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Estimating Distribution Function of Critical Gaps  
at Unsignalized Intersections Based on Equilibrium of Probabilities 

 
 
 
ABSTRACT 
 
Critical gap is an important parameter for capacity analysis at unsignalized intersections. This 
parameter is stochastically distributed and it cannot be obtained directly by field measurements. 
Thus, many procedures for estimating the critical gap were developed based on different 
theories. In an early work of the author, a new model the estimation of critical gaps at 
unsignalized intersection was introduced. Using equilibrium of probabilities for rejected and 
accepted gaps, a model for estimating the critical gap and its empirical distribution was 
established. The model did not require any presumptions regarding the distribution function of 
critical gaps and the driver behaviors. The result of the new model is an un-parameterized 
empirical distribution of critical gaps. The mathematical function of the critical gaps was not 
required in advance. 
 
This paper presents a solution accounting for different predefined distribution functions of 
critical gaps. Using regression analysis two distribution functions a) log-normal distribution and 
b) Weibull distribution are calibrated to the empirical distribution of critical gaps. The result of 
this paper shows, that the Weibull distribution is the better one representing the distribution of 
critical gaps.  
 
 
Keywords: Unsignalized Intersection, Critical Gap, Distribution Function 
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Estimating Distribution Function of Critical Gaps  

at Unsignalized Intersections Based on Equilibrium of Probabilities 
 
 
1 INTRODUCTION 
 
Critical gap is an important parameter for capacity analysis at unsignalized intersections. This 
parameter is stochastically distributed and it cannot be obtained directly by field measurements. 
The estimation of critical gaps at unsignalized intersections from traffic observation is one of the 
most challenging tasks in the traffic engineering science. For estimating the critical gaps, 
statistical models or procedures are required. There exist many different models for estimating 
critical gaps. Among them the models of Siegloch (1), Raff et al. (2), Harders (3), and Troutbeck 
(4) are the most important. In the practice - for unsaturated conditions - the most common 
models are that of Raff et al. (2) and Troutbeck (4).  
 
Brilon et al. (5) gave an overview of the most important models. Using microscopic simulations, 
they also conducted an assessment of those models. They found that the model of Troutbeck (4) 
gives the best results. Thus, this model was recommended for estimating the critical gaps in 
many standard manuals for traffic engineering (6,7,8,9,10).  
 
The model of Troutbeck (4) is a microscopic model. That is, single values of the measured gaps 
are used in the model. The model is based on the theory of Maximum Likelihood Estimation. 
However, in this model, two presumptions are required: a) a log-normal distribution for critical 
gaps and b) a homogeneous and consistent behavior of the drivers. That means the rejected gaps 
need to be smaller than the accepted gaps and only the maximum rejected gap and the accepted 
gap of single vehicles can be used pairwise. Data pairs with rejected gaps being larger than 
accepted gaps cannot be used at all. In some cases, more than 50% of the measured gaps cannot 
be used. This is a huge waste of collected data. 
 
Such presumptions are disadvantages of the model. Furthermore, the model of Troutbeck (4) is 
very complicated and its results are not very robust. This model also requires a large sample size 
for establishing stable results. 
 
In an early work of the author, a totally new model for estimating the critical gap was presented 
(11). The theoretical background of this new model is the probability equilibrium between the 
rejected and the accepted gaps. The equilibrium is established macroscopically from the 
cumulative distributions of the rejected and accepted gaps. It turns out that the model from the 
macroscopic equilibrium is more appropriate for estimating critical gaps. The new model yields 
similar results as that from Troutbeck's model if the same sample data are used. More 
importantly, the new model yields directly the empirical distribution of critical gaps. The new 
model does not require any predefined assumptions and it is easy to use. This new model has 
already found broad applications in different countries, such as in Germany, Spain, Canada, the 
Netherlands, and the United States. However, from the new model the mathematical function of 
critical gaps cannot be estimated explicitly. 
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This paper introduces a solution accounting for different predefined distribution functions of 
critical gaps. Using regression analysis two distribution functions a) log-normal distribution and 
b) Weibull distribution are calibrated to the empirical distribution of critical gaps. The result of 
this paper shows, that the Weibull distribution is the better one representing the distribution of 
critical gaps. 
 
