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ABSTRACT 

The capacity of a freeway is traditionally considered as a constant value in 
traffic engineering. In reality, capacities vary according to external conditions. Even 
under constant external conditions different capacities can be observed on freeways 
because of variations in driver behaviors. A capacity in this sense is no longer a 
constant value. Empirical analyses of traffic flow patterns show that this type of 
capacity can be treated as Weibull distributed. Using the distribution function of 
capacities, the probability of traffic breakdowns and thus the reliability of the 
freeway can be estimated. However, the stochastic capacities have been mainly 
analyzed at specific points which are considered as bottlenecks. The stochastic 
relationship between the adjacent bottlenecks has not been taken into account. If a 
long segment of a freeway without clearly defined bottlenecks is analyzed, no 
methods are available for estimating the distributed capacities of several combined 
bottlenecks along a freeway.  

This paper introduces a concept dealing with the stochastic interpretation of 
capacity and breakdown probability within a larger freeway network. The stochastic 
methodology presented delivers a theoretical average capacity and the probability of 
breakdowns for freeway segments with different lengths. The methodology can also 
be used to identify the effects of consecutive freeway segments and bottlenecks such 
as on-ramps, off-ramps, and weaving areas with different characteristics. Using the 
proposed method, it is possible to determine the probability distribution function of 
breaking down from free flow into congested flow for a freeway segment as a 
function of the average volume or density. Using the methodology presented in this 
paper, the risk of disturbance of traffic flow along a freeway segment or within a 
freeway network can be analyzed.  

 
Keywords: Stochastic capacity; Reliability; Freeway; Continuum theory 
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INTRODUCTION 
Capacities of freeways are traditionally considered as constant values in 

traffic engineering guidelines around the world, for example in Highway Capacity 
Manual (Transportation Research Board, 2000), hereafter referred to as HCM. 
Treating capacities as constant values was questioned by many researchers such as 
Ponzlet (1996) who demonstrated that capacities vary according to external 
conditions such as dry or wet road surfaces, daylight or darkness, and on the 
prevailing purpose of the freeway (long distance or metropolitan commuter traffic). 
Several authors affirmed that even under constant external conditions, different 
capacities can be observed on freeways (Elefteriadou et al., 1995; Minderhoud et al., 
1997; Persaud et al., 1998; Kuehne and Anstett, 1999; Lorenz and Elefteriadou, 
2000; Okamura et al., 2000; Dong and Mahmassani, 2009a). Most of these authors 
only observed traffic breakdowns at different flow volumes to demonstrate the 
variability of flows preceding a breakdown.  

A theoretical concept for a stochastic capacity analysis was proposed by 
Brilon et al. (2005) based on ideas from Minderhoud et al. (1997) and Toorenburg 
(1986). This approach has meanwhile been applied in a couple of circumstances. 
Dong and Mahmasani (2009a/b) used this concept to improve travel time predictions 
for route choice models with real-time traveller information. Elefteriadou et al. 
(2009) applied probabilities for flow breakdown on freeways to develop pro-active 
ramp metering strategies. Brilon et al. (2010) furnished a program system for large 
scale freeway network performance assessment applying the stochastic capacity 
concept.  

Thus, the stochastic understanding of capacity and the corresponding concept 
for the reliability of freeways becomes an important topic in the area of theoretical 
freeway capacity analysis including application in practice. Here capacity is 
understood as the traffic volume below which the traffic is free (fluent) and above 
which the flow breaks down into a congested (stop-and-go or even standing) traffic 
condition. The capacity in this sense is not a constant value. Empirical analysis of 
traffic flow patterns shows that this type of pre-breakdown capacity can be treated as 
Weibull distributed with a nearly constant shape parameter representing the variance. 
The distribution of pre-breakdown capacity can be identified using the so-called 
product limit method (PLM) or by maximum likelihood estimation techniques. Using 
the distribution function of pre-breakdown capacities, the probability of traffic 
breakdowns and thus the reliability of the freeway can be estimated. 

