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Abstract 

This paper deals with the capacity of minor traffic movements across major divided four-lane 

roadways (also other roads with two separate carriageways) at unsignalized intersections.  

The center of the intersection, corresponding to the width of the median, often provides 

spaces in which the drivers who crossed the first half of the major road may stop before 

proceeding across the second major traffic stream.  This situation which is common at 

multilane major streets is called two-stage priority.  Here the capacity for minor through 

traffic is larger than at intersections without such a central storage space.  The additional 

capacity being provided by these wider intersections can not be evaluated by conventional 

capacity calculation models.   

This paper presents an analytical theory for the estimation under two-stage priority 

conditions.  It is based on a former approach by Harders.  However, a set of major 

improvements were necessary to match the results with realistic conditions.  In addition to 

analytical theory, simulations have been performed which enable an analysis under more 

realistic conditions.  As a result a set of equations is presented which compute the capacity for 

a minor through traffic movement in the two-stage priority situation.  These equations are 

completed by two sets of graphs which enable an easy application of the theory in practice. 
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Capacity at Unsignalized Two-Stage Priority 
Intersections 
by Werner Brilon, Ning Wu, Kerstin Lemke 

1. INTRODUCTION 

At many unsignalized intersections there is a space in the center of the major street available 

where several minor street vehicles can be stored between the traffic flows of the two 

directions of the major street, especially in the case of multilane major traffic.  This storage 

space within the intersection enables the minor street driver to pass each of the major streams 

at a time.  This behaviour can contribute to an increased capacity. 
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Figure 1:  Minor street through traffic (movement 8) crossing the major street in 

2 phases.  The theory discussed here is also available if the major street 

provides more or less than 2 lanes per direction. 
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Therefore, a model is needed which can describe this behaviour and it's implication on the 

intersection capacity.  A model of this type has been developed by Harders (1968).  His 

concept has been used here as a basis and it is described in the following derivations.  

However, some major amplifications as well as a correction and an adjustment to reality have 

been made to achieve better correspondance to realistic conditions. 

For our derivations we look at an intersection consisting of two parts according to Fig. 1.  

Between the partial intersections I and II there is a storage space for  k  vehicles.  This area 

has to be passed by the left turner from the major street (movement 1) and the minor through 

traffic (movement 8).  Also the minor left turner (movement 7) has to pass through this area.  

We will see that movement 7 can be treated like movement 8.  Therefore, for our derivations 

we concentrate on the minor through traffic (movement 8) crossing both parts of the major 

street.  The enumeration of movements has been chosen in accordance with chapter 10 of the 

HCM (1994).  We assume that the usual rules for unsignalized intersections from the highway 

code are applied by drivers at the intersections.  Thus movements 2 and 5 (major through 

traffic) have priority over each other movement.  Movement 1 vehicles have to obey the 

priority of movement 5 whereas movement 8 has to give the right of way to each of the 

movements shown in Fig. 1 .  In our derivations movement 5 stands for all major traffic 

streams at part II  of the intersection.  These, depending on the layout of the intersection, 

could include through traffic (movement 5), left turners (movement 4) and right turners 

(movement 6).   
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2. ANALYTICAL MODEL FOR THE DETERMINATION OF THE CAPACITY 

To determine the capacity of the whole intersection we assume a constant queue on the minor 

approach (movement 8) to part I. 

Let  wi  be the probability for a queue of  i  vehicles queueing in the storage space within the 

central reserve.  Then the probabilities  wi  for all of the possible queue lengths  i  must sum 

up to 1 with 0  ≤  i  ≤  k, i.e.:  

  wi
i

k

=
=
∑ 1

0

   (1) 

where k is the number of spaces in the storage space within the central reserve 

Now we consider the central area of the intersection as a closed storage system, which is 

limited by the input line and output line (cf. Fig 1).  The capacity properties of the storage 

system are restricted due to the aspects of maximum input and maximum output.  We now 

have to distinguish between different states of the system: 

1. State 1 : 

We first consider part  I  of the intersection which decides on the input to the storage area.  