2 MODEL DESCRIPTION AND APPLICATIONS 
 
2.1. The method of Raff and Troutbeck 
Let Fr(t) and Fa(t) be the probability distribution functions (PDFs) of rejected and accepted gaps, 
respectively. Then Fr(t) and Fa(t) can be obtained empirically by in situ measurements. Thus, the 
observed probability that a gap of length t is rejected is Fr(t), and that it is not rejected is 1 - Fr(t) 
and the observed probability that a gap of length t is accepted is 1 - Fa(t), and that it is not 
accepted is Fa(t).  
 
More than fifty years ago, Raff (2) introduced a macroscopic model for estimating the critical 
gap. He defined the critical gap tc as the value of t where the functions 1 - Fr(t) and Fa(t) 
intersect. That is, the value t at which 

 )(1)( tFtF ra           (1) 

is defined as the estimated critical gap tc. Obviously, the critical gap tc is only defined if the 
overall minimum accepted gap amin is smaller than the overall maximum rejected gap rmax. 
Otherwise the functions 1 - Fr(t) and Fa(t) do not intersect at all. 
 
Raff's method was used in many countries in earlier years. Because of its simplicity, it is still 
being used today in some research projects. 
 
Troutbeck (4) gave a procedure for estimating critical gaps based on the Maximum Likelihood 
technique. This model is a microscopic model. In this model only the maximum rejected gaps 
which are larger than the corresponding rejected gaps can be taken into account. Thus, for an 
accepted gap a, there is only a corresponding rejected gap r under consideration. Denote the PDF 
of critical gaps to be estimated by Ftc(t), the likelihood that a driver's actual critical gap is 
between a and r is given by Ftc(a) - Ftc(r). The likelihood L* with a sample of n observed drivers 
is  

  



n

i
tctc rFaFL

1

* )()(         (2) 

 
If the PDF of the critical gaps, Ftc(t), is given, the parameters and of the PDF can be obtained by 
maximizing the likelihood L*. In the practice, the log-normal distribution is often used as the 
PDF of the critical gaps. Furthermore, as model assumptions, the driver behavior has to be both 
homogeneous and consistent. Normally, the maximization of the likelihood L* can only be done 
using numerical and iteration techniques (cf. Troutbeck (4)).  
 
The maximization of the likelihood L* delivers only solutions if the overall minimum accepted 
gap amin is smaller than the overall maximum rejected gap rmax. Otherwise is the mean critical 
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gap tc between amin and rmax and the maximization of the likelihood L* is not defined. In this case 
the maximization delivers always the value zero for the standard deviation tc of the distribution 
Ftc(t). Then the skewness of the distribution is also zero and the mean critical gap can be 
approximately calculated as tc = (amin + rmax)/2.  
 
2.2. The model based on the macroscopic probability equilibrium 
The author has introduced a new model based on the macroscopic probability equilibrium of the 
accepted and rejected gaps (11). The model was established as follows. 
 
According to the PDFs of the accepted (Fa(t)) and rejected (Fr(t)) gaps, the observed probability 
that a gap of length t is accepted is 1 - Fa(t) and that it is "not-accepted" is Fa(t). And the 
observed probability that a gap of length t is rejected is Fr(t) and that it is "not-rejected" is 1 -
 Fr(t). In general, we have Fr(t) ≠ 1 - Fa(t) and 1 - Fr(t) ≠ Fa(t) because an accepted gap in the 
major stream may not have the exact length of the actual critical gap. In fact, an accepted gap is 
always larger than the actual critical gap at that specific time instance. The actual critical gap is 
statistically distributed and can vary from time to time according to a certain distribution. An 
accepted gap can be larger or smaller than the mean critical gap. 
 
