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ABSTRACT 

Travel time reliability is a new way of looking at congestion and unpredictable variation of travel 
time. The variance or standard deviation of travel time can be used as an indicator for 
investigating the reliability of a road network. In this paper, a mathematical model dealing with 
the standard deviation of the total travel time within a freeway network is presented. It is shown 
that under some suitable assumptions, the variance of the total route travel time can be calculated 
as a superposition of the variances of travel time in single links or bottlenecks if the variances of 
total travel time and correlation coefficients between two consecutive links or bottlenecks are 
known. The variances and correlation coefficients can be calibrated by measurements or 
simulation. Using a shifted Gamma distribution to describe the total travel time, percentiles and 
thus the reliability of the total travel time can be quantitatively investigated. The model is 
calibrated with field data from US and European freeways. As a result, a procedure for 
estimating travel time reliability in a freeway network is recommended. 
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INTRODUCTION 

Reliability measures are increasingly applied for assessing congestion and unpredictable 
variations of travel time. Reliability is one of the key indicators for the performance and service 
quality of transport systems, particularly for commercial vehicle traffic. Many researchers have 
been working on this subject (e.g. 1-7). First of all, travel time reliability is a perception of 
travelers. Travel time reliability significantly influences the choice of routes, departure times, 
and trip link chains (8-11). Bates et al. (12) showed that one minute reduction in the standard 
deviation of travel time and two minutes reduction in the actual travel time can be considered 
equivalent. With increasing attention on travel time reliability, different definitions and measures 
of travel time reliability were proposed (3, 13). These measures relate to properties of the day-to-
day, within-day, or vehicle-to-vehicle travel time distributions, particularly to their shape. There 
are many candidate measures having very little correlation among themselves (3). Bogers (14) 
concludes that the most suitable measure for travel time reliability depends on what kind of 
effects of reliability is evaluated. This inconsistency leads to different assessment criteria used by 
policy evaluations and causes ambiguous evaluations.  

In the remainder of the paper, the variance or standard deviation is used for defining 
travel time reliability. The variance or standard deviation describes unambiguously the day-to-
day variation of travel time. The day-to-day or within-day variation of travel time can be caused 
by unexpected weather conditions, work zones, incidents as well as the vehicle-to-vehicle 
variation of travel time due to the stochastic nature of traffic flow and the variation of capacity 
(15-18). These random events and influences can lead to traffic congestion and increase the 
standard deviation of travel time and thus the unreliability of the road network. 

For a single freeway link with homogeneous characteristics, the free-flow travel time and 
its standard deviation can be easily obtained either by measurements or by existing models. 
Congestion within a freeway link can be considered as a result of a bottleneck within the link. It 
is also possible to estimate the distribution of delays occurring at such bottlenecks. In a network 
consisting of several consecutive components such as freeway links and bottlenecks, the total 
travel time can be considered as a superposition of free-flow travel times of the links and delays 
of the bottlenecks. Thus, the total travel time of a route is the sum of all free-flow travel times of 
the links and all delays at the bottlenecks. However, the standard deviation of the total travel 
time of a route is not equal to the sum of the standard deviations of travel times or delays within 
the single links. Given the distribution of the total travel time, the percentiles and thus the 
reliability of the total travel time can be quantitatively investigated. 

Many studies related to fitting the travel time distribution from observed travel time data 
were published (e.g. 19-25). Wardrop (19), for example, suggested that travel times follow a 
skewed distribution. Herman and Lam (20) proposed either the Gamma or lognormal distribution 
to represent the travel time distribution. Richardson and Taylor (21) found that the observed 
travel time might be fitted by a lognormal distribution. Polus (22) concluded that the Gamma 
distribution was better than the normal or lognormal distribution, and Al-Deek and Emam (23) 
proposed the Weibull distribution to fit observed travel times. Van Lint et al. (3) depicted travel 
time distributions with four different shapes based on traffic conditions (free-flow, congestion 
onset, congestion, and congestion dissolve). Pu (24) concluded that these four shapes of travel 
time distributions are similar to those of the lognormal distribution. Susilawati et al. (25) 
proposed the Burr Type XII distribution for travel time variability on urban roads. Based on the 
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distributions of travel times, a large number of travel time reliability measures was proposed by 
previous researchers (e.g. 3, 12, 26-30). If the distribution of travel time is known, the measures 
of reliability can be defined correspondingly. Other researchers studied the relation between the 
mean travel time per unit of distance and the standard deviation of travel time (e.g. 30-33) as 
well as the optimal path finding in stochastic networks (e.g. 34-35). Kim and Mahmassani (36) 
proposed a compound Gamma representation for modeling travel time variability in a road 
network. They found the compound Gamma distribution is best representing different variability 
dimensions in connection with vehicle-to-vehicle and day-to-day variability.  