Under state 1 we consider situations during which the number  i  of vehicles in the storage 

area is less than the maximum possible queue length  k , i.e.  i  <  k .  During this state a minor 

street vehicle from movement 8  can enter the storage space if the major streams (volume q1 

and q2 ) provide sufficient gaps.  In this case the capacity of part I (possible input from 

movement 8) characterizes the capacity, i.e.: 

  c1  =  c(q1 + q2)  (2) 
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where  

c(q1 + q2)    =  capacity of part I  in case of no obstruction by the subsequent part II , 

which is the capacity of an isolated unsignalized cross intersection for 

through minor traffic with major traffic volume  q1 + q2 . 

The probability for this state 1  is  p1  =  1 - wk .  Thus, the contribution of state 1  to the 

capacity of part I  for movement 8  is 

  cI,1  =  (1 - wk) . c(q1 + q2)  (3) 

Of course, during state 1 also vehicles from movement 1 can enter the storage space. 

2. State 2 : 

For this state we assume that the storage area is occupied; i.e.  k  vehicles are queueing in the 

storage space.  In this case normally no minor vehicle from movement 8 or vehicles from 

movement 1 can get into the storage area.  If, however, a sufficient gap for the passage of one 

minor street vehicle can be accommodated at both parts (I and II) of the intersection 

simultaneously then also a vehicle can get into the storage area.  The capacity for q8 (possible 

input from movement 8) during this stage is 

  c2  = c(q1 + q2  + q5)  (4) 

where  

c(q1 + q2  + q5)  = capacity of an isolated cross intersection for through traffic with major 

traffic volume  q1 + q2  + q5 :  

Thus, the contribution of state 2 to the capacity of part I  is 

  cI,2 = wk . c(q1 + q2  + q5)  (5) 

where wk  = probability that  k  vehicles are in the storage space 
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State 1 and state 2 exclude each other.  The capacity of part I  is the total maximum input to 

the storage area.  Here the volume q1 of movement 1  in addition to the partial capacities 

mentioned above has to be included.  Therefore, the total maximum input to the storage area 

is 

  Input = cI,1 + cI,2 +(1-wk) . q1 

   = (1-wk) . [c(q1 + q2) + q1]+ wk . c(q1 + q2 + q5)  (6)  

3. State 3 : 

We now consider the output of the storage area.  Here we concentrate on part II  of the 

intersection.  For  i  >  0  each possibility for a departure from the storage area provided by 

the major stream of volume q5 can be utilized.  The capacity (maximum output of the storage 

area) of part II in this case is 

  c3 =  c(q5)  (7) 

where   c(q5)   = capacity of part II  in case of no obstruction by the upstream part I 

which is the capacity of an isolated unsignalized cross intersection for 

through minor traffic with major traffic volume  q5 .  

The probability for this state is      p3  =  1 - w0  . 

Thus the contribution of state 3  to the capacity of part II is 

  cII,3  =  (1 - w0) . c(q5)  (8) 

where  w0 = probability that  0  vehicles are in the storage space 

No vehicles from movement 1 (volume q1) can directly (i.e. without being impeded by 

movement 5)  pass through the storage area in this state. 



Werner Brilon, Ning Wu, Kerstin Lemke  page 7 

 

4. State 4 : 

For  i  = 0  (i.e. an empty storage area) no vehicle can depart the storage area even if the 

major stream of volume q5 would allow a departure.  If, however, a sufficient gap is provided 

in the major streams of both parts of the intersection simultaneously, a minor street vehicle 

from movement 8 can pass the whole intersection without being queued somewhere in the 

storage area.  The possible output of the storage area from movement 8 vehicles during this 

state is 

  c4 = c(q1 + q2  + q5)  (9) 

Thus, the contribution of state 4  to the capacity of part II is 

  cII,4 = w0 . c(q1 + q2  + q5)  (10) 

Also vehicles from movement 1 can pass through the storage area in this state.  The number 

of vehicles from movement 1  which pass through the storage area in this state is 

  cII,4,q1 = w0 . q1  (11) 

Here, cII,4,q1 does not mean the capacity for q1, but the demand on the capacity.  The traffic 

intensity of q1 should be less than the capacity of the part II c(q5).  i.e. q1 is subject to the 

restriction  q1 < c(q5) .  Otherwise, the intersection is overloaded and due to this non-

stationarity no solution can be derived. 