Denote the PDF of critical gaps to be estimated by Ftc(t), then the probability Pr,tc(t) that a gap of 
length t in the major stream would be rejected is Ftc(t), and the probability Pa,tc(t) that it would be 
accepted is 1 - Ftc(t). 
 
Considering the observed probability of both acceptance and rejection, we have the probability 
equilibrium 
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Equation (3) can be rewritten in the following matrix form: 
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That is exactly the description of the equilibrium state of the probabilities Pa,tc(t) and Pr,tc(t) as a 
Markov Chain. In this formulation  
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is the state vector and  
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the transition matrix. The boundary condition 1)()( ,,  tPtP tcrtca  holds. 

 
With Pr,tc(t) = Ftc(t) and Pa,tc(t) = 1 - Ftc(t), equation (4) yields 
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Solving equation (5) yields the PDF Ftc(t) of the critical gaps:  
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The PDF Ftc(t) is always between Fr(t) and Fa(t) (see FIGURE 1).  
 
It should be noted that also here this distribution is only explicitly defined, from the point of 
view of all vehicles, between the overall minimum accepted gap amin and the overall maximum 
rejected gap rmax with aminrmax. For tc  amin is Ftc(t) = 0 and for tc ≥ rmax is Ftc(t) = 1. In case of 
amin>rmax the mean critical gap can be approximately calculated as tc = (amin + rmax)/2.  
 
According to Raff's definition for the critical gap (eq. (1)) we have 
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This means that the critical gap estimated from Raff's method is the median value not the mean 
value of the critical gap.  For lognormal-distributed critical gaps, the median value is always 
smaller than the mean value. That means Raff's method underestimates the critical gap and thus 
overestimates the corresponding capacity.  
 
The new model has a solid theoretical background (in terms of the Markov Chain and 
equilibrium of probabilities) and robust results. It is also independent of any model 
presumptions. It requires neither predefined distribution function of critical gaps nor the 
consistency nor the homogeneity of driver behaviors. This model can take into account all 
relevant gaps (not only the maximum rejected gaps as is the case of the Troutbeck model (4) and 
yields the empirical PDF of the critical gaps directly. Also the limitation that a rejected gap must 
be smaller than an accepted gap is not more necessary. The calculation procedure of the model is 
simple and it needs no iteration. 
 
In particular, the property of the new model that all rejected and accepted gaps including 
accepted gaps which are smaller than the rejected gaps can be taken into account makes the 
major difference between the new model and the most used model of Troutbeck (4). If only the 
maximum rejected gaps with corresponding accepted gaps larger than the rejected gaps are used 
for estimating the critical gaps, the new model gives similar results (deviations smaller than 0.2s) 
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for the mean critical gaps as those from Troutbeck (4). If all gaps are used, the estimated mean 
critical gaps are usually smaller. 
 
For implementing the new model, a useful calculation procedure was recommended. This 
procedure can be easily implemented into a Spreadsheet (for example, EXCEL or QuatroPro). 
The procedure is described as follows: 

1. insert all measured and relevant (according to whether all or only the maximum rejected gaps 
with corresponding accepted gaps larger than the rejected gaps are taken into account) gaps t 
in the major stream into the column 1 of the spreadsheet 

2. mark the accepted gaps with "a" and the rejected gaps with "r" in column 2 of the 
spreadsheet respectively 

3. sort all gaps (together with their marks "a" and "r") in an ascending order 

4. calculate the accumulate frequencies of the rejected gaps, nrj, in column 3 of the spreadsheet 
(that is: for a given row j, if mark="r" then nrj=nrj+1 else nrj=nrj , with nr0=0) 

5. calculate the accumulate frequencies of the accepted gaps, naj, in column 4 of the spreadsheet 
(that is: for a given row j, if mark="a" then naj=naj+1 else naj=naj, with na0=0) 

6. calculate the PDF of the rejected gaps, Fj(r), in column 5 of the spreadsheet (that is: for a 
given raw j, Fj(r)=nrj/nmax with nmax=number of gaps) 