Stochastic pre-breakdown capacity has mainly been analysed at specific 
points along the freeway which are considered as bottlenecks. The stochastic 
relationship between the adjacent bottlenecks cannot be taken into account. 
Furthermore, if a long segment of a freeway without clearly defined bottlenecks is 
analysed, no methods are available for estimating the distributed pre-breakdown 
capacities of combined bottlenecks along a freeway. Thus, a stochastic capacity 
analysis in a freeway network consisting of several freeway segments and series of 
bottlenecks has not been possible. In order to overcome this problem, this paper 
introduces a model dealing with a stochastic interpretation of pre-breakdown 
capacity and breakdown probability in a freeway network with long freeway 
segments and series of bottlenecks. 
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The model is based on the theory of continuity. Using the fundamental 
relationship of traffic flow (volume = density  speed), the probability distribution 
function of breakdowns from free flow into congested flow at a given traffic density 
can be estimated if the probability distribution function of the pre-breakdown 
capacity and the probability distribution function of the pre-breakdown critical speed 
is given. The distribution function of breakdowns as a function of the pre-breakdown 
traffic density can be estimated numerically for an arbitrarily distributed pre-
breakdown capacity and pre-breakdown critical speed.  

Similar to the derivation of a theoretical transformation between bottleneck-
point-related breakdown probabilities for different interval durations, a 
transformation between link-related breakdown probabilities for different lengths of 
freeway segments can be constructed. It can be seen that the average pre-breakdown 
capacity and the probability of breakdowns are functions of the length L of the 
freeway segment under consideration. The average pre-breakdown capacity of the 
freeway segment decreases with an increasing length of the freeway segment under 
consideration. This decrease is not linear.  

At first, a summary of the stochastic capacity analysis at a point considered as 
a bottleneck is presented. Then the bottleneck-point-related model of stochastic 
capacity is extended to link-related models for freeway segments. Next, an approach 
for estimating reliability of large freeway networks over a longer period is presented 
and a discussion regarding the temporary and spatial independences of the 
breakdown probabilities is given. Finally, the main findings and results of the paper 
are presented in the conclusion.  

 
BOTTLENECK-POINT-RELATED MODEL OF STOCHASTIC CAPACITIES 

In this section, a summary of the stochastic capacity analysis at a bottleneck 
point along the freeway is discussed. 

 
Pre-breakdown capacity for an isolated bottleneck 

Corresponding to Transportation Research Board (2000), the capacity of a 
freeway is defined as the maximum flow volume that can be expected at a traffic 
facility under prevailing roadway, traffic, and control conditions. That is, the 
maximum flow volume could also be defined as the flow volume below which the 
performance of the facility is acceptable and above which normal operation is no 
longer possible. The transition between normal operation and non-acceptable flow 
conditions is called ‘breakdown’. On a freeway, breakdowns occur when the average 
speed falls below an acceptable speed level and the traffic becomes congested. These 
transitions usually cause a rather sudden speed reduction.  

Based on this definition, the capacity is no longer a constant value. The 
demand flow volume that causes breakdowns varies in real traffic depending on 
driver behaviour in conjunction with specific local conditions on the freeway. The 
breakdown flow volumes, i.e., the pre-breakdown capacities, are random variables. 
Thus, it is necessary to investigate the pre-breakdown capacity distribution function. 
Unfortunately, the pre-breakdown capacity itself cannot be easily measured in the 
field. Measurements on freeways deliver only pairs of values of traffic flow volumes 
and average speeds during predetermined intervals. According to the definition of 
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pre-breakdown capacity, the observed flow volume will be below the pre-breakdown 
capacity if the average speed is above a certain threshold value (e.g., about 70 km/h). 
When the average speed is lower than this threshold value, the traffic flow is called 
congested. Thus, the flow volume must have exceeded the pre-breakdown capacity 
during the time between two such intervals. Higher flow volumes are less likely to be 
measured in the field since a breakdown is likely to have happened before. Both 
effects make it difficult to estimate the pre-breakdown capacity distribution function, 
which is defined as: 

)()( qcPqFc   (1) 

where  Fc(q) = pre-breakdown capacity distribution function, - 

c = pre-breakdown capacity, veh/h 

q  = variable = flow volume, veh/h 

A practicable method for estimating Fc(q) was first presented by van 
Toorenburg (1986) and discussed by Minderhoud et al. (1997) and extended by 
Brilon et al. (2005). The method is based on the theory of lifetime analysis and 
renewal theory.  

Lifetime distributions are often estimated by measurements of limited 
durations. Thus, the lifetimes of individuals in the population which exceed the 
duration of the measurement cannot be measured. It is only possible to state that 
these lifetimes are longer than the duration of the measurement. This information is 
valuable. Those data are called ‘censored data’ (cf., e.g., Lawless, 2003). The 
‘uncensored data’ are directly measured lifetimes. 