State 3 and 4 exclude each other.  Therefore, the total maximum output of the storage area is 

  output  = cII,3 + cII,4 + cII,4,q1 

    = (1-w0) . c(q5) + w0 . c(q1 + q2  + q5) + w0 . q1 

    = (1-w0) . c(q5) + w0 . [c(q1 + q2  + q5) + q1 ] (12) 
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One might argue that the derivations of cI,2 and cII,4 neglect the travel time of the vehicles 

from part I  up to part II .  This, however, is justified: The probability that a minor street 

vehicle will meet a sufficient gap in part I  and part II  at time  tI  and time tII  (with tII = tI + ∆

t  and with 

∆t = travel time between the stop lines of part I  and part II ) is independent of the travel time  

∆t  if  ∆t = constant for all vehicles and if the two arrival processes in the major streams are 

independent of each other.  Therefore, the result is the same if ∆t  has a realistic positive value 

or if  ∆t  is assumed to be  0. 

During times when the whole intersection is operating at capacity, due to reasons of 

continuity, the maximum input and output of the storage area must be equal. 

Therefore 

 input = output   (cf. eq. 6 and eq. 12)  

i.e.: 

 (1-wk) . [c(q1+q2) + q1 ]+ wk . c(q1+q2+q5) = (1-w0) . c(q5) + w0 . [c(q1+q2+q5) + q1] 

    (13) 

The total capacity  cT  for minor through traffic (movement 8) regarding the whole 

intersection is identical to both sides of this equation minus  q1 .  In addition, since negative 

traffic volumes are not possible  cT  must fulfill the restriction: 

  c
output q c c c q

T
q=

− = + + −⎧
⎨
⎩

max , , , ,1 3 4 4 1 1

0
II II II  (14) 

For the easiest case of  k = 1  we get 

  w0  +  w1  =  1  (15) 

Together with eq. 13  and the subsequent explanation we get 
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 w0  = [c(q5) - c(q1+q2+q5)] / [c(q1+q2)  - 2 c(q1+q2+q5) +. c(q5)]  

 wk  = 1- w0 = [c(q1+q2)  - c(q1+q2+q5)] / [c(q1+q2)  - 2 c(q1+q2+q5) +. c(q5)]  (16) 

For  k  >  1  some more general derivations are necessary.  For these derivations we assume 

the following simplifying conditions: 

a) Let q2 and q5 be constant over time.  Then also c(q2), c(q5) , and c(q2  + q5) are constant 

over time. 

b) We devide the continuous time scale into intervals of duration tf = follow-up time = 

average time interval between the departure of two subsequent minor vehicles which enter 

into the same gap of the major flow.  It is also assumed that the minimum gap between 

two vehicles of movement 1 is of the same size as tf . 

Let a  = probability that a vehicle enters the central storage area from intersection part I  

during a time interval of duration tf . 

 b =  probability that a vehicle can pass intersection part II  during a time interval  

of duration tf .  

a  and  b  are variables which are only introduced for the following derivations.  They need 

not to be evaluated later for the application of the theory.  Both a and b are looked at for the 

fictitious case that part I  and part II  would be independent intersections.  The follow-up time 

tf for part I  and part II  should be of similar duration for this derivation.  We now treat the 

process of the number of vehicles in the storage space as a statistical process with Markow-

properties.  We then can say 

 w t0 ( )  = w a w a b w b a0 0 11 1( ) ( )− + ⋅ ⋅ + ⋅ ⋅ −  (17) 

  = probability that no vehicle is queueing  

   in the storage area at time t 

This is valid because the case of an empty queue at time  t  can be achieved by the following 

possibilities: 
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• either:  no queue at time  t - tf (prob. = w0) and no  arrival (prob. = 1 - a) during tf 

• or: no queue at time  t - tf (prob. = w0)  

   and one arrival (prob. = a) and one  departure (prob. = b) during tf 

• or: one vehicle queued at time  t - tf (prob. = w1)  

   and no arrival (prob. = 1 - a) and one departure (prob. = b) during tf . 

