is defined by the restriction of intergreens. Due to those restrictions, this 
signal plan can be described as a mechanical system with 6 springs.  

 
This spring system contains serial as well as parallel connections between the 

springs (signal groups). The force of the springs makes the mechanical system strive 
for the equilibrium by itself, and thus achieves the minimum total potential (sum of 
delays). The task of optimizing the signal timing plan has therefore become a task of 
determining the state of equilibrium of the corresponding mechanical system.  

 
The determination of the state of equilibrium requires the knowledge of the 

given structure of the signal plan. The optimum signal timing plan can be found by 
checking all possible signal plan structures and finding out the optimum structures 
(stages and stage orders) with respect to the objective function. The possible signal 
timing plan structures can be listed e.g. according to the procedure by Tully (1976). 
In this paper, this procedure is not discussed in further detail. The structure of the 
signal timing plan is considered as predefined.  

 
It can be proven mathematically that the objective function (the potential 

function U or the delay function W) has exact one minimum, if it is strictly convex in 
the considered interval (Allsop, 1992). Since the functions which are defined as the 
potential (delay etc.) during the optimization of the signal timing plan fulfil this 
condition, it can be assumed that a unique solution for the optimization of the signal 
timing plan can be found. Also by some non-convex functions the unique 
optimization can be found (Wu, 1999).  
 
3 Objective Functions and Equilibrium Conditions for Minimization of the Sum of 
delays 

With given traffic volumes and boundary conditions, the objective of the 
optimization is to obtain the cycle time and the corresponding green times by 
minimizing the sum of delays over all signal groups. The function for the delay 
calculation is used as the potential function. The objective function for the 
minimization of the sum of delays is 
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The force function of the signal group Fi  (=green time demand Bi ), of which 

the equilibrium is to be found, is 
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The stiffness coefficient of the signal group Ki (=Mi) is respectively  
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The parameters in Eq. (3) are  

 n  = number of signal groups   
 Gi  = green time of the signal group i 
 C  = cycle time 
 W(qi, Gi ,C) = w(qi,Gi ,C) ⋅ qi 
   = delay of signal group i 
 w(qi ,Gi ,C) = average delay per vehicle of signal group i 
 qi  = traffic volume of signal group i 

 
The boundary conditions for the optimization are 

 a) Gi > Gi,min    
 b)   Cmin < C < Cmax 
with   
 Gi,min = predefined minimum green time for signal group i 
 Cmin   = predefined minimum cycle time 
 Cmax   = predefined maximum cycle time 
and in case of stationary traffic 
 c)   si ⋅ Gi > qi ⋅ C 
with si = saturation flow of signal group i 

 
If a delay formula defined for temporary over-saturations (e.g. Akcelik, 1980 or 

Wu, 1990) is used, the boundary condition c) can be omitted.  
 
Furthermore,  

 d) all boundary conditions which are necessary to ensure safe traffic 
operations, e.g. intergreens, restricted overlap of green time for 
permitted left turns, parallel pedestrian crosswalks with permitted 
right or left turners etc. (for German conditions cf. FGSV, 1992, 2003) 

must be hold. 
 

All common delay formulae (Webster, 1958; Miller, 1968; Akcelik, 1980; 
Kimber and Hollis, 1979; Wu, 1990 etc.) for W(qi ,Gi ,C) fulfil the convex condition 
over the interval (0,C) because 
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The optimization of the objective function (Eq. (3)) can be carried out for the 

optimum distribution of green times Gi,opt with a fixed cycle time C. In addition, also 
the cycle time C can be optimized.  
 
4 Determination of the Equilibrium for the Optimization Procedure 

According to the principle of virtual work from Dirichlet (cf. Lehmann, 1979)  
 

A mechanical system is in its equilibrium only if the virtual change of the 
total potential for any virtual displacements is equal to zero, that is 
 

 δUg = ΣδUi = 0  
 
For a mechanical system with n degrees of freedom, Dirichlet's theorem 

corresponds to  
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with  xi = coordinates of the i-th degree of freedom 
 
Eq. (7) is nothing else but the condition of equilibrium of the conservative 

forces. If all forces Fi of this mechanical system are proportional to the coordinate xi 
- as in a real spring system - a solution for the equation system Eq. (7) can be found 
for every force Fi and all coordinates. Unfortunately, the virtual forces (green time 
demand Bi) of a signal timing plan with Eq. (3), (4) and (5) as the potential function 
(objective) do not fulfil this condition of linearity. Most of the delay formulae are 
functions of higher orders. Some even contain transcendental functions. An 
analytical solution of Eq. (7) is therefore very difficult or even impossible to find. Up 
to now, optimization procedures with the sum of delays as the objective function 
have been carried out only numerically with an enormous calculation effort.  

 
The state of equilibrium of a mechanical system can also be ascertained 

iteratively. One of the well-known procedures is the moment distribution method 
from Cross (cf. Beaufait, 1972) which is based on the stiffness method. This 
procedure can be explained by Figure 5a.  