If a traffic breakdown is considered as a failure event (a death case in sense 
lifetime science), the method of lifetime data analysis can be used to estimate the 
pre-breakdown capacity c, which is the analogue of the lifetime t. Thus, the 
‘censored data’ are the measurements where the capacity c is greater than the 
observed traffic demand q. The ‘uncensored data’ are pre-breakdown capacities that 
can be observed directly.  

The theory of lifetime data analysis can be used to estimate distribution 
functions based on samples that include censored data. A non-parametric method to 
estimate lifetime function is the so-called ‘product limit method’ (PLM) (Kaplan and 
Meier, 1958). This method can also be adapted for estimating the pre-breakdown 
capacity distribution function. For details of the method, readers are referred to 
Brilon et al. (2005). 

The PLM does not need a specific type of distribution function. However, if 
the type of the distribution is given, then the parameters of the distribution can be 
estimated by the method of maximum likelihood. Here it is necessary to know the 
mathematical expression of the distribution function Fc(q). By comparing different 
types of functions based on the maximum value of the likelihood function, the 
Weibull distribution turned out to be the function that best fitted the observations on 
all freeway segments under investigation. The Weibull distribution function for the 
pre-breakdown capacity c can be expressed as 
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where 

c = shape parameter of the Weibull distribution, - 

c = scale parameter of the Weibull distribution, - 

The function 
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is called the survival function which describes the probability that the random 
variable q is larger than a given threshold c. 

The mean value of the Weibull distribution is 
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and the variance is 
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The median value of the distribution is 

  cc

ccmedianc   /1/1 693.0)5.0ln(     (6) 

In Figure 1, two examples are illustrated for the pre-breakdown capacity 
distributions estimated from the PLM and the corresponding Weibull distribution. It 
can be seen that the Weibull distribution fits very well into the PLM estimation. 

For example, using this methodology, Brilon et al. (2005) have investigated 
quite a variety of freeways in Germany (Table 1). The analysis was based on 5-
minute measurements over several months. All sites are on extended three-lane 
freeway segments, mainly in level terrain. 

The shape parameter c in the Weibull distribution ranges from 9 to 15 with 
an average of 13 for German motorways. This magnitude applies also to two-lane 
freeways. This average value is recommended for all types of freeway as a constant 
(Brilon et al., 2005) in order to ease mathematical derivations. This value, in the 
subsequent context, is used as an example to demonstrate consequences of this 
parameter c on other characteristic variables. 
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Figure 1 – Estimated pre-breakdown capacity distribution functions for two 

freeways (each direction) according to PLM (5-minute intervals and dry roadway 
conditions, Source Brilon and Zurlinden, 2003). 

 Three-lane freeway 
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Table 1 – Parameters cc, expectation E(c), and standard deviation (c) of the 
estimated Weibull capacity distributions on 15 three-lane freeways (3 lanes each 
direction, 5-minute intervals, between 6 and 11 months for each site) in Germany 

Freeway segment c [veh/h] c [-] E(c) [veh/h] (c) [veh/h] 

A3-1 7441 11.31 7115 762 
A5-1 6217 11.15 5941 645 

A5-2 6074 13.59 5847 526 

A5-4 6608 13.92 6365 559 

A5-5 6392 14.16 6161 532 

A5-6 6272 14.69 6053 505 

A5-7 7194 13.98 6932 606 

A5-8 6884 13.35 6622 606 

A9-1 7937 8.85 7510 1013 

A9-2 7399 13.66 7124 637 

A9-3 5988 14.82 5780 478 

A9-4 6141 18.86 5969 392 

A9-5 6648 14.24 6409 551 

A9-6 7109 9.62 6752 842 

A9-7 6648 14.92 6419 528 

Source: Brilon et al. (2005) 
 

Considering the shape parameter c as a constant, we can transform the pre-
breakdown capacity distribution function for different interval durations  (Brilon et 
al., 2005). According to Eq. (1), we define Fc,5(q) as the probability of a breakdown 
during = 5 minutes at flow volume q. Hence, p5,nbr = 1 – Fc,5(q) is the probability of 
no breakdown occurring in this interval. Assuming an independence between 
breakdowns in succeeding intervals within an hour (60 minutes = 12 · 5 minutes) 
yields  

   12
5,

12
,5,60 )(1 qFPP cnbrnbr     (7) 

Using the Weibull distribution, i.e., Eq. (2), yields 
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and 
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which is again a Weibull distribution with an unchanged shape parameter c and a 
scale parameter  c ,60 = r c,5, where r = 12(-1/c). In general we have the 
transformation 

c

c

qT

eqF Tc


















 ,1)(|,   (10) 

where T is the duration of the output interval and  the is duration (cf. Brilon et al., 
2005) of the input interval. 