Wu and Geistefeldt (37) presented a mathematical model dealing with the standard 
deviation of the total travel time within a freeway route. In general, the distribution of the free-
flow travel time of links and the distribution of delays at bottlenecks can be described either by 
an exponential, a normal, an Erlang, or a Gamma distribution (among other possible 
distributions). The parameters of these distributions can be calibrated by measurements or 
simulation. The variance of the total travel time of a route can be calculated as the sum of the 
variances of the single links in case that the travel times and the delays are statistically 
independent. In reality, the independency between the consecutive links may not exist. In this 
case, the variance of the total travel time of a route can also be estimated if the correlation 
coefficient between two consecutive links is known. Again, this correlation coefficient can be 
calibrated by measurements or simulation. Once the variance of the travel time is known, the 
standard deviation is also known.  

Wu and Geistefeldt (37) suggested the shifted Erlang or Gamma distribution for 
describing the travel time. The Erlang distribution is a special case of Gamma distribution. In the 
remainder, the Gamma distribution is applied as a generalized solution. Because of the special 
property of the Gamma distribution, the variance of the total route is equal to the sum of the 
variances of the single links. The travel time of the total route is considered as Gamma 
distributed again. In order to account for the lower limit of travel time, a shifted Gamma 
distribution is used.  

In the following, a normalized shifted Gamma distribution is introduced to describe the 
travel time, its percentiles and thus the travel time reliability. The model is used to estimate the 
variance or standard deviation of the travel time on a route consisting of several links. The 
empirical calibration of the model for estimating the variance or standard deviation of travel time 
is demonstrated for some examples. For applications, a procedure to estimate the reliability of a 
freeway route or network is given. 

NORMALIZED SHIFTED GAMMA TRAVEL TIME DISTRIBUTION 

The average travel time includes expected and unexpected delays. Unexpected delays lead to a 
variation in travel time. This variability can be quantified by various characteristics of the 
distribution of travel time over a certain time period, such as the standard deviation of the travel 
time distribution. The travel time distribution has a common shape with positive skewness. This 
shape can be represented by a shifted Gamma distribution. Using different combinations of mean 
value and standard deviation, different shapes of the travel time distribution for different traffic 
conditions (free-flow, congestion onset, congestion, and congestion dissolve, see (3)) can be 
reproduced. 
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The probability density function of the shifted Gamma distribution is: 
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Figure 1 shows an example of the shifted Gamma distribution. When describing the 
travel time distribution, the parameter a represents the free-flow travel time tf and E(ta) the 
mean delay d of the link or route under consideration. The shifted Gamma distribution has a 
positive skewness, which is also an important property of the travel time distribution.  
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FIGURE 1  Shifted Gamma distribution with a = tf = 20 min, E(t-a) = E(d) = 5 min, and 
VAR(t) = 16 min2. 
 

Because the parameter a = tf is a constant. Eq. (1) can be simplified for the delay d by 
substituting t  a = d. That is, the delay obeys a Gamma distribution of the form 
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The coefficient of variation of this Gamma distribution for delay d is  
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Eq. (3) can be normalized for d* = d / E(d). Thus, 
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Eq. (7) is a function of only one parameter p = 1/CVd
2. It is independent of the mean 

delay E(d). The corresponding probability distribution function of Eq. (7) is then 
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This function cannot be calculated easily. However, spreadsheet software (i.e. EXCEL) 
can be used in order to establish a graph (Figure 2). This graph has only one parameter, the 
coefficient of variation of the delay CVd.  
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FIGURE 2  Graph for the normalized Probability Distribution Function (PDF) of the 
shifted Gamma distribution. Example: d* = 1.2, CVd = 0.8  F(d*) = 0.69. 
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For the special case that tf is considered as deterministic, the following relationships are 
always true: 

)d(Et)t(E fT    (9) 

medianfmedian,T dtt    (10) 

percentilefpercentile,T dtt    (11) 

To reduce the risk of being late at the destination, the driver needs to allow rather more 
time than the mean travel time. The travel time unreliability increases with the widening (the 
longer the tail) of the travel time distribution. Hence, indicators representing travel time 
reliability are usually defined based on parameters of the travel time distribution. 