 



   
 

Figure 5. Principle of the moment and force distribution method 
 
Figure 5a shows the structure of a bridge. The bending moments of the beam 

near the columns are to be determined. The degrees of freedom of this mechanical 
system are the slope deflections of the beam at both columns. First, these two slope 
deflections are fastened in their original state by fictitious constraints. Putting weight 
on the beam causes a surplus of bending moments (M2-M1, M3-M2), which is 
fictitious as well. The bending moments are in a state of imbalance. To determine the 
state of equilibrium, the constraints are released alternately, i.e.:  

(1)  Constraint I is released first while constraint II stays fastened. Constraint I 
turns as an effect of the surplus of the bending moments M2-M1. When this 
surplus is distributed, the bending moments at constraint I have achieved the 
state of equilibrium again. The constraint I is fastened again. As a 
consequence of the turning movement at constraint I, constraint II gets a 
new surplus of bending moments.  

(2) Then constraint II is released while constraint I stays fastened. Constraint II 
turns as an effect of the surplus of the bending moments M3-M2. When this 
surplus is distributed, the bending moments at constraint II achieve their 
state of equilibrium. Constraint II is fastened again. As a consequence of the 
turning movement of constraint II, constraint I gets a new surplus of 
bending moments.   

(3)  Steps 1 and 2 are repeated. 
 
The bending moments at the constraints are alternately set into the state of 

equilibrium. The surplus of the bending moments decreases as the number of 
iterations increases. The iteration is stopped when the surplus of the bending 
moments has become small enough for practical application at all constraints. This 
method is also called the moment-distribution procedure. It can be used for a system 
with any number of constraints. All constraints are repeatedly released and fastened 
until all of them have achieved the state of equilibrium.  

 



The state of equilibrium of a mechanical spring system can be determined 
analogously (cf. Figure 5b). Instead of the surplus of the bending moments Mi, the 
surplus of the spring forces at the connections Fi is distributed. The connections are 
first fastened and then released alternately (which causes horizontal displacements). 
Then they are fastened until the surplus of the spring forces (F2-F1, F3-F2) falls 
below a certain minimum at the connections. This procedure can be called the force-
distribution procedure.  

 
The force-distribution procedure does not start with the determination of the 

state of equilibrium for the total system, but with that of the individual constraints. In 
a signal timing plan as an analogy to a system of springs, the constraints are clearly 
defined by the restrictions of the signal timing plan (intergreens, permitted left 
turners or minimum green times etc.). Thus, a system with n springs (analogue to n 
signal groups) is simplified as a system with m constraints. In most of cases, m is 
always smaller than n. The example in Figure 4 has n = 6 signal groups, but only 
m = 3 constraints if the cycle time is fixed. If the cycle time C is regarded as a 
variable as well, this example has m = 4 constraints.  

 

   
 

Figure 6. Optimization results for 7 intersections 
 
The new procedure was tested at 7 intersections in Düsseldorf, Germany. The 

local authorities provided the existing signal timing plans. The existing signal times 
were used as a basis for the optimization. The result is presented in Figure 6. It 



shows that the signal timing plans, some of which were several years old and for 
which the traffic volumes have undoubtedly changed in the meantime, need to be 
improved. The intersections 2 and 7 were controlled by so-called advanced signals. 
Here, the green times of some movements were intentionally restricted to limited 
capacity (capacity < demand) with the purpose of keeping congestion out of the city 
area. Therefore, the before/after comparison is irrelevant for these two intersections. 
For the other 5 intersections, improvements could be achieved. The significant 
improvements at intersections 4 and 6 are results of overloaded left turning traffic 
streams.  

 
5 Conclusion and outlook 

The optimization procedure for a signal timing plan according to the principle 
of equilibrium has the following advantages compared to the existing procedures:  
 - Fast computation due to reduction of variables (in place of number of signal 

groups n the number of constraints m is used). An optimization procedure for 
a fixed-time controlled standard intersection normally takes less than 1s. 

 - Minimum work before the optimization (only the signal timing plan and the 
corresponding intergreens and the traffic volumes are needed). 

 - Applicable for any convex objective functions. 
 - Continuity of the signal timing plan during the optimization (the signal timing 

plan is not produced totally anew but is only developed in an innovative 
way). 

 - Dynamic character (adaptation to changed traffic volumes, minimum green 
times etc. is possible during optimization). 

 - The procedure can be influenced manually (new definition of green times, 
reduction of cycle time etc.).  

 
Regarding the general theoretical background, this procedure can also be easily 

transferred to the following traffic control strategies:  
 - Signal timing control with consideration of pedestrian delays 
 - Signal timing control with special stages for public transport 
 - Adaptive signal timing control  
 - Coordinated signal timing control in networks 
 

In the future, the new model will be formulated in details.  
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