7. calculate the PDF of the accepted gaps, Fa(tj), in column 6 of the spreadsheet (that is: for a 
given raw j, Fa(tj)=naj/nmax with nmax=number of all gaps)  

8. calculate (according to equation (6)) the PDF of the estimated critical gaps, Ftc(tj), in column 
7 of the spreadsheet (that is: for a given raw j, Ftc(tj)=Fa(tj)/[Fa(tj)+1-Fr(tj)] 

9. calculate the frequencies of the estimated critical gaps, ptc(tj), between the raw j and j-1 in 
column 8 of the spreadsheet (that is: ptc(tj)=Ftc(tj)-Ftc(tj-1))  

10. calculate the class mean, td,j, between the raw j and j-1 in column 9 of the spreadsheet (that is: 
td,j=(tj+tj-1)/2)  

11. calculate the mean value and the variance of the estimated critical gaps (that is: 
(tc,mean=sum[ptc(tj) td,j] and =sum[ptc(tj)  td,j

2] - (sum[ptc(tj)  td,j])
2) 

 
This calculation procedure ensures a monotonic ascending PDF for the critical gaps. 
 
In FIGURE 2, an example of the procedure for estimating the critical gap with a spreadsheet is 
illustrated.  
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In FIGURE 3 and FIGURE 4, the results of two examples are presented (data: Weinert (12)). In 
these calculations, only the maximum rejected gaps are used for comparability to the model of 
Troutbeck (4). It can be recognized that the mean values of the critical gaps tc are similar from 
both models. Also, the PDF estimated from the new model are comparable to the predefined 
PDF (log-normal) from Troutbeck's model. This indicates that the predefined log-normal 
distribution in Troutbeck's model is suitable for describing the distribution of critical gaps. 
However, the log-normal distribution does not represent the empirical distributions perfectly. It 
can be seen in the following section, that the Weibull distribution is a better one for representing 
the distribution of critical gaps.  
 
In Figure 5 and Figure 6, the results for the same examples but using all rejected and accepted 
gaps are presented. It can be seen that the mean values of the critical gaps tc are smaller 
compared to the results in Figure 3 and Figure 4. The average difference is about 15%. To 
demonstrate this effect clearly, the resulted PDF for both cases are illustrated together in Figure 7 
and Figure 8.  
 
 
3 ESTIMATION OF THE DISTRIBUTION FUNCTION OF CRITICAL GAPS 
 
Using the empirical estimated distributions in Figure 7 and Figure 8, two different distribution 
functions can be calibrated by conducting non-linear regression analysis. The distribution 
functions are fitted to the empirical distributions by minimizing the sum of the error squares (The 
method of least squares). The results of the regression analysis are depicted TABLE 1 and in 
FIGURE 9 through FIGURE 12. It can be seen, that the Weibull distribution is the better one 
representing the distribution of critical gaps with better fittings to the empirical distributions 
although the differences are not very significant. The Weibull distribution has a stronger 
capability to smooth the empirical distributions (cf. part b in FIGURE 9 through FIGURE 12) 
and thus to correct the errors in the field data than the log-normal distribution (cf. part a in 
FIGURE 9 through FIGURE 12). Compared to the empirical distributions, the standard errors 
from the Weibull distribution is smaller than those from the log-normal distribution (TABLE 1). 
The standard deviation tc of the resulting Weibull distributed critical gaps is always nearly 1.     
 
Thus, for investigations in the future, the Weibull distribution is recommended for representing 
critical gaps at unsignalized intersections. Compared to the log-normal distribution the Weibull 
distribution has also a simpler expression. 
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4 SUMMARY AND CONCLUSIONS 
 
Several important models for estimating the critical gap at unsignalized intersections are 
presented. The new model developed from the author earlier (11) turns out to be the best and 
simplest one compared to the other models. In addition, this new model does not require any a 
priori assumptions and the results are accurate. Using the new macroscopic model (equation (6)), 
a generalized procedure for estimating critical gaps is established. With this procedure, the PDF 
of the critical gaps can be estimated empirically. Using this model, more measurement data can 
be taken into account. 
 
