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ABSTRACT 

Hitherto, the stochastic nature of freeway capacity was mainly analyzed at specific points which 
are considered as bottlenecks. The stochastic relationship between the adjacent bottlenecks was 
not taken into account. The paper introduces a concept for the stochastic interpretation of 
capacity and breakdown probability within a larger freeway network consisting of several 
combined bottlenecks. The stochastic methodology presented delivers a theoretical average 
capacity and the probability of breakdown for freeway segments with different lengths. The 
methodology can also be used to identify the effects of consecutive freeway segments and 
bottlenecks such as on-ramps, off-ramps, and weaving areas with different characteristics. Using 
the proposed method, it is possible to determine the breakdown probability as a function of the 
average volume or density. Hence, the risk of traffic flow disturbance along a freeway segment 
or within a freeway network can be analyzed. 
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INTRODUCTION 

The capacity of a freeway is traditionally considered as a constant value in traffic engineering 
guidelines like the Highway Capacity Manual HCM (1). Recent investigations show that even 
under constant external conditions, different capacities can be observed on freeways (2, 3, 4, 5, 
6, 7, 8). Most of these authors only observed traffic breakdowns at different flow volumes to 
demonstrate the variability of flows preceding a breakdown. 

A theoretical concept for a stochastic capacity analysis was proposed by Brilon et al. (9, 
10) based on ideas from Minderhoud et al. (3) and van Toorenburg (11). Geistefeldt and Brilon 
(12) demonstrated that this approach, which is based on statistical methods for censored data, 
delivers consistent stochastic capacity estimations. The approach has meanwhile been applied in 
a number of circumstances. Dong and Mahmassani (8, 13) used this concept to improve travel 
time predictions for route choice models with real-time traveler information. Elefteriadou et al. 
(14) applied probabilities for flow breakdown on freeways to develop pro-active ramp metering 
strategies. Brilon et al. (15) implemented a program system for large scale freeway network 
performance assessment applying the stochastic capacity concept. 

Thus, the stochastic understanding of capacity and the corresponding concept for the 
reliability of freeways becomes an important topic in the area of theoretical freeway capacity 
analysis including applications in practice. Here, capacity is understood as the traffic volume 
below which the traffic is fluid and above which – if exceeded by the demand volume – the flow 
breaks down into congested (stop-and-go or even standing) traffic conditions. The demand flow 
volume that causes breakdowns varies depending on driver behavior in conjunction with the 
specific local conditions on the freeway. The breakdown flow volume, i.e. the pre-breakdown 
capacity, is a random variable. Empirical analyses for German freeways show that this pre-
breakdown capacity can be treated as Weibull distributed with a nearly constant shape parameter 
representing the variance (10). The distribution of the pre-breakdown capacity can be identified 
using the product limit method (PLM) or by a maximum likelihood estimation (9, 10, 12). Using 
the distribution function of pre-breakdown capacities, the probability of traffic breakdowns and 
thus the reliability of the freeway can be estimated. 

The stochastic pre-breakdown capacity was mainly analyzed at specific points along the 
freeway which are considered as bottlenecks. The stochastic relationship between the adjacent 
bottlenecks cannot be taken into account. Furthermore, if a long segment of a freeway without 
clearly defined bottlenecks is analyzed, no methods are available for estimating the distribution 
of pre-breakdown capacities of combined bottlenecks along a freeway. Thus, a stochastic 
capacity analysis in a freeway network consisting of several freeway segments and series of 
bottlenecks is not possible. In order to overcome this problem, this paper introduces a model 
dealing with a stochastic interpretation of pre-breakdown capacity and breakdown probability in 
a freeway network with long freeway segments and series of bottlenecks. 

The model is based on the theory of continuity. Using the fundamental relationship of 
traffic flow (volume = density times speed), the probability distribution function of breakdowns 
from free flow into congested flow at a given traffic density can be estimated if the probability 
distribution functions of the pre-breakdown capacity and the pre-breakdown critical speed are 
given. The breakdown probability distribution as a function of the pre-breakdown traffic density 
can be estimated numerically for an arbitrarily distributed pre-breakdown capacity and critical 
pre-breakdown speed. 
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Similar to the derivation of a theoretical transformation between bottleneck-related 
breakdown probabilities for different interval durations, a transformation between link-related 
breakdown probabilities for different lengths of freeway segments can be constructed. It can be 
derived that the average pre-breakdown capacity and the breakdown probability are functions of 
the length L of the freeway segment under consideration. The average pre-breakdown capacity of 
the freeway segment decreases with an increasing length of the freeway segment under 
consideration. This decrease is not linear. 