By similar considerations we get an expression for the probability of  i  vehicles queueing in 

the storage space at time  t : 

  wi(t) = wi-1 . a . (1-b) 

    + wi . a . b 

    + wi . (1-a) . (1-b) 

    + wi+1 . (1-a) . b (18) 

Since  k  is the maximum number of vehicles in the storage space we get 

   wk(t)= wk . (1-b) 

    + wk . a . b 

    + wk-1 .  a . (1-b) (19) 

Due to the assumed stationarity of the process  w0, wi and  wk  do not depend on each other at 

time  t . 

Equations 17 through 19 form a system of  k + 1  equations which can be written as 

 ( ) ( )− ⋅ − + −w a ab w b ab0 1  = 0 (20) 

 ( ) ( ) ( )[ ] ( )w a ab w a ab b ab w b abi i i− +− − − + − + −1 1  = 0 (21) 

 ( ) ( )w a ab w b abk k− − − −1  = 0 (22) 

For abbreviation we use 

 A a a b= − ⋅  (23) 

 B b a b= − ⋅  (24) 
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Our system of equations 20, 21 and 22 then is written as: 

 (0) -A⋅w0 +B⋅w1  = 0 

(1) A⋅w0 -(A+B)⋅w1 +B⋅w2  = 0 

(2)  A⋅w1 -(A+B)⋅w2 +B⋅w3  = 0 

...     

(i)   A⋅wi-1 -(A+B)⋅wi +B⋅wi+1 = 0 (25)

...     

(k-2)  A⋅wk-3 -(A+B)⋅wk-2 +B⋅wk-1  = 0 

(k-1)   A⋅wk-2 -(A+B)⋅wk-1 +B⋅wk = 0 

(k)   A⋅wk-1 -B⋅wk = 0 

From the first equation we get 

 A w B w⋅ = ⋅0 1  

 w A
B

w1 0= ⋅  (26) 

From the last equation we get: 

 A w B wk k⋅ = ⋅−1  

 w A
B

wk k= ⋅ −1  (27) 

If we sum up all our equations (0) through (i) we get: 

 − ⋅ + ⋅ =+A w B wi i 1 0  

 w A
B

wi i+ = ⋅1  (28) 

The sequence of the probabilities, therefore, is forming a geometric series where each 

subsequent term is resulting from the prior term by a multiplication with the factor  y = A/B. 

 y A
B

a ab
b ab

= =
−
−

 (29) 
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i.e.: 

 w y wi i+ = ⋅1  (30) 

or: 

 w y wi
i= ⋅ 0  (31) 

According to equation 1 the wi (i = 0,...,k) are subject to the restriction 

 

w

y w

w y

i
i

k

i

i

k

i

i

k

=

=

=

∑

∑

∑

=

⋅ =

=

0

0
0

0
0

1

1

1

 

Therefore: 

 w
y y yk0 1 2

1
1

=
+ + + +...

 (32) 

The sum in the denominator is the sum of a finite geometric series which is 

 y y
y

i
k

i

k

=
−

−

+

=
∑

1

0

1
1

 (33) 

Thus, and with eq. 30 and 29 we get: 

 w y
y k0 1

1
1

=
−
−+  (34) 

 w y y
yk

k k

k=
−
−

+

+

1

1 1
 (35) 
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Let us now recall eq. 13 and 14 and combine those with eq. 34 and 35 .  Then we get 
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 (36)  

Note that in this equation the capacities c(q2), c(q5) and c(q2+q5)  as well as  k  are treated to 

be known whereas the variable  y  has to be obtained from the equation.  As a result we get: 

 ( ) ( )
( ) ( )

y
c q q c q q q
c q q c q q q

=
+ − + +
− − + +

1 2 1 2 5

5 1 1 2 5

 (37) 

Using this result for  y  we can now calculate the total capacity  cT  for the minor movement 8 

using eq.14 . 

 
( ) ( )[ ]

[ ] ( )

c y
y

c q y
y

c q q q q q

c y
y

c q q y
y

c q q q

T k k

T k k

= −
−
−

⎛
⎝
⎜

⎞
⎠
⎟ ⋅ +

−
−

⋅ + + + −

= −
−
−

⎛
⎝
⎜

⎞
⎠
⎟ ⋅ − +

−
−

⋅ + +

+ +

+ +

1 1
1

1
1

1 1
1

1
1

1 5 1 1 2 5 1 1

1 5 1 1 1 2 5( )

 (38) 

It should be noted that for the special case of  k = 1  using some algebra we get the solution of 

eq. 16 which might give some confirmation for the above derivations.  