Using Figure 2, the probability of trips on time can be obtained given the value of CVd 
and a permitted delay dperm = d*  E(d) . For the example depicted in Figure 1 we have 
tf = 20 min, E(t  a) = E(d) = 5 min, and Var(d) = 16 min2. The probability of trips on time for 
permitted delay dperm = 6 min is 0.69 (d* = d*  E(d) = 6/5 = 1.2, CVd = SD(d)/E(d) = 160.5/5 
= 0.8). Thus, the probability of trips on time for a travel time tT = tf + dperm = 20 + 6 = 26 min is 
0.69. 

The reverse function of Eq. (8) yields the permitted delay given a value of CVd and a 
probability of trips on time. A graph can also be constructed for this function (Figure 3).The 
curve for a probability of 0.5 for trips being on time indicates the median value of the delay, 
dmedian.  
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FIGURE 3  Graph for permitted delay. Example: CVd = 0.8, F(d*) = 0.9  d*=2.06. 
 

For the same example above, if a probability of 0.9 for trips being on time is required, a 
delay dperm = d* = E(d) = 2.06  5 = 10.3 min or a travel time tT,perm = tf + dperm = 30 + 10.3 
= 30.3 min must be permitted. The median travel time is tT,median = tf + dmedian = 20 + 0.8  5 
= 24 min. It is less than the mean travel time (tf + E(d) = 20 + 5 = 25 min). 
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For calculating the travel time, a suitable model should be used. This can be obtained 
from the literature. For example, a well-known function for calculating the travel time is 
provided by the Bureau of Public Roads (38). The BPR function is 

     xttx1tt fffT  (12) 

with tT = link travel time 
tf = free-flow link travel time 
x = degree of saturation 
 = q / c  
q = link flow rate 
c = link capacity 

The coefficients  and  can be set to commonly used default values 0.15 and 4. They 
can also be calibrated against field data. According to Eq. (12), the delay within a link is 

  xtd f  (13) 

The standard deviation within a route is normally unknown. In the following section, a 
model for estimating the standard deviation of route travel time is introduced. 

STANDARD DEVIATION OF ROUTE TRAVEL TIME 

Using the normalized shifted Gamma distribution presented in the previous section, the travel 
time, its percentiles and thus the reliability can be easily expressed as a simple function of the 
coefficient of variation of the travel time. Here, we concentrate on how the coefficient of 
variation of the travel time can be estimated. For doing this, a model for estimating the standard 
deviation of the total travel time within a freeway route (37) is reintroduced in the following. 

The travel time on a route consisting of several links can be determined based on the 
travel times of the links (see Figure 4). 

 
 

     
FIGURE 4  Composition of the travel times and their variances over a route with several 
links. 
 

In general, the travel time tT within a link can be considered as a superposition of the 
free-flow travel time tf and the delay d within the link. The free-flow travel time tf depends on 
the length L of the link and the free-flow speed vf. The delay d is a function of the demand flow q 
and the capacity c of the considered link. Thus, the following applies. 
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Here, tT, tf, and d are defined as the means of the regarded random variables.  
The travel time tf in free-flow conditions corresponds to the reciprocal of the free-flow 

speed vf and can be considered as Gamma distributed. The delay d caused by the demand flow q 
is approximately equal to the waiting time from queuing theory. It can be described by an 
exponential or a Gamma distribution. The total travel time tT as the sum of the free-flow travel 
time tf and the delay d can be considered as Gamma distributed as well. 