At first, a summary of the methods for stochastic capacity analysis at a single bottleneck 
is presented. The bottleneck-related model of stochastic capacity is extended to link-related 
models for freeway segments. Next, an approach for estimating reliability of large freeway 
networks over a longer period is presented and a discussion regarding the temporary and spatial 
independences of the breakdown probabilities is given. Finally, the main findings and results of 
the paper are presented in the conclusion.  

BOTTLENECK-RELATED MODEL OF STOCHASTIC CAPACITIES 

Pre-breakdown capacity for an isolated bottleneck 
To describe the capacity as a random variable, its distribution function is required. However, the 
pre-breakdown capacity cannot be directly obtained from field measurements, which deliver only 
pairs of values of traffic volumes and average speeds during predetermined intervals. According 
to the definition of pre-breakdown capacity, the observed flow volume will be below the pre-
breakdown capacity if the average speed is above a certain threshold value (e.g. 70 km/h). When 
the average speed is lower than this threshold value, the traffic flow is congested. Thus, the flow 
volume must have exceeded the pre-breakdown capacity during the time between two such 
intervals. Higher flow volumes are less likely to be measured in the field since a breakdown is 
likely to have happened before. Both effects make it difficult to estimate the pre-breakdown 
capacity distribution function, which is defined as (9, 10): 

)qc(P)q(Fc   (1) 

where  Fc(q) = pre-breakdown capacity distribution function 
c = pre-breakdown capacity (veh/h) 
q  = traffic volume (veh/h) 

A practicable method for estimating Fc(q) was first presented by van Toorenburg (11), 
see also Minderhoud et al. (3), and extended by Brilon et al. (9, 10). The method is based on the 
statistics of censored data, which is commonly used in lifetime analysis and renewal theory. 
Lifetime distributions are often estimated by experiments of limited durations. Thus, lifetimes of 
individuals in the population that exceed the duration of the experiment cannot be measured. It is 
only possible to state that these lifetimes are longer than the duration of the measurement. Those 
data are called ‘censored data’ (16). The ‘uncensored data’ are directly measured lifetimes. 

If a traffic breakdown is considered as a failure event, the statistics for censored data can 
be used to estimate the pre-breakdown capacity c, which is the analogue of the lifetime. Here, the 
‘censored data’ are the measurements where the capacity c is greater than the observed traffic 
demand q. The ‘uncensored data’ are pre-breakdown capacities that can be observed directly. 



Wu, Geistefeldt 5 
 
 

To estimate distribution functions based on samples that include censored data, both non-
parametric and parametric methods can be used. A non-parametric method to estimate lifetime 
function is the so-called ‘product limit method’ PLM (17). This method can also be adapted for 
estimating the pre-breakdown capacity distribution function. For details of the method, readers 
are referred to Brilon et al. (9, 10). 

The PLM does not need a specific type of distribution function. However, if the type of 
the distribution is given, the parameters of the distribution can be estimated with the maximum 
likelihood method. Here it is necessary to know the mathematical expression of the distribution 
function Fc(q). By comparing different types of functions based on the maximum value of the 
likelihood function, the Weibull distribution turned out to be the function that best fits the 
observations on all freeway segments under investigation (9, 10). The Weibull distribution 
function for the pre-breakdown capacity c can be expressed as 

  c
c/q

c e1)cq(P)q(F
   for q ≥ 0  (2) 

where 
c = shape parameter of the Weibull distribution 
c = scale parameter of the Weibull distribution (veh/h) 

The function 

c

c

q

cc e)q(F1)cq(P)q(S
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



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






   for  q ≥ 0  (3) 

is called the survival function which describes the probability that the random variable q is larger 
than a given threshold c. 