Using the empirical estimated distributions, two different distribution functions a) log-normal 
distribution and b) Weibull distribution are calibrated by conducting non-linear regression 
analysis. The results show, that the Weibull distribution is the better one representing the 
distribution of critical gaps. The Weibull distribution has a stronger capability to smooth the 
empirical distributions and thus to correct the errors in the field data than the log-normal 
distribution.  
 
For investigation in the future, the new model developed from the author earlier (11) is 
recommended for estimating critical gaps and the Weibull distribution is recommended for 
representing the distribution of critical gaps at unsignalized intersections. The Weibull 
distribution function can also be used for the Troutbeck’s (4) procedure for estimating critical 
gaps based on the Maximum Likelihood method. 
 
The procedure for implementing the new model is simple and robust. It can be carried out using 
spreadsheet programs (e.g., EXCEL, QuatroPro etc.) without iteration. Thus, with the new 
model, a useful and promising tool is provided to professionals of traffic engineering. For 
practical applications, an implemented EXCEL-spreadsheet can be obtained from the author. 
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FIGURE 1 – Schematic relationship between the PDF's for the rejected gaps, the accepted gaps, 

and the estimated critical gaps from the new model 

FIGURE 2 - Example of a spreadsheet for estimating the critical gap 

FIGURE 3 - Example for critical gap estimation.  Fr=PDF of the maximum rejected gaps, 

Fa=PDF of the accepted gaps, Ftc(ML)=PDF of the estimated critical gaps from the Maximum 

Likelihood model of Troutbeck, Ftc(macro)=PDF of the estimated critical gaps from the new 

model for macroscopic equilibrium  (Data: Weinert (12), Bad Nauheim 3, minor right-turn). 

FIGURE 4 - Example for critical gap estimation.  Fr=PDF of the maximum rejected gaps, 

Fa=PDF of the accepted gaps, Ftc(ML)=PDF of the estimated critical gaps from the Maximum 

Likelihood model of Troutbeck, Ftc(macro)=PDF of the estimated critical gaps from the new 

model for macroscopic equilibrium (Data: Weinert (12), Köln 1, major left-turn). 

FIGURE 5 - Example for critical gap estimation.  Fr,all=PDF of all gaps, Fa=PDF of the accepted 

gaps, Ftc(macro)=PDF of the estimated critical gaps from the new model for macroscopic 

equilibrium  (Data: Weinert (12), Bad Nauheim 3, minor right-turn). 

FIGURE 6 - Example for critical gap estimation.  Fr=PDF of all rejected gaps, Fa=PDF of the 

accepted gaps, Ftc(macro)=PDF of the estimated critical gaps from the new model for 

macroscopic equilibrium  (Data: Weinert (12), Köln 1, major left-turn). 

FIGURE 7 – Comparison of the estimated distributions of critical gaps.  Ftc(macro)=PDF of the 

estimated critical gaps from the new model with only the maximum rejected gaps, 

Ftc(macro_all)=PDF of the estimated critical gaps from the new model with all rejected gaps 

(Data: Weinert (12), Bad Nauheim 3, minor right-turn). 

FIGURE 8 - Comparison of the estimated distributions of critical gaps.  Ftc(macro)=PDF of the 

estimated critical gaps from the new model with only the maximum 
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FIGURE 9 – Calibration of the a) log-normal and b) Weibull distribution. Dada 1: 

Ftc(macro)=PDF of the empirical estimated critical gaps with only the maximum rejected gaps 

(Data: Weinert (12), Bad Nauheim 3, minor right-turn). 

FIGURE 10 - Calibration of the a) log-normal and b) Weibull distribution. Dada 2: 

Ftc(macro)=PDF of the empirical estimated critical gaps with only the maximum rejected gaps 

(Data: Weinert (12), Köln 1, major left-turn). 