For  y = 1  ( i.e. c(q1 + q2) = c(q5) - q1     )  this expression is not defined.  By developing the 

limiting case for  y → 1 we get 

 ( ) ( )[ ]c
k

k c q q c q q qT =
+

⋅ ⋅ − + + +
1

1 5 1 1 2 5( )  (39) 

At this point it should be noted that the capacities  c(q1 + q2 +q5)  and  c(q5)  can be 

calculated by any useful procedure, e.g. by formulas from gap acceptance theory.  But also 

solutions from the linear regression method or Kyte’s method (for details cf. Brilon, 

Troutbeck, Tracz, 1995) could be used. 
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3.  CAPACITY ACCORDING TO GAP ACCEPTANCE THEORY 

The most simple formula for the capacity of an unsignalized intersection with one minor and 

one major traffic stream is Siegloch’s (1973) formula.  Several authors (cf. Brilon, Troutbeck, 

Tracz, 1995) have shown that this formula produces also realistic results if the basic 

assumptions for the formula are not fulfilled.  The Siegloch’s formula is shown as following: 

 c q
t

e
f

q t( ) = ⋅ − ⋅1
0  (40) 

where c(q) = capacity for the minor movement (veh/s)  

 tf = follow-up time   (s)  

  = average gap between two successive minor flow vehicle entering 

 into the same major stream gap 

 t0 =tc - tf  /2  (s)  

 tc = critical gap   (s)  

  = average gap between two successive major flow vehicle which - as a  

 minimum - is accepted by the minor stream vehicles to cross the  

 intersection 

We have now to distinguish between different  tc -  and tf - values: 

a) tc -  and tf - values for part  I  of the intersection (state 1 and state 2) 

b) tc-  and tf - values for part II  of the intersection (state 3 and state 4) 

c) tc -  and tf - values for crossing part I  and  part II  of the intersection simultaneously 

in the case of  k = 0 .  It is realistic to assume that a driver who has to cross the 

whole major street at one time without having a central storage area needs longer tc -  

and tf - values than in case a) or b) . 

It is justified to assume that the  tc -  and tf - values in case a) and b) are of the same 

magnitude and that especially the  tf - values between both cases are nearly identical.  This 

assumption is important for the following derivations.  
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Realistic values for the tc -  and tf - values can be obtained from table 1.  The given critical 

gaps  tc  and follow-up times  tf  are of realistic magnitude compared with the measurement 

results worked out by the NCHRP-project 3-46 (Kyte e.a., 1995, working paper #16).  Here 

the critical gap and the follow-up time for the case without central reserve (k = 0) are larger 

then for the two-stage priority case which seems to be more realistic. 

 
  

k = 0 

i.e. no central reserve 

k ≥ 1 

i.e. a central reserve 

of variable (with k) width 

  

case c) 

part I 

case a) 

part II 

case b) 

tc 7.0 s 6.0 s 6.0 s 

tf 3.8 s 3.8 s 3.8 s 

Table 1: Typical  tc -  and  tf - values for two-stage priority situations within 

multilane major streets under US-conditions 

Based on eq. 40  with the assumption that all of the  tf - values are nearly identical we can say: 

 
0

15

0

21

0

521 )()()(
c

qqc
c

qqc
c

qqqc −
⋅

+
=

++  (41) 

where c0  = 1
t f

   (veh/s)  

  = maximal capacity, for the case of no cross traffic 

This relation makes it possible to standardize all of the capacity terms by  c0 .  If  c0  is used in 

units of  veh/s  also the other capacity terms must have this unit.  Of course, also the unit  

veh/h  could be used for all of the capacity terms.  Then it is useful to standardize also  cT  in 

eq. 38/39 : 

where $c
c
cT

T=
0

   (veh/s) (42)  
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$cT   (which has to be obtained from eq. 38/39) then can be expressed as a function of  

c(q1 + q2)/c0  and   [c(q5) - q1 ] / c0   Thus it is possible to indicate the results of these 

derivations by graphs (cf. Fig. 2).  
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Figure 2: Total capacity  $c c cT T= 0  as a result of eq. 42 (in combination with 

eq. 38) in dependence of c(q1 + q2)/c0     and   [c(q5) - q1 ] / c0   for  k = 1   .  