The mean value of the Weibull distribution is 
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   (5) 

The median value of the distribution is 

  cc /1
c

/1
cmedian 693.0)5.0ln(c      (6) 

In Fig. 1, the pre-breakdown capacity distributions are illustrated for two freeways in 
Germany (9, 10). The shape parameter c in the Weibull distribution typically ranges between 10 
and 20. An average value of c = 13 was recommended for all types of freeways in order to ease 
mathematical derivations (9). This value, in the subsequent context, is used as an example to 
demonstrate consequences of this parameter c on other characteristic variables. 
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Considering the shape parameter c as a constant, we can transform the pre-breakdown 
capacity distribution function for different interval durations cf. (9). According to Eq. (1), we 
define Fc,5(q) as the probability of a breakdown during = 5 minutes at flow volume q. Hence, 
p5,nbr = 1 – Fc,5(q) is the probability of no breakdown occurring in this interval. Assuming an 
independence between traffic breakdowns in the 12 succeeding 5-minute intervals within an hour 
yields: 

   12
5,c

12
nbr,5nbr,60 )q(F1PP     (7) 

Using the Weibull distribution, i.e. Eq. (2), yields 
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which is again a Weibull distribution with an unchanged shape parameter c and a scale 
parameter  c ,60 = r  c,5, where r = 12(-1/c). In general we have the transformation 

c
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where T is the duration of the output interval and  the is duration of the input interval (9). 
 

Sequences of bottlenecks 
The breakdown probability distribution function for a sequence of freeway segments can be 
derived for the case of a constant shape parameter c of the capacity distribution function of each 
sub-segment (9). In general, the survival function for an isolated point i which is treated as a 
bottleneck is 
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For successive sub-segments along the freeway where each sub-segment is treated as one 
bottleneck, the survival function for this chain of n bottlenecks is 
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This equation describes the probability that no breakdown occurs at any of the n 
bottlenecks. The combined survival functions can be used for defining the reliability of a 
freeway network. Here we assume that the distribution functions and thus the survival functions 
at different bottlenecks are independent of each other. This assumption is not critical if the 
bottlenecks are located far enough from each other. 

Generally, the mean volumes qi at different bottlenecks can have different values. For the 
special case that all qi= q, for example along a single freeway segment, we obtain 
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 
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However, the resulting distribution function Fc,n(q) = 1 – Sc,n(q) is no longer a Weibull function 
as long as c and c are specific for each bottleneck i, but has always a Weibull-like shape. 

Normally, the shape parameters c can be approximately considered as constant for all 
bottlenecks (9). That is c,i =c and 
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This combined survival function and the corresponding distribution function have the 
same shape parameter c as for the single bottlenecks. The scale parameter c of the 
corresponding distribution function Fc,n(q) = 1 – Sc,n(q) is 

c
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For a homogeneous freeway segment one can assume additionally c,i =c and thus, 
c

c

c nq
n

1i
cn,c e)q(S)q(S























  (16) 

and 

n,cc
c

n,c f
nc




   (17) 

where 

c n

1
f

c

n,c
n,c 




  (18) 

is the capacity reduction factor for n consecutive identical bottlenecks.  
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As mentioned above we consider the stochastic flow processes at different bottlenecks as 
independent of each other. This assumption is not always realistic. For two closely adjacent sub-
segments, the stochastic flow processes are expected to be highly dependent on each other. For 
statistically positive-dependent bottlenecks, the scale parameter of the combined distribution 
generally has a larger value, i.e. the combined distribution has a large mean value. If two 
bottlenecks are totally positive-dependent, the combined scale parameter is always equal to the 
scale parameters of the single bottlenecks. In this extreme case, the combination of two 
bottlenecks can be considered as a joint bottleneck. For statistically negative-dependent single 
bottlenecks, the effect might be the opposite. Those dependences can eventually be estimated by 
measurements under real-world conditions. 

LINK-RELATED MODEL OF STOCHASTIC CAPACITIES 

Pre-breakdown capacity of a single freeway segment 
According to the capacity estimation methods described in the previous section, the distribution 
function of pre-breakdown capacities at a single bottleneck can be determined. The capacity 
estimation technique can also be applied to traffic densities k instead of traffic volumes q. 
However, the traffic density cannot easily be observed in the field. For a homogeneous freeway 
segment under steady-state condition, the distribution function of the critical (pre-breakdown) 
density kc corresponds to the distribution function of the pre-breakdown capacity c. The 
fundamental relationship of traffic flow, q = k  v, is also valid for q = c; thus c = kc  vc or 
kc = c / vc where kc and vc are the corresponding critical density and critical speed at the pre-
breakdown capacity c. Therefore, the distribution function of the critical density Fkc(k) can be 
estimated if the distribution function of the pre-breakdown capacity Fc(q) and the probability 
distribution function of the critical speed Fvc(v) is given. That is, the density-related (link-related) 
breakdown distribution function for a freeway segment, Pbr(kc ≤ k) = Fkc(k), can be transformed 
from the flow-related (bottleneck-related) probability distribution function of breakdowns at an 
isolated bottleneck, Pbr(c ≤ q) = Fc(q). The density-related breakdown probability distribution 
function then is 
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cc
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 (19) 