FIGURE 11 – Calibration of the a) log-normal and b) Weibul distribution. Dada 3: 

Ftc(macro)=PDF of the empirical estimated critical gaps with all rejected gaps 

FIGURE 12 - Calibration of the a) log-normal and b) Weibull distribution.  Data 4 : 

Ftc(macro)=PDF of the empirical estimated critical gaps with all rejected gaps 
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TABLE 1 – Results of the regression analysis 

 

 

Distribution 
function 

Data 1 

n=289 

Data 2 

n=663 

Data 3 

n=198 

Data 4 

n=300 

tc tc Std. 
err. 

tc tc Std. 
err. 

tc tc Std. 
err. 

tc tc Std. 
err. 

Empirical 6.4 1.11 - 5.5 1.16 - 5.4 1.00 - 5.0 0.99 - 

Log-normal 6.4 0.98 0.017 5.6 1.11 0.013 5.4 0.97 0.024 5.0 0.92 0.019

Weibull 6.4 0.97 0.015 5.5 1.07 0.010 5.3 0.88 0.024 4.9 0.84 0.018
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FIGURE 1 – Schematic relationship between the PDF's for the rejected gaps, the accepted 
gaps, and the estimated critical gaps from the new model 
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 (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

accepted 
or rejected

if (2)="r", 
nr=nr+1

if (2)="a", 
na=na+1 (3)/nr,max (4)/nr,max (6)/[(6)+1-(5)] (7)_j-(7)_j-1 [(1)_j-(1)_j-1]/2

index j gap t nr na Fr Fa Ftc ftc cl.m

1 5 r 1 0 0,00694444 0 0 0 2,5
2 7 r 2 0 0,01388889 0 0 0 6
3 7 r 3 0 0,02083333 0 0 0 7
4 7 r 4 0 0,02777778 0 0 0 7
5 7 r 5 0 0,03472222 0 0 0 7
6 8 r 6 0 0,04166667 0 0 0 7,5
7 9 r 7 0 0,04861111 0 0 0 8,5
8 10 r 8 0 0,05555556 0 0 0 9,5
9 10 r 9 0 0,0625 0 0 0 10
10 11 r 10 0 0,06944444 0 0 0 10,5
11 11 r 11 0 0,07638889 0 0 0 11
12 11 r 12 0 0,08333333 0 0 0 11
13 12 r 13 0 0,09027778 0 0 0 11,5

...

...

...
138 60 r 133 5 0,92361111 0,034722222 0,3125 0,018382353 60
139 61 r 134 5 0,93055556 0,034722222 0,333333333 0,020833333 60,5
140 62 r 135 5 0,9375 0,034722222 0,357142857 0,023809524 61,5
141 63 a 135 6 0,9375 0,041666667 0,4 0,042857143 62,5
142 63 a 135 7 0,9375 0,048611111 0,4375 0,0375 63
143 64 a 135 8 0,9375 0,055555556 0,470588235 0,033088235 63,5
144 64 a 135 9 0,9375 0,0625 0,5 0,029411765 64
145 64 a 135 10 0,9375 0,069444444 0,526315789 0,026315789 64
146 64 a 135 11 0,9375 0,076388889 0,55 0,023684211 64
147 65 r 136 11 0,94444444 0,076388889 0,578947368 0,028947368 64,5
148 66 r 137 11 0,95138889 0,076388889 0,611111111 0,032163743 65,5
149 67 a 137 12 0,95138889 0,083333333 0,631578947 0,020467836 66,5
150 67 a 137 13 0,95138889 0,090277778 0,65 0,018421053 67
151 68 a 137 14 0,95138889 0,097222222 0,666666667 0,016666667 67,5
152 69 r 138 14 0,95833333 0,097222222 0,7 0,033333333 68,5

...

...
..