It is further justified to use graphs of this type with sufficient approximation also under 

circumstances which differ from the conditions of gap acceptance theory, e.g. 

- if capacities c(q1 + q2)  and   c(q5)   are computed from other theories than gap 

acceptance or even if they should be measured, 

- if within gap acceptance theory the critical gaps   tc  are different for each part of the 

intersection. 

The only necessary condition for the application of these graphs is that the follow-up times tf  

are of nearly identical magnitude. 
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4. LIMITATIONS OF THE THEORY 

With a critical view on the theory which lead to eq. 38 we see that this theoretical concept has 

to be treated with care.  The concept would be true if we could estimate the capacities  c(q1 + 

q2  + q5)  and  c(q5)  completely according to the fact that at a time, as a maximum, only  k  

vehicles can enter one major stream gap both in part I  and part II of the intersection due to 

the restricted storage space within the median reserve of the two-stage situation.  This 

restriction applies especially for c(q1 + q2) and c(q5) .  (state 1 and 3, cf. above) .  This 

restriction does not apply for c(q1 + q2  + q5)  since during state 2  and state 4  (definition see 

above) the number of minor stream vehicles departing during one large gap (being provided 

simultaneously in major streams 1 and 2  as well as 5) is not limited.  Each of the 

conventional formulas for the capacity  c(q)  (e.g. the Siegloch-formula  eq. 40) are , however, 

based on the assumption that during large major stream gaps a greater number of minor 

stream vehicles can be accommodated, which is not true in the two-stage gap-acceptance 

situation (state 1 and 3) since here the number of minor vehicles per gap is limited to  k  in 

both parts of the intersection. 

To take account of this limited validity of eq. 38 different approaches have been tested.  The 

derivation of an analytical formula which takes into account these effects seemed not to be 

possible.  Only a partial approach to the complete realistic truth was possible (cf. Brilon, Wu, 

Lemke, 1995).  Therefore, some approximations were necessary. 
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5. SIMULATION STUDIES 

Therefore, and for the test of the theory leading to eq. 38, the solution has been further 

investigated based on simulations.  For this purpose a simulation model has especially been 

developed (Lemke, 1995).  The basic structure of the model is closely related to the ideas of 

KNOSIMO (cf. Grossmann, 1992).  The important features can be characterised as follows: 

• The headways in the major streams are distributed according to a hyperlang-distribution 

(cf. Dawson, 1969 ; Grossmann, 1991). 

• The critical gaps and the follow-up times are distributed according to an Erlang-

distribution with the parameters given by Grossmann (1991) which are also used in 

KNOSIMO. 

Both these assumptions together relate the model closer to reality than the theoretical 

derivations mentioned above.  On the other side, the following assumptions are a 

simplification compared to reality.  They do, however, correspond to the assumptions of the 

theory described above. 

• No delays due to limited acceleration or deceleration of the vehicles are taken into 

account. 

• The travel time  ∆t  between the two parts of the intersection has not been regarded; i.e. 

 ∆t = 0. (cf. argumentation following eq. 12). 

• Each minor street driver has a minimum delay of  tf  at the first part of the intersection, 

also if no major stream vehicle is nearby.  This simulates the time which a driver needs to 

realise the traffic situation on the major street when he is first approaching the 

intersection.  This time margin is also necessary for the driver to decide if he can enter the 

intersection.  Such an orientation time is not applied for vehicles entering the second part 

of the intersection since here a better visibility is assumed. 

• All traffic volumes are kept constant over time. 
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• The program is organised such that a constant queue in front of the first stop line of 

movement 8  is always maintained.  Thus, the maximum number of vehicles which can 

enter the intersection can be evaluated. 

This number is the representation of the capacity for movement 8 .  A comprehensive set of 

simulation runs has been performed for different parameters q1 , q2 , q5 .  

