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ABSTRACT 

At two-way stop controlled intersections without exclusive turning lanes on major streets all 

three movements (right, through, left turners) must share the same lane. In the HCM 2000, a 

special formula is provided to deal with this lane configuration. However, this formula cannot 

consider short lanes on major streets such as the left-turn pockets. This paper presents a new 

model which takes account for the shared-short lanes and thus delivers more realistic results 

for estimating the impedance effect through left turners. The new model can also deal with 

the effect of the so-called Back-of-Queue in reality. The presented theoretical concept can be 

extended to include also the consequences of a short left turn pocket on major streets and the 

corresponding capacities of the major streets with shared-short lanes. Some equations are 

derived for calculating the influence of the length of the left turn pocket on the capacity of 

minor movements and on the probability of blockage to the through movement due to queued 

left turn vehicles. Comprehensive simulation studies are conducted in order to confirm the 

derivation. According to the results of this paper, a general formula which considers both the 

short-lane and Back-of-Queue is recommended for further applications. This formula will be 

incorporated in the upcoming new edition of the HCM. 

Keywords: Capacity, Unsignalized Intersection, Shared-Short lane 
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1. INTRODUCTION 

The capacity and quality of traffic flow at unsignalized intersections is estimated based on the 

gap acceptance theory in most of the existing guidelines, e.g. in the HCM 2000 (1), chapter 

17, or in the German HBS 2001 (2), chapter 7. For those methods, however, the treatment of 

left turners from the major (priority) street (LTPS, eq. 17-16 of the HCM 2000) is not 

sufficient and they should be improved. 

At first, a short theoretical background is given. In this paper the abbreviations and symbols 

from the HCM 2000 are used. The fundamentals for the critical gap theory are only explained 

quite shortly. Hereby the reader is referred to (3). This paper is concentrated on the 

probability of a queue-free state for LTPS movements and the consequences on the through 

traffic of the major (priority) street (TTPS). On this basis the capacity for minor street 

movements can be estimated. The solution then is extended towards an expression which 

estimates the effect of the limited length of a left-turn pocket on major street movements.  

2. METHODS FOR SHARED LANES IN THE HCM 2000 

Chapter 17 of the HCM 2000 provides the assessment of traffic performance at unsignalized 

two-way stop controlled (TWSC) intersections. The potential capacity cp,k for each of the 

twelve movements has to be estimated in advance. In the HCM 2000, this is achieved by 

Harder's (4) formula (eq. 17-3 in the HCM 2000) or with corresponding graphs (exhibit 17-6 

and 17-7 in the HCM 2000). Usually, the capacities for priority movements 2, 3, 5, and 6 (cf. 

FIGURE 1) are predefined to be 1800 veh/h (2). They could also be estimated from field 

observations (1). These potential capacities cp,k are equal to the movement capacities cm, k if 

movement k is of rank 2 (eq. 17-4 in the HCM 2000). 

The further ranking of priorities is taken into account by using impedance factors to compute 

the movement capacities cm, k for movement k with a higher rank of priority than 2.  

An impedance factor p0, j is the probability that a minor movement j is in a queue-free state 

(eq. 17-5 in the HCM 2000): 
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where 

p0,j  = probability of a queue-free state in minor movement j [-] 

vj  = flow rate for minor movement j [veh/h] 
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cm j  = movement capacity for minor movement j [veh/h] 

gj  = degree of saturation for minor movement j = vj /cm, j  [-] 

cm k  = movement capacity for minor movement k [veh/h] 

cp,k  = potential capacity for minor movement k [veh/h] 

k = index for minor movements of rank 3 or 4 [-] 

j = index for minor movements of rank 2 or 3 

which have priority over movement k [-] 

J = number of minor movements of rank 2 or 3 

which have priority over movement k [-] 

 

The calculation assumes that each movement has its own lane with unlimited length 

(exclusive lane). The realistic intersection design, however, usually provides only turning 

lanes of limited extension such as left-turn pockets (cf. FIGURE 2b). Moreover, in many 

cases there are no turning lanes at all. In those cases, several movements have to share the 

same lane (cf. FIGURE 2a). Those lanes are called shared lanes. Here, shared lanes on the 

major street and on the minor approach have a different functionality which leads to different 

procedures.  

For minor street approaches the capacity of a shared lane is estimated by the shared formula 

from Harders (3), which is also used in the HCM 2000 as eq. 17-15: 
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where 

cSH = capacity of the shared lane [veh/h] 

vi, vj, vk  = traffic valume of movements i, j, and k [veh/h] 

cm,i, cm,j, cm,k  =  movement capacities of movement i, j, and k [veh/h] 

i, j, and k  = 7, 8, 9 or 10, 11, 12 

This equation is not exact as demonstrated by (5) because the queuing system at TWSC 

intersections is a so-called M/G2/1 queuing system with two different distributions of service 

times. The required slight corrections are, however, rather complex and they are of minor 

importance for the result. Thus, eq. (3) is still quite an adequate solution for application in 

guidelines. 

For a major street with shared lanes we treat one approach containing movements i, j, and k 

(cf. FIGURE 1). As an example we use i = 4, j = 5, k = 6. 