The expectation E(c) in Table 1 indicates the mean value of capacities under 
the condition that the traffic is not broken down. In reality, the expectation E(c), i.e., 
the mean values of the pre-breakdown capacity estimated from the PLM, cannot be 
achieved because the traffic flow would already break down at lower flows than E(c) 
with a certain probability.  

 
Sequences of bottleneck points 

In general, the survival function for an isolated point i which is treated as a 
bottleneck is 
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Now we look at successive sub-segments along the freeway where each sub-
segment is treated as one bottleneck point. If we look at this chain of bottleneck 
points simultaneously, the survival functions for n combined bottleneck points is 
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This equation describes the probability that no breakdown occurs at any of 
the n bottleneck points. The combined survival functions can be used for defining 
reliability of a network under consideration. Here we assume that the distribution 
functions and thus the survival functions at different bottlenecks are independent of 
each other. This assumption is not critical if the bottlenecks are located far enough 
from each other.   

Traffic reliability is an important factor for assessments of the performance of 
highway segments and systems. In many cases, the term ‘reliability’ refers to the 
variability of travel times. However, several definitions can be found in the literature. 
A comprehensive outline of these definitions is given by Shaw (2003). Here, traffic 
reliability is assessed by analysing the probability that at critical bottlenecks along a 
freeway link the traffic flow is not congested. However, the stochastic relationship 
between the adjacent bottlenecks cannot be taken into account. 
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Generally, the mean volumes qi at different bottlenecks can have different 
values. For the special case that all qi= q, for example along a single freeway 
segment, we obtain 
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However, the resulting distribution function Fc,n(q)=1-Sc,n(q) is no longer a Weibull 
function as long as c and c are specific for each bottleneck i. But it always has a 
Weibull-like shape. 

Normally, the shape parameters c can be considered as constant for all 
bottlenecks (Brilon et al., 2005). That is c,i =c and 

ca

nc

ca

ca
n

i

c

ic

n

i

ic

ic

qqq
n

i
cnc eeeqSqS































































 ,
1 ,

1

,

,

1

1
, )()(






 (14) 

This combined survival function and the corresponding distribution function 
has the same shape parameter c as for the single bottlenecks. As mentioned above 
we consider here the stochastic processes at different bottlenecks as independent of 
each other. This assumption is not always realistic. For two closely adjacent sub-
segments, the stochastic processes are expected to be highly dependent on each 
other. For statistically dependent single bottlenecks the shape parameter has in 
general a smaller value, that is, the combined distribution has a larger variance. 

The scale parameter c of the corresponding distribution function Fc,n(q)=1-
Sc,n(q) is 

c
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For a homogeneous freeway segment one can assume additionally c,i =c and thus, 
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where  
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fc,n is the capacity reduction factor for n consecutive identical bottlenecks.  
 
LINK-RELATED MODEL OF STOCHASTIC CAPACITIES 

In this section, the model of bottleneck-point-related stochastic capacity is 
extended to link-related models in order to investigate the interaction between sub-
segments along a freeway link which are treated as a series of bottlenecks.  

 
Pre-breakdown capacity of a single freeway segment 

According to the PLM described in the previous section, the distribution 
function of pre-breakdown capacities at a single bottleneck point can be estimated. 
The PLM for capacity estimation can also be applied to traffic densities k instead of 
traffic volumes q. Unfortunately, the density cannot easily be observed in the field. 
However, for a homogeneous freeway segment under steady-state condition, the 
distribution function of the critical density kc (pre-breakdown) corresponds to the 
distribution function of the pre-breakdown capacity c. The fundamental relationship 
of traffic flow q = k  v, is also valid for q = c; thus c = kc  vc or kc = c / vc where kc 
and vc are the corresponding critical density and critical speed at pre-breakdown 
capacity c. Therefore, the distribution function of the critical density Fkc(k) can be 
estimated if the distribution function of the pre-breakdown capacity Fc(q) and the 
probability distribution function of the critical speed Fvc(v) is given. That is, the 
density-related (link-related) probability distribution function of breakdowns for a 
freeway segment, Pbr(kc≤k) = Fkc(k), can be transformed from the flow-related 
(bottleneck-point-related) probability distribution function of breakdowns at an 
isolated bottleneck, Pbr(c≤q) = Fc(q). The density-related distribution function of 
breakdowns then is 