Different attempts have been made to find an easy to be used approximative description of the 

results.  Several of these attempts are described in Brilon, Wu, Lemke (1995) together with a 

statistical assessment of their precision.  A good compromise between easy application and 

highest precision seemed to be the following solution.  Instead of  cT  we use a more realistic  

solution  cTr  which is obtained as a good approximation to the simulation results. 

c cTr T= ⋅α  (veh/s) (43) 

where cTr = realistic total capacity for movement  8 

  (minor through traffic)  

 cT =  result from the theoretical approach obtained from 

  eq. 38 

 α =  adjustment factor  

  =
1 0
1 0 32 13 0

for k
k for k

=
− ⋅ − ⋅ >

⎧
⎨
⎩ . exp( . )

 (44) 

An even better solution for the correction term  α  is given by the following formula.  This 

approach, however, has the drawback of a rather complicated use.  Thus it is recommended 

rather for computer applications. 

 α = − ⋅
⋅1 0 245 2 5

1 65, ,

e e
k

 (45) 
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Within this set of equations the following parameters should be applied: 

  a = 2.788 

  b = -1.259 

  c = -0.576 

These solutions for the total capacity  cTr  of movement 8 approximate the simulated results 

with a standard deviation  s  (between results for  cT   being simulated and those being 

estimated from eq. 42) according to table 2 .  Other solutions with smaller deviations but 

more complicated formulas for the calculation of realistic cTr  can be obtained from Brilon, 

Wu, Lemke (1995).  The effect of the correction term  α  is also illustrated in Fig. 3 . 

 
 s 

 q1 = 50 q1 = 100 q1 = 200 

α = 1 29 30 32 

eq. 44 18 18 19 

eq.45 7 8 15 

 veh/h veh/h veh/h 

Table 2:  Standard deviation  s  for computed  cT - values compared to the 

simulated results for two different approaches of the correction term  α 
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Figure 3: Comparison of simulated capacities  cT  for movement 8  and calculated 

cT - values .  The simulated results are regarded as the true values. 

a) calculation without correction term  for eq. 38/39 

b) calculation with correction term  α  (eq. 43/45).  
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At this point we can conclude the steps of computation which are necessary to estimate the 

capacity of an unsignalized intersection where the minor movements have to cross the major 

street in two stages:  

 q1  = volume of priority street left turning traffic at part I 

 q2  = volume of major street through traffic coming from the left at part I 

 q5  = volume of the sum of all major street flows coming from the rigth at 

part II.  Of course, here the volumes of all priority movements at part II 

have to be included.  These are: major right (6, except if this movement 

is guided along a triangular island separated from the through traffic) , 

major through (5), major left (4); numbers of movements according to 

HCM 1994, chapter 10. 

 c(q1 + q2) = capacity at part I   

 c(q5)  = capacity at part II  

 c(q1+q2+q5) = capacity at a cross intersection for minor through traffic  

    with a major street traffic volume of q1+q2+q5  

    (all capacity terms apply for movement 8 . They are to be calculated by 

any useful capacity formula, e.g. the Siegloch-formula, eq. 40) 

 
( ) ( )
( ) ( )

y
c q q c q q q
c q q c q q q

=
+ − + +
− − + +

1 2 1 2 5

5 1 1 2 5

       (37) 

 ( ) [ ]{ }c
y

y y c q q y c q q qT k
k=

−
⋅ − ⋅ − + − ⋅ + ++

α
1 5 1 1 2 51

1 1( ) ( ) ( )  for  y ≠ 1 (38) 

 [ ][ ]c
k

k c q q c q q qT y i( ) ( ) ( )= =
+

⋅ − + + +1 5 1 2 51
α    for y = 1 (39) 

 cT = total capacity of the intersection for minor through traffic 

 with α =
=

− ⋅ − ⋅ >
⎧
⎨
⎩

1 0
1 0 32 13 0

for k
k for k. exp( . )

    (44) 

 

Equations 38, 39 and 40 are only valid for c q q( )5 1−  > 0. 
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6. GRAPHS FOR PRACTICAL APPLICATION 

The results for the theory given in this paper are illustrated in Fig. 4  for  k = 1 and 2 .  Here 

the capacities  c(q1   + q2)  and c(q5)  can be introduced independent of the type of formula 

from which they have been determined.  Another advantage of these graphs is that they can be 

applied with each arbitrary value of  q1 . 