For a route consisting of n links, the total travel time of the route can be calculated as (see 
Figure 4): 

 )dt(tt if
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with  tT,route = total travel time of the route 
tT,i = total travel time of the link i 
tf,i = free-flow travel time of the link i 
di = delay of the link i 

For the individual links, the free-flow travel time tf and the delay d within the links are 
considered to be either exponential or Gamma distributed. Thus, according to the theory of 
statistics, the variance of the travel time T,route

2 over the entire route is equal to the sum of the 
variances of all links T,i

2 in case the individual links are independent of each other. That is, 
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with  T,route
2 = variance of the total travel time for the entire route 

T,i
2 = variance of the total travel time of link i 

f,i
2 = variance of the free-flow travel time of link i 

d,i
2 = variance of the delay of link i 

The travel time tT and its components tf and d from two adjacent links are not always 
independent of each other. In particular, the delays d of two adjacent links can be closely 
correlated with each other because they are usually functions of the same traffic demand q. In 
case of dependent adjacent links we have: 
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with  kT,i,i+1 = correlation coefficient of the total travel time of two adjacent links 
kf,i,i+1 = correlation coefficient of the free-flow travel time of two adjacent links 
kd,i,i+1  =  correlation coefficient of the delay of two adjacent links 
kf,d,i  =  correlation coefficient of free-flow travel time and the delay within a link 
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The value of kf,d,i is normally very small. The values of kT,i,i+1, kf,i,i+1, and kd,i,i+1 are 
usually also very small if only links of sufficient lengths are considered. Normally they can be 
neglected (k  0) for simplification.  

The total travel time tT,route of the route must also correspond to a Gamma-like 
distribution. Moschopoulus (39) gives an exact expression of this distribution. However, this 
expression is very complex and an explicit solution is not available for practical uses. Thus, a 
shifted Gamma distribution is utilized also for the total travel time tT,route as a simplification. The 
values of the here listed times tT, tf, d and their variances T

2, f
2, d

2 can be modelled 
theoretically for the individual links. They can also be determined directly by measurement or 
simulation. Here tf is only dependent on the road type of the link and d on the road type and the 
demand flow. The total travel time of the route tT,route and its variance T,route

2 can be determined 
e.g. by GPS measurements or license plate recognition. By comparing the variance of the total 
route travel time T,route

2 with the variances T,i
2 (or f,i

2 and d,i
2) of the individual links, the 

correlation coefficients of the travel time within a link or between two adjacent links can be 
estimated according to Eq. (17). 

The variance of the travel time T
2 provides a measure of the reliability or unreliability of 

travel time. It is a function of the demand flow q. The relationship can also be observed in 
reality. If the travel times and their variances of the individual links are known, the travel time 
and the variance of the total route can be calculated by summation. With the calculated total 
travel time tT,route, the total variance T,route

2, the distribution function of the total travel time (e.g. 
a Gamma distribution or approximately a normal distribution) and also the required percentile of 
the total travel time can be determined. 

In order to investigate the behavior of a link travel time in relation to the length of the 
link, N sub-segments s with a unit length of L = 1 and identical travel time tT,s and variance T,s

2 
are considered within the links. This gives now 
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with s,d,fs,ds,fs,T kkkk  (cf. Eq. (17)). Thus,  

 Nk21N)k21( s,Ts,Ts,Ts,TT   (20) 

N can be interpreted as the total length of the link or the number of sub-segments in the 
link under consideration. The term (kT,s)N,N+1 is than the correlation coefficient of the travel time 
to the following link. That is, 
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Compared to the delay caused by a bottleneck, the variation of the free-flow travel time is 
very small. It can be neglected for simplification. Thus, 
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Eq. (23) can also be expressed as 

 

1TTItK

1
t

t
tKttK

f2

f

T
f2fT2

dT







 (25) 
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with  SDTTI  = standard deviation of travel time index 

 TTI =
f
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t
= travel time index  (27) 
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Eqs. (23) and (25) are only defined for tT  tf (TTI  1). The corresponding link travel 
time tT is considered as a shifted Gamma distributed. K2, d,s, and ds can be measured in the field 
or estimated by simulation. Then, the covariance coefficient kd,s can be calculated as  
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Accordingly, the coefficient of variation of the link travel time is 
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Once the parameter K2 (or K3) is calibrated with field data, the covariance coefficient k 
and thus the dependence between the travel times in adjacent sub-segments is incorporated into 
K2. Thus, for f = 0, Eq. (17) for calculating route variance of travel time can be formulated as: 

    



n

1i
i

2
i,2

n

1i

2

ii,2
2

tot,d
2

tot,T dKdK  (30) 

CALIBRATION OF THE STANDARD DEVIATION FROM FIELD DATA 

According to Eq. (23), the standard deviation T of a link is a concave function of the link travel 
time tT. For the example shown in Figure 5 (40), the relationship is exactly a square function. 
Using the data depicted in Figure 5, Eq. (23) becomes 

 6.13t52.3ttK TfT2dT   (31) 

with K2 = 3.52 and tf, = 13.6 min. The corresponding coefficient of determination is 
R2 = 0.9349. The goodness of fit is much better than the linear regression with R2=0.8908. This 
linear function is unreasonable, since it contradicts the theoretical basis derived above. 
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FIGURE 5  Dependence of the standard deviation T from the travel time tT (Data: 
Freeway Den Haag – Utrecht, Netherlands, Source: (40)). 
 

Eq. (31) yields 

 1TTI95.01TTI
6.13

52.3
1TTI

t

K

tt

ttK

tt
SD

f

2

ff

fT2

f

d

f

T
TTI 








    (32) 

That is, from Eq. (23), the total travel time of the link may have a shifted Gamma 
distribution (cf. Eq. (1)) with the parameters  

 6.13ta f  , 081.0
K

1

)at(Var

)at(E
2

2





  and   

 d081.0)6.13t(081.0
K

)at(

)at(Var

)at(E
p T2

2

T
2








  

For using the graphs (Figure 2 and Figure 3), only the parameter CVd is required: 

 
d

52.3

d

K
CV 2

d   

In Figure 6, other data examples from three bottleneck sections on a German freeway are 
depicted. In these data, the delays are directly measured. Thus, the relationship of standard 
deviation to delay can be expressed as 

 dtKdK f32dT    (33) 

9349.0R

6.13t52.3

2

TT




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FIGURE 6  Dependence of the standard deviation T = d from the total delay d (Data of 
freeway A 5, Germany, Source: (41)) 
 

The values of K2 and K3 for the examples in Germany are given in Table 1. The values of 
K3 are different but comparable (cf. also the value of K3 in Eq. (32)). That means the freeway 
links have different but comparable characteristics. 

 
TABLE 1  Parameters of the example bottleneck sections in Germany. 

Name 
Length Free-flow speed Free-flow travel time

K2 K3 R2 
L [km] vf  [km/h] tf [min] 

A5 S - 1 9 120 4.5 2.44 1.15 0.91 
A5 S - 2 14.8 120 7.4 2.33 0.86 0.92 
A5 S - 3 8.8 120 4.4 2.57 1.23 0.92 

 
Using the data depicted in Figure 7 (42), Eq. (26) becomes 

 1TTI6917.01TTIKSD 3TTI     (34) 

with K3 =0.6717 and a corresponding coefficient of determination R2 = 0.7380. 
In general, the value K3 is site-specific and depends on the prevailing traffic and control 

conditions as well as geometric factors such as number of lanes, distance of access points, grade, 
lane widths, shoulder widths, and sharpness of horizontal and vertical curves. A large K3-value 
reflects the fact that the distances between the bottlenecks (i.e. distances between access points) 
are smaller and thus the delay per kilometer is larger. 
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FIGURE 7  Dependence of the standard deviation of travel time SDTTI on the travel time 
index TTI for a US freeway (Source: (42), TTI = Travel Time Index) 

PROCEDURE FOR ESTIMATING RELIABILITY OF A ROUTE 

For practical application, the following procedure can be recommended for determining the 
reliability in a route consisting of several homogenous links:  

1. Estimation of input parameters for the single links 
a. Length L in (km) 
b. Free-flow speed vf in (km/h) 
c. Free-flow travel time tf in (min) ( 60v/Lt ff  ) 

d. Parameter K3 or parameter K2 ( f32 tKK  ) 

e. Demand q in (veh/h) 
f. Capacity c in (veh/h) 

2. Estimation of output parameters for the links 
a. Calculation of the average delay d caused by demand using a suitable model (i.e. 

using the BPR function, Eq. (13))  
b. Calculation of the mean travel time tT ( dtt fT  ) 

c. Calculation of the standard deviation of delay d (Eq. (23) or (25)) 
d. Calculation of the coefficient of variation of delay CVd (Eq. (29))  
e. Determination of the median (dmedian) or percentiles (d80 or d90) of the delay using 