 


















00 0

)()()()(

)()()()(

dvvfkvFdvvfdqqf

dqdvvfqfkkPkF

cc

cc

cc

vcv

kv

c

vkc

vcck

 (19) 

The flow-related pre-breakdown capacity function Fc(q) is assumed to be a 
Weibull function. Here, any reasonable distributions for the critical speed vc can be 
used. For simplicity and in order to ease the derivation we assume the critical speed 
vc to be Weibull distributed as an approximation. This assumption seems to be more 
reasonable than the usual assumption of a Normal distribution for speeds since 
Weibull is only defined for positive values. Moreover, Weibull reveals significant 
probabilities only for a narrow range of speed values with a rather sharp lower limit 
which seems to be an important attribute especially for the critical speed. Thus, 
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Using a constant critical speed vc, the transformation can be carried out 
analytically. The resulting density-related distribution function Fkc(k) is also a 
Weibull distribution. That is, 
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The density-related distribution function Fkc(k) can only be estimated 
numerically for a arbitrarily distributed critical speed vc. Using a mean value for the 
critical speed vc = 80 km/h and a standard deviation (vc) = 5 km/h which are 
common in reality, we have the parameter for a Weibull distributed critical speed vc 

= 82 km/h and vc = 20. Using c = 4532 veh/h (from the example freeway, Figure 
1a) and c = 13 for a two-lane freeway segment, eq. (20) yields a Weibull-like but 
not exactly a Weibull distribution. This distribution can be approximated to a 
Weibull distribution with the parameter kc = 57 veh/km and kc = 10.7 (cf. Figure 
2a). For a three-lane freeway segment with c = 7170 veh/h (from the example 
freeway, Figure 1b) and c = 13 Eq. (20) yields a Weibull-like distribution with 
parameters kc = 89 veh/km and kc = 10.7 (cf. Figure 2b).  

It can be proven that the shape parameter of the critical density kc only 
depends on the shape parameters c and vc. The parameter kc is independent of the 
scale parameters kc, c, and vc. In Table 2 the parameters kc resulting from 
different combinations of kc and kc values are illustrated. Because the shape 
parameters c and vc can be generally assumed to be constant values (e.g., c = 13 
and vc = 20) for all types of freeway segments, the shape parameter for the critical 
density is also a constant (e.g., kc = 10.7).  
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Figure 2 – Numerically estimated distribution function of critical densities (Fkc(k)) 
and its approximation as a Weibull distribution (Fkc(k)*), a) two-lane freeway 

segment, b) three-lane freeway segment 

Table 2 – Parameters kc resulting from different combinations of kc  and kc values 

 

This result can be verified by real world measurements. Regler (2004) 
conducted a field measurement using data from three-lane freeway segments. The 
median of the critical densities ranged from 70 to 90 veh/km with Weibull 
parameters kc = 8.4 through 13.2 and kc = 72 through 92 veh/km for the analysis of 
5-minute intervals.  

As a result we can state that the distribution of critical densities kc is 
approximately Weibull distributed with a shape parameter kc=10.7. That is, 

 vc

c 10 15 20 25 
10 6.81 8.1 8.77 9.15 
13 7.65 9.56 10.66 11.32 
16 8.21 10.66 12.21 13.21 

vc  [km/h] (vc=80 
[k /h])

9.6 6.5 5.0 4.0 
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where cckc v/  , kc = 10.7, and cv is the mean value of the critical speed vc.  

This transformed distribution function is only valid for a length L of freeway 
segment which corresponds to the analysis interval  for the pre-breakdown 
capacity. For example, if the scale parameter c,5 for the pre-breakdown capacity is 
obtained for 5-minute intervals, the resulting distribution function is only valid for a 
freeway segment of length L = cv  = 80 km/h  5/60 = 6.67 km. 

Similarly to the derivation of the theoretical transformation between 
bottleneck-point-related breakdown probabilities for different interval durations, a 
transformation between link-related breakdown probabilities for different lengths of 
freeway segments can be constructed. The probability function of breakdowns for a 
freeway segment of length L can be expressed as 
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with the scale parameter  
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Eq. (23) describes the probability that within a time interval of duration  no 
breakdown occurs on a freeway segment of length L. The parameter c, is the scale 
parameter of the Weibull distributed pre-breakdown capacities estimated in -minute 
intervals. 