For a shared lane without any turning bay spaces (cf. FIGURE 2a), eq.17-15 of the 

HCM 2000 defines the probability of queue-free state in movement 4 as 

 65

4*

4,0
1

1
xx

x
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
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where 

p0,4
* = probability of queue-free state for the shared lane on the 

major street [-] 

xj = degree of saturation in movement j = vj /cm, j  [-] 

x6 = 0, if movement 6 is operating on a separate lane 
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Also this equation goes back to Harders (3). Furthermore, this equation takes account 

realistically for effect of the so-called Back-of-Queue. The effect of Back-of-Queue is 

discussed in details later in this paper. This formula cannot consider short lanes on major 

streets such as left-turn pockets (FIGURE 2b). A new model which takes into account the 

shared-short lanes and, thus, delivers more realistic results is developed in the following 

section. 

3. IMPEDANCE EFFECTS DERIVED FROM THE PRINCIPLE OF SHARED-

SHORT LANES 

The total capacity of an approach with short lane configurations can be expressed by an 

approach developed by Wu, 6). This function is derived on the background of queuing and 

probability theory. It takes into account both the stochastic property of the traffic flow and the 

probability of the lane blockage at the merge point. This is valid both for unsignalized and 

signalized intersections. However, the model parameters of the approach must be calibrated 

according to the configurations under consideration. The derivation of the approach is shortly 

explained below.  

At first, a generalized system with m sub-movements, which all develop at one merge point 

from a shared lane (cf. FIGURE 3, point A) is considered. A sub-movement i is described by 

the parameters vi (traffic flow), ci (capacity) and xi (degree of saturation). The capacity ci and 

the degree of saturation xi = vi/ci are considered under the assumption that there are infinitely 

many queue places for the subject movement i. Accordingly the shared lane has the 

parameters vM, cM and xM. 

For the merge point A the following fundamental state condition is valid: The merge point A 

is equally occupied from left (shared lane) and from right (all sub-movements) by waiting 

movements. That is, the probability that the merge point A is occupied on the side of the 

shared lane is equal to the probability that the point A is occupied on the side of the sub-

movements. It follows that 


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m

i
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1

,,,2,1,, ......   (5) 

where  Ps,M  is the probability that the merge point A is by shared lane and Ps,i the probability 

that the point A is occupied by the sub-movement i. 

 

The probability that the merge point A is occupied by a sub-movement is equal to the 

probability that the queue length in this sub-movement is larger than the number of the queue 

space (section from the stop line to point A), i.e., for sub-movement i, 

P N ns i i, Pr( )    (6) 

The distribution function of queue lengths in each sub-movement can be represented 

approximately by the following equation (Wu, 6): 

)(1
1)Pr()( inf

iii xnNnF


   (7) 

with 
iii cvx /  . The function f(ni) is a monotonically ascending function of ni with f(ni = 0) = 

0. Thus, 
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For estimating the capacity of the shared lane, the following definition is introduced: The 

capacity of the shared lane is the total traffic flow, at which the merge point A on both sides 

is totally occupied (Ps,M = xM = 1). As a rule, the traffic flow demands vi (existing or 

predicted) do not describe the complete saturation of the shared lane. The capacity of the 

shared lane is generally higher than the sum of vi (in case of under-saturation by existing vi). 

In this case the traffic flow at the subject traffic movement vM would approach the limit of the 

capacity, if the vi-values increase. In general, each vi-value could have another increase. It is 

assumed however, that for these increases of existing traffic flows, equal increase factor k are 

applied to each sub-movement. k is thus that factor, by which all traffic flows on the subject 

approach has to increase, for reaching the maximal possible traffic flow: the capacity. 

Multiplying the saturation degree of all sub-movements by this factor k and postulating 
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yields the capacity of the subject shared lane: 
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Accordingly, the real degree of saturation in the shared lane becomes 

kc

v
x

M

M
realM

1
,    (11) 

For the special case with n1 = n2 = ... = ni = ... = nm = Nk, i.e., all sub-movements have the 

same number of queue space, we get 
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ai is the proportion of flow volume for sub-movement i in the approach. For a configuration 

with two movements L (left) and T (through), a general form of the approximation function 

can be expressed as: 
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The function f(Nk) is a monotonically ascending function of Nk with f(Nk = 0) = 0. Eq. (14) 

fulfills all boundary conditions given in Table 1. For example, for Nk = 0 (condition 6) we get 
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For Nk = ∞ (condition 5) we get 
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This equation can be rewritten as 
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Thus, cM = min(cL/aL, cT/aT) for Nk  . That is exactly the boundary conditions 5 in Table 1. 

 

In the HBS 2001 (2), a function f(Nk) = Nk (corresponding to an M/M/1 queuing system) is 

used for TWSC intersections. Thus, eq.(14) yields 



Wu and Brilon  7  

   

k

kkk kkK

N

N

T

T

N

L

L

N N

T

N

L

TL

N
TsLs

TL
M

c

a

c

axx

vv

PP

vv
c



 






























1

111 111
,,

1
 (18) 

It is recommended to use this equation for the HCM instead of eqs. 17-34 through 17-36 in 

order to estimate capacities in flared minor-street approaches at TWSC intersections (cf. 

FIGURE 4).  

To estimate the capacity of a shared/flared right‐turn lane, the following equation should be 

used to compute shared/flared‐lane capacity of minor-street approaches:   