279 328 a 144 135 1 0,9375 1 0 327
280 363 a 144 136 1 0,944444444 1 0 345,5
281 368 a 144 137 1 0,951388889 1 0 365,5
282 387 a 144 138 1 0,958333333 1 0 377,5
283 439 a 144 139 1 0,965277778 1 0 413
284 461 a 144 140 1 0,972222222 1 0 450
285 467 a 144 141 1 0,979166667 1 0 464
286 633 a 144 142 1 0,986111111 1 0 550
287 642 a 144 143 1 0,993055556 1 0 637,5
288 656 a 144 144 1 1 1 0 649

summe 144 144 tc,mean 6,38
sigma 1,11  

 
 

FIGURE 2 - Example of a spreadsheet for estimating the critical gap 

sum

1/10*s 



Wu 

 

16 

 
 
 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200

t [s/10]

F
 [

-]

Fr

Ftc(macro,tc=6,4)

Ftc(ML,tc=6,6)

Fa

  
 
 

FIGURE 3 - Example for critical gap estimation.  
Fr=PDF of the maximum rejected gaps, Fa=PDF of the accepted gaps, Ftc(ML)=PDF of the 

estimated critical gaps from the Maximum Likelihood model of Troutbeck, 
Ftc(macro)=PDF of the estimated critical gaps from the new model for macroscopic 

equilibrium  (Data: Weinert (12), Bad Nauheim 3, minor right-turn). 
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FIGURE 4 - Example for critical gap estimation.  
Fr=PDF of the maximum rejected gaps, Fa=PDF of the accepted gaps, Ftc(ML)=PDF of the 

estimated critical gaps from the Maximum Likelihood model of Troutbeck, 
Ftc(macro)=PDF of the estimated critical gaps from the new model for macroscopic 

equilibrium (Data: Weinert (12), Köln 1, major left-turn). 



Wu 

 

18 

 

 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200

t [s/10]

F
 [

-]

F(r_all)

Ftc(macro_all,tc=5,5)

Fa

  
 
 

FIGURE 5 - Example for critical gap estimation.  
Fr,all=PDF of all gaps, Fa=PDF of the accepted gaps, Ftc(macro)=PDF of the estimated 

critical gaps from the new model for macroscopic equilibrium  
(Data: Weinert (12), Bad Nauheim 3, minor right-turn). 
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FIGURE 6 - Example for critical gap estimation.  
Fr=PDF of all rejected gaps, Fa=PDF of the accepted gaps, Ftc(macro)=PDF of the 

estimated critical gaps from the new model for macroscopic equilibrium  
(Data: Weinert (12), Köln 1, major left-turn). 
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FIGURE 7 – Comparison of the estimated distributions of critical gaps.  
Ftc(macro)=PDF of the estimated critical gaps from the new model with only the maximum 
rejected gaps, Ftc(macro_all)=PDF of the estimated critical gaps from the new model with 

all rejected gaps (Data: Weinert (12), Bad Nauheim 3, minor right-turn). 
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FIGURE 8 - Comparison of the estimated distributions of critical gaps.  
Ftc(macro)=PDF of the estimated critical gaps from the new model with only the maximum 
 rejected gaps, Ftc(macro_all)=PDF of the estimated critical gaps from the new model with 

all rejected gaps (Data: Weinert (12), Köln 1, major left-turn). 
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FIGURE 9 – Calibration of the a) log-normal and b) Weibull distribution. 
Dada 1: Ftc(macro)=PDF of the empirical estimated critical gaps with only the maximum 

rejected gaps (Data: Weinert (12), Bad Nauheim 3, minor right-turn). 
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FIGURE 10 - Calibration of the a) log-normal and b) Weibull distribution. 
Dada 2: Ftc(macro)=PDF of the empirical estimated critical gaps with only the maximum 

rejected gaps (Data: Weinert (12), Köln 1, major left-turn). 
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FIGURE 11 – Calibration of the a) log-normal and b) Weibul distribution. 
Dada 3: Ftc(macro)=PDF of the empirical estimated critical gaps with all rejected gaps  

(Data: Weinert (12), Bad Nauheim 3, minor right-turn). 
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FIGURE 12 - Calibration of the a) log-normal and b) Weibull distribution.  
Data 4 : Ftc(macro)=PDF of the empirical estimated critical gaps with all rejected gaps  

(Data: Weinert (12), Köln 1, major left-turn). 
 