For example, we look at two-stage priority intersection with the traffic volumes q1=100 veh/h, 

q2=600 veh/h and q5=400 veh/h.  Let there be two possible storage spaces within the central 

reserve (cf. also Fig. 1).  The capacities for movement 8 crossing the intersection separately 

can be calculated from the Siegloch’s formula (eq.40).  The corresponding values of tc and tf 

can be obtained from table 1.  Then the parameters for the entering application graph (Fig.4) 

can be calculated as following: 

 Part I: c q q( )1 2+  = 1
1 2 0

t
e

f

q q t⋅ − + ⋅( )   = 1
38

100 600
3600

6
3 8
2

.

( )
(

.
)

⋅
−

+
⋅ −

e  = 0.119   (veh/s) 

 Part II: c q( )5  = 1
5 0

t
e

f

q t⋅ − ⋅    = 1
38

400
3600

6
3 8
2

.
(

.
)

⋅
− ⋅ −

e  = 0.167   (veh/s) 

      (cf. eq.40) 

And with 

   c0  = 1
t f

 = 1
38.

 = 0.263  (veh/s) 

   q1  = 100
3600

  = 0.028  (veh/s) 

we obtain the parameters for using Fig.4: 

  
c q q

c
( )1 2

0

+
 = 0119

0 263
.
.

 = 0.45 

  
c q q

c
( )5 1

0

−
 = 0167 0 028

0 263
. .

.
−  = 0.53 
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Figure 4: Capacities  $cT  = cT / c0  (cf. eq. 42 ) for movement 8 in relation to 

standardized values of capacities and of  q1 (calculation with correction 

term  α , eq. 43/45) 

a)  k = 1 

b)  k = 2 
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With these two parameters we obtain the relative capacity for the movement 8 

  $cT  = cT / c0 = 0.36        (Fig.4, b) ).  

Therefore, the absolute capacity for movement 8 is  

  cT = $c cT ⋅ 0  

   = 0.36•0.263 

   = 0.095 veh/s 

   = 342 veh/h.  

If gap acceptance theory is applied (eq. 40) to estimate the basic capacity terms ( c(q1 + q2) 

and c(q5) ) and if the tc -  and  tf - values are known,  then the capacity for movement 8 can 

also be indicated by graphs directly depending on  q2  and  q5 .  Then, however, one graph has 

to be indicated for each possible  q1 -  value.  This type of graphs using  tc -  and  tf - values 

from table 1  (right columns) is given in Fig. 5 as one example. 
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Figure 5: Capacities  cT  for movement 8  depending on traffic volumes q2 and q5 

with  q1 =0 (calculation with correction term  α , eq. 43 / 38 / 45 ,  k = 1).  
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Of course, the same theory as it has been described here can be used to determine the capacity 

of the minor left turner (movement 7) under two-stage priority conditions. If there is no 

separate lane for this movement in the central storage area the so-called mixed lane formula 

(eq. 10-9) of the HCM, 1994) has to be used to calculate the total capacity for movements 7 

and 8 . 

Delay estimations for the two-stage priority situation can be performed using the concept of 

reserve capacities (cf. Brilon, 1995) or the general delay formula by Kimber, Hollis (1979). 

An easy to be understood procedure for the practical application of the theory presented here 

still has to be developed for the future HCM . Also some tests of this theory against 

measurement data which are available from field studies in NCHRP-project 3-46 are 

desirable. 
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7. CONCLUSION 

The two-stage priority situation as it exists at many unsignalized intersection within multi-

lane major streets provides larger capacities compared to intersections without central reserve 

areas. Capacity estimation procedures for this situation have not been available up to now. 

The paper provides an analytical solution for this problem. In addition, simulation studies 

lead to a correction of the theoretical results. Based on these derivations a set of graphs could 

be evaluated which enable an easy estimation of the capacity at an unsignalized intersection 

under two-stage priority. These graphs are ready to be used in practice. 

Nevertheless, an empirical confirmation of this model approaches would be desirable.  Also 

the question of the validity of the model for larger k-values should be discussed.  It is 

questionable if the theory also applies for a grid of one-way street networks.  Also if these 

questions should be addressed in the future, the presented theory is recommended for use at 

unsignalized intersection in practice. 
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