For  = 5 min =1/12 h, cv =80 km/h, L = 6.67 km, and kc=10.7 we get  
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This equation can be transformed into 
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For two freeway segments of lengths L1 and L2 we obtain the relationship 



Wu 

14 

 

7.10

1

2

10.7 2

5,

10.7 1

5,

,

1,

67.6

80/

67.6

80/

2
L

L

LL
cc

Lkc

Lkc 





 (27) 

This means e.g.: if the length L2 of the freeway segment is double the length 
of L1, the scale parameter kc of the density (and capacity) is reduced by the factor 

7.10 2/1 = 0.937. 
Figure 3 shows the parameters kc,L and c,L which indicate the critical density 

and the corresponding pre-breakdown capacity as a function of length L for a two-
lane freeway segment. It can be seen that the scale parameter  for the critical 
density kc and the corresponding scale parameter  for the pre-breakdown capacity c 
of the freeway segments decrease with increasing length of the freeway segment.  
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Figure 3 – Scale parameter  as a function of the length of the freeway segment L, a) 
scale parameter kc,L for critical density kc, b) scale parameter c,L for the 

corresponding pre-breakdown capacity c. 
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Sequence of consecutive freeway segments 
The survival function for a single freeway segment j is 
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For  = 5 min =5/12 h, cjc vv , = 80 km/h, Lj= L = 6.67 km, and kc,j = kc = 10.7 

we get  
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The survival function for m combined freeway segments then is 
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 (30) 

This equation describes the probability that in the interval of 5 minutes no 
breakdown occurs on any of the m freeway segments. The freeway segments can 
have different values of scale parameter capacity c (or kc), density k, and length L. 
This can also be used for defining the reliability of a network. Here we assume again 
the distribution functions and thus also the survival functions at different freeway 
segments are independent of each other. Normally, for long freeway segments, this 
independence is given. 

 
RELIABILITY ANALYSIS OF LARGE FREEWAY NETWORKS OVER 
LONG TIME PERIODS 

Using this approach for sequences of freeway segments the reliability of a 
larger freeway network can be estimated over a longer time period. All parameters 
used in this section are link-related parameters, that is, they are parameters for the 
freeway segments according to previous section. However, these link-related 
parameters can be transformed from bottleneck-point-related parameters. 

The reliability of a larger freeway network can be defined as the probability 
that on any freeway segment within the network and at any time no breakdown 
occurs. According to this definition, the reliability can be expressed as the combined 
survival function of the pre-breakdown capacity over time and space.  

The survival function of the pre-breakdown capacity for a single freeway 
segment j over a time period i of duration Ti and a space-link of length Lj is (cf. eqs. 
(10) and (23)) 
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For  = 5 min = 5/12 h, cijc vv ,  = 80 km/h, Lj = L  = 6.67 km, and kc,j = kc=10.7 

we get  
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The survival function for m combined freeway segments and n intervals is 
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This equation describes the probability that in the time period of duration T = 
Ti and within a network of a total length L = Lj no breakdown occurs. The freeway 
segments j can have different values of scale parameter  for capacity, density k, and 
length Lj for different time period Ti. According to this formulation, a quantitative 
assessment of the reliability in a large network over a long period can be conducted.  

 
DISCUSSIONS 

The temporary and spatial independence of the breakdown probabilities are 
pre-assumptions for the derivations in this paper. Those assumptions are only 
approximations and they are not always realistic. Nevertheless, those assumptions 
are reasonable under certain pre-conditions. 

 
Temporary independence of breakdown probabilities in succeeding intervals  

Generally, the assumption about independence between breakdowns (actually 
the probabilities of no-breakdowns are needed) in succeeding intervals (i.e. within 
one hour) can be considered as reasonable because 1) According to the definition a 
breakdown can only occur in free-flow condition. Normally, the traffic flows under 
free-flow conditions can approximately be considered as independent of each other; 
2) From the theoretical point of view the probability of breakdowns (or no-
breakdowns) is defined by the distribution function of capacity at a cross-section. 
The capacity is then defined by the average time headway within consecutive 
vehicles thus by the car-following behaviors of the vehicles. Since the car-flow 
behaviors of a given driver population are generally considered as time-independent, 
the capacity distribution is also time-independent and thus the probability of 
breakdowns is time-independent as well; 3) From the empirical point of view the 
probability of breakdowns in different intervals are independent of each other 
because the observed breakdowns are always isolated events: the procedure of the 
observation requires a free-flow pre-breakdown and a congested post-breakdown 
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traffic condition. The process of breakdowns is a renewal process thus time-
independent (cf. Brilon et al., 2005). 