The flow-related pre-breakdown capacity distribution Fc(q) is assumed to be a Weibull 
function. Here, any reasonable distribution for the critical speed vc can be used. For simplicity 
and in order to ease the derivation, we assume the critical speed vc to be Weibull distributed as 
an approximation. This assumption seems to be more reasonable than the usual assumption of a 
Normal distribution for speeds since Weibull is only defined for positive values. Moreover, 
Weibull reveals significant probabilities only for a narrow range of speed values with a rather 
sharp lower limit which seems to be an important attribute especially for the critical speed. Thus, 
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Using a constant critical speed vc, the transformation can be carried out analytically. The 
resulting density-related distribution function Fkc(k) is also a Weibull distribution. That is, 
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The density-related distribution function Fkc(k) can only be estimated numerically for a 
arbitrarily distributed critical speed vc. Using a mean value of vc = 80 km/h for the critical speed 
and a standard deviation (vc) = 5 km/h, which are common values in reality, we obtain the 
parameters vc = 82 km/h and vc = 20 for a Weibull distributed critical speed. Using c = 4532 
veh/h (from the example freeway, cf. Fig. 1a) and c = 13 for a two-lane freeway segment, 
Eq. (20) yields a Weibull-like but not exactly a Weibull distribution. This distribution can be 
approximated to a Weibull distribution with the parameter kc = 57 veh/km and kc = 10.7 (Fig. 
2a). For a three-lane freeway segment with c = 7170 veh/h (from the example freeway, cf. Fig 
1b) and c = 13, Eq. (20) yields a Weibull-like distribution with parameters kc = 89 veh/km and 
kc = 10.7 (Fig. 2b). 

It can be proven that the shape parameter of the critical density kc only depends on the 
shape parameters c and vc. The parameter kc is independent of the scale parameters kc, c, 
and vc. In Table 1, the parameters kc resulting from different combinations of kc and kc 
values are illustrated. Because the shape parameters c and vc can be approximately assumed to 
be constant values (e.g. c = 13 and vc = 20) for all types of freeway segments, the shape 
parameter for the critical density is also a constant (e.g. kc = 10.7).  

 
This result can be verified by real world measurements. Regler (18) conducted a field 

measurement using data from three-lane freeway segments. The median of the critical densities 
ranged from 70 to 90 veh/km with Weibull parameters kc = 8.4 through 13.2 and kc = 72 
through 92 veh/km for the analysis of 5-minute intervals. 

As a result we can state that the distribution of critical densities kc is approximately 
Weibull distributed with a shape parameter kc=10.7. That is, 
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where cckc v/ , kc = 10.7, and cv is the mean value of the critical speed vc.  
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This transformed distribution function is only valid for a length L of a freeway segment 
that corresponds to the analysis interval  for the pre-breakdown capacity. For example, if the 
scale parameter c,5 for the pre-breakdown capacity is obtained for 5-minute intervals, the 
resulting distribution function is only valid for a segment length of L = cv  = 80 km/h  5/60 
= 6.67 km. 

Similarly to the derivation of the theoretical transformation between bottleneck-related 
breakdown probabilities for different interval durations, a transformation between link-related 
breakdown probabilities for different lengths of freeway segments can be constructed. The 
probability function of breakdowns for a freeway segment of length L can be expressed as 
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with the scale parameter  
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Eq. (23) describes the probability that no breakdown occurs on a freeway segment of 
length L within a time interval . The parameter c, is the scale parameter of the Weibull 
distributed pre-breakdown capacities estimated in -minute intervals. 

For  = 5 min =1/12 h, cv = 80 km/h, L = 6.67 km, and kc = 10.7, we get  
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This equation can be transformed into 
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For two freeway segments of lengths L1 and L2, we obtain the relationship 
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This means e.g.: if the length L2 of the freeway segment is double the length of L1, the 
scale parameter kc of the density (and capacity) is reduced by the factor 7.10 2/1 = 0.937. 
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Fig. 3 shows the parameters kc,L and c,L, which indicate the critical density and the 
corresponding pre-breakdown capacity as a function of length L for a two-lane freeway segment. 
It can be seen that the scale parameter  for the critical density kc and the corresponding scale 
parameter  for the pre-breakdown capacity c of the freeway segments decrease with increasing 
length of the freeway segment.  