Figure 3 (or using a spreadsheet) 
f. Determination of the median (tT,median) or percentiles (tT,80 or tT,90) of the travel 

time (Eqs. (10) and (11)) 
3. Estimation of output parameters for the route consisting of the links 

a. Calculation of the total average delay  

 ddroute  

7380.0R

1TTI6917.0SDTTI

2 


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b. Calculation of the mean travel time 

 Troute,T tt  

c. Calculation of the standard deviation of delay  

 droute,d  

d. Calculation of the coefficient of variation of delay CVd,route 

route,droute,droute,d /CV   

e. Determination of the median (dmedian,route) or percentiles (e.g. d80,route or d90,route) of 
the delay using Figure 3 (or using a spreadsheet) 

f. Determination of the median (tT,median,route) or percentiles (e.g. tT,80,route or tT,90,route) 
of the travel time (Eqs. (10) and (11)) 

For an example calculation, we consider a route of freeway A 5 in Germany, consisting 
of 3 subsequent bottleneck sections. The BPR function is applied for calculating the travel time. 
The input parameters and the results of the example are given in Table 2. 
 
TABLE 2  Parameters and calculation results for the example links. 

 Link i A5 N - 2 A5 N - 3 A5 N - 4 total (route) 

pa
ra

m
et

er
s 

Length L [km] 5.5 14.8 12.1 32.4 
FFS vf [km/h] 120 120 120 - 

Free-flow travel time tf [min] 2.75 7.40 6.05 16.2 

Parameter K3 0.97 1.10 0.54 - 

Parameter K2 1.62 3.01 1.32 - 
Demand q [veh/h] 4800 5500 5400 - 
Capacity c [veh/h] 5400 5600 5400 - 

re
su

lt
s 

Delay by demand [min] 0.26 1.03 0.91 2.20 
Total mean delay d [min] 0.26 1.03 0.91 2.20 
Mean travel time tT [min] 3.01 8.43 6.96 18.40 

SD of delay d [min] 0.82 3.05 1.26 3.40 
CVd [-] 3.19 2.96 1.39 1.55 

dmedian [min] 0.00 0.01 0.43 0.83 
d80 [min] 0.17 0.86 1.49 3.56 
d90 [min] 0.68 2.89 2.44 6.16 

tT,median [min] 2.75 7.41 6.48 17.03 
tT,80 [min] 2.92 8.26 7.54 19.76 
tT,90 [min] 3.43 10.29 8.49 22.36 

 
Comparing the values of tT,median, tT,80, and tT,90 (or other percentiles) with the mean travel 

time tT, the reliability of the freeway route is clearly defined. The route under consideration has 
an average travel time of 18.40 min. The median of the travel time is 17.03 min. It is smaller 
than the average because of the positive skewness of the travel time distribution. The 90th 
percentile travel time is 23.36 min.  
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CONCLUSIONS 

The travel time of a link or route can be considered as shifted Gamma distributed. Given the 
coefficient of variation of those distributions, the probability of trips on time and thus the 
reliability of travel time can be assessed. For estimating the coefficient of variation, the variance 
or standard deviation of travel time is required. For a whole route consisting of several individual 
links, the variance of the total route travel time can be calculated as a superposition of the 
variances of the individual links. Using the variance or standard deviation of travel time as an 
indicator of reliability, the reliability of a route or a network can be assembled from the 
reliability of the individual links. If the reliability (here represented by the variance or standard 
deviation of the travel time) for each type of road – empirically and theoretically – can be 
determined, the reliability of a route or a network can be easily estimated according to the 
proposed model. It was shown that the total standard deviation is not a linear but a concave (e.g. 
square) function of the total travel time. A model for estimating the standard deviation of travel 
time within a route and the parameters of the corresponding travel time distribution was 
presented. The application of the procedure for assessing travel time reliability of freeway 
networks was demonstrated for an example freeway route consisting of three links. 

Statistical independence between the link travel times is assumed for simplification in the 
paper. This assumption is only required for links within a route and is not critical because a link 
normally has a significant length. The independence between sub-segments (which can be very 
short) within a link is not required and can be taken into account by parameters K, K2 and K3 of 
the proposed model. 
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