 
Spatial independence of breakdown probabilities in series of bottlenecks  

The breakdown probabilities at different bottlenecks and on different freeway 
segments cannot generally be considered as independent of each other. However, if 
only bottlenecks with long distances in between or only long freeway segments are 
investigated, the breakdown probabilities can be considered as nearly independent of 
each other. 

The breakdowns can occur at any possible locations along a freeway segment. 
Certainly, the breakdown probability at a location with lower capacity is higher than 
at a location with higher capacity. Sometimes, those capacity bottlenecks can be 
more decisive for the traffic flow under consideration. However, also the 
spontaneous traffic breakdowns along a long, homogenous freeway segment have to 
be investigated. The probabilities of breakdowns at particular bottlenecks und along 
freeway segments can be combined in order to investigate the total breakdown 
probability of a network. 

 
Applicability  

The stochastic concept of breakdown capacity is, meanwhile, also a basis of 
applications for practice. E.g. Elefteriadou et al. (2009) have based innovative 
proactive ramp metering algorithms on breakdown probabilities. Their simulations 
revealed improvements for freeway flow performance. Within this concept the 
effects of breakdown probabilities combined over successive points along the 
freeway including ramps and weaving sections might allow further insights. 

Brilon et al. (2010) have developed a macroscopic simulation concept on 
behalf of the state of Hesse (one of the 16 German states; biggest town is Frankfurt) 
to assess the statewide freeway network performance over longer periods, e.g. one 
year. Here also breakdown probability functions have been calibrated for those parts 
of the network which suffer frequent congestions. These stochastic descriptions of 
the capacity have been contrasted to locally specified patterns of traffic demand over 
the year. This project was the starting point for the considerations described in this 
paper. For this project the lengths of freeway segments and the interference between 
successive bottlenecks had to be modeled by stochastic approaches. Within this 
concept the influence of freeway segment length, as pointed out this paper, 
constitutes a necessary input.  

Also the context of the macroscopic network-wide parameters derived in this 
paper is important for comparisons of network performance over the years and 
between several parts of the network. These comparisons in practice are requested 
from a superior view of transportation policy.  

In addition, for traffic control considerations the paper offers the message that 
activities – either by technical devices or by driver education – to influence the 
breakdown distribution function could help to improve the reliability of freeways. 
Here it is not only an increase of the average capacity – which usually is difficult to 
attain – but also a reduction of the variance which helps to improve network 
reliability.  
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CONCLUSIONS 

Using a theoretical approach a methodology for the assessment of reliability 
within a freeway network was introduced. The stochastic methodology presented 
allows for a derivation of a theoretical average pre-breakdown capacity and the 
probability of breakdowns for freeway segments with different lengths. This link-
related methodology can also be used to identify the effects of consecutive freeway 
segments and bottlenecks such as on-ramps, off-ramps, and weaving areas with 
different characteristics. As a result, the stochastic relationship between several 
adjacent bottlenecks can be taken into account. Furthermore, a long segment of a 
freeway without clearly defined bottlenecks can be analysed.  

Using this method it is possible to determine the probability distribution 
function of breakdowns from free flow condition into a congested flow condition for 
a freeway segment as a function of the average pre-breakdown density. This link-
related probability distribution of breakdowns can be estimated by transforming the 
distribution function of pre-breakdown capacities measured at isolated bottleneck 
points. It turns out that the link-related pre-breakdown capacity distribution (a 
Weibull-like distribution) has a smaller scale parameter and, thus, a lager variance 
than the bottleneck-point-related capacity distribution. 

Using the methodology presented in this paper, the risk of disturbance of 
traffic flow (breakdowns from free flow into congested flow) along a freeway 
segment and within a freeway network can be estimated and analysed. The reliability 
of a freeway network can be estimated quantitatively. The paper demonstrates basic 
probabilistic considerations which – for practical application – must be based on 
breakdown probability functions calibrated for the important parts of the network.  
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