 
Sequence of consecutive freeway segments 
The survival function for a single freeway segment j is 
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For  = 5 min = 1/12 h, cj,c vv  = 80 km/h, Lj= L = 6.67 km, and kc,j = kc = 10.7, we get  
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The survival function for m combined freeway segments then is 
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This equation describes the probability that no breakdown occurs on any of the m 
freeway segments during a 5-minute interval. The freeway segments can have different values of 
the capacity scale parameter c (or kc), density k, and length L. This can also be used for 
defining the reliability of a network. Here we assume again the distribution functions and thus 
also the survival functions at different freeway segments are independent of each other. 
Normally, for long freeway segments, this independence is given. 

ANALYSIS OF LARGE FREEWAY NETWORKS OVER LONG TIME PERIODS 

Using the approach for sequences of freeway segments, the reliability of a larger freeway 
network can be estimated over a long time period. All parameters used in this section are link-
related parameters, i.e. they are parameters for the freeway segments according to the previous 
section. However, these link-related parameters can be transformed from bottleneck-related 
parameters. 

The reliability of a larger freeway network can be defined as the probability that on any 
freeway segment within the network and at any time no breakdown occurs. According to this 
definition, the reliability can be expressed as the combined survival function of the pre-
breakdown capacity over time and space.  
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The survival function of the pre-breakdown capacity for a single freeway segment j over 
a time period i of duration Ti and a space-link of length Lj is (cf. Eqs. (10) and (23)) 
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For  = 5 min = 1/12 h, cij,c vv   = 80 km/h, Lj = L  = 6.67 km, and kc,j = kc=10.7 we get  

7,10

ij,5,c

ij
ij

7,10

ij,5,c

ijij

7,10

ij,5,c

ij
ij

7,10

ij,5,c

ijij

ji

q
TL8.1

q

12/1

T

67.6

L

80/

k
TL8.1

80/

k

12/1

T

67.6

L

ijijijLT

ee

ee)T,L),q(k(S




























































 (32) 

The survival function for m combined freeway segments and n intervals is 
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This equation describes the probability that in the time period of duration T = Ti and 
within a network of a total length L = Lj no breakdown occurs. The freeway segments j can 
have different values of scale parameter  for capacity, density k, and length Lj for different time 
period Ti. According to this formulation, a quantitative assessment of the reliability in a large 
network over a long period can be conducted.  

DISCUSSIONS 

The temporary and spatial independence of the breakdown probabilities are pre-assumptions for 
the derivations in this paper. Those assumptions are only approximations and they are not always 
realistic. Nevertheless, those assumptions are reasonable under certain pre-conditions, which is 
discussed in the following. 

 
Temporary independence of breakdown probabilities in succeeding intervals  
Generally, the assumption about independence between breakdowns (actually the probabilities of 
no-breakdowns are needed) in succeeding intervals (i.e. within one hour) can be considered as 
reasonable because: 

1) According to the definition, a breakdown can only occur in free-flow conditions. 
Normally, the traffic flow under free-flow conditions can approximately be considered as 
independent of each other. 

2) From the theoretical point of view, the probability of breakdowns (or no-breakdowns) 
is defined by the capacity distribution function at a cross-section. The capacity is then defined by 
the average time headway within consecutive vehicles thus by the car-following behaviors of the 
vehicles. Since the car-flow behaviors of a given driver population are generally considered as 
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time-independent, the capacity distribution is also time-independent and thus the probability of 
breakdowns is time-independent as well. 

3) From the empirical point of view, the probabilities of breakdowns in different time 
intervals are independent of each other because the observed breakdowns are always isolated 
events. The observation procedure requires free-flow pre-breakdown and congested post-
breakdown traffic conditions. The process of breakdowns is a renewal process and hence time-
independent (9). 

 
Spatial independence of breakdown probabilities in series of bottlenecks  
The breakdown probabilities at different bottlenecks and on different freeway segments cannot 
generally be considered as independent of each other. However, if only bottlenecks with long 
distances in between or only long freeway segments are investigated, the breakdown 
probabilities can be considered as nearly independent of each other. 

The breakdowns can occur at any possible locations along a freeway segment. Certainly, 
the breakdown probability at a location with lower capacity is higher than at a location with 
higher capacity. Sometimes, those capacity bottlenecks can be more decisive for the traffic flow 
under consideration. However, also the spontaneous traffic breakdowns along a long, 
homogenous freeway segment have to be investigated. The probabilities of breakdowns at 
particular bottlenecks und along freeway segments can be combined in order to investigate the 
total breakdown probability of a network. 

 
Applicability  
The stochastic concept of breakdown capacity is, meanwhile, also a basis of applications for 
practice. E.g. Elefteriadou et al. (14) derived innovative proactive ramp metering algorithms 
based on breakdown probabilities. Their simulations revealed improvements for freeway flow 
performance. Within this concept, the effects of breakdown probabilities combined over 
successive bottlenecks along the freeway, including ramps and weaving sections, might allow 
further insights. 

Brilon et al. (15) developed a macroscopic simulation concept on behalf of the German 
Federal State of Hesse to assess the statewide freeway network performance over longer periods, 
e.g. one year. Here, also breakdown probability distribution functions were calibrated for those 
parts of the network which suffer frequent congestions. These stochastic descriptions of the 
capacity have been contrasted to locally specified patterns of traffic demand over the year. This 
project was the starting point for the considerations described in this paper. For this project the 
lengths of freeway segments and the interference between successive bottlenecks had to be 
modeled by stochastic approaches. Within this concept, the influence of freeway segment length, 
as pointed out this paper, constitutes a necessary input.  

Also the context of the macroscopic network-wide parameters derived in this paper is 
important for comparisons of network performance over the years and between several parts of 
the network. These comparisons in practice are requested from a superior view of transportation 
policy.  

In addition, for traffic control considerations, the paper offers the message that activities 
– either by technical devices or by driver education – to influence the breakdown distribution 
function could help to improve the reliability of freeways. Here it is not only an increase of the 



Wu, Geistefeldt 14 
 
 
average capacity – which usually is difficult to attain – but also a reduction of the variance which 
helps to improve network reliability.  

CONCLUSIONS 

Using a theoretical approach, a methodology for the assessment of reliability within a freeway 
network was introduced. The stochastic methodology presented allows for a derivation of a 
theoretical average pre-breakdown capacity and breakdown probability for freeway segments 
with different lengths. This link-related methodology can also be used to identify the effects of 
consecutive freeway segments and bottlenecks such as on-ramps, off-ramps, and weaving areas 
with different characteristics. As a result, the stochastic relationship between several adjacent 
bottlenecks can be taken into account. Furthermore, a long segment of a freeway without clearly 
defined bottlenecks can be analyzed.  

Using this method, it is possible to determine the probability distribution function of 
breakdowns from free flow into congested flow conditions for a freeway segment as a function 
of the average pre-breakdown density. This link-related breakdown probability distribution can 
be estimated by transforming the distribution function of pre-breakdown capacities measured at 
isolated bottlenecks. It turns out that the link-related pre-breakdown capacity distribution (a 
Weibull-like distribution) has a smaller scale parameter and, thus, a lager variance than the 
bottleneck-related capacity distribution. 

Using the methodology presented in this paper, the risk of disturbance of traffic flow 
(breakdowns from free flow into congested flow) along a freeway segment and within a freeway 
network can be estimated and analyzed. The reliability of a freeway network can be estimated 
quantitatively. The paper demonstrates basic probabilistic considerations which – for practical 
application – must be based on breakdown probability functions calibrated for the important 
parts of the network. 
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TABLE 1  Parameters kc resulting from different combinations of c  and vc values. 

 

 vc

c 10 15 20 25 
10 6.81 8.1 8.77 9.15 
13 7.65 9.56 10.66 11.32 
16 8.21 10.66 12.21 13.21 

vc  (km/h) (vc = 80 km/h) 9.6 6.5 5.0 4.0 
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a) Two-lane freeway (c = 14.1 and c = 4532 veh/h) b) Three-lane freeway A3 (c = 12.1 and  c = 7170 veh/h) 

FIGURE 1  Estimated pre-breakdown capacity distribution functions in 5-minute intervals 
for two German freeway bottlenecks (9, 10). 
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a) Two-lane freeway segment b) Three-lane freeway segment 

FIGURE 2  Numerically estimated distribution function of critical densities (Fkc(k)) and its 
approximation as a Weibull distribution (Fkc(k)*) 
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a) scale parameter kc,L for critical density kc 

 
b) scale parameter c,L for the corresponding pre-

breakdown capacity c 

FIGURE 3  Scale parameter  as a function of the length of the freeway segment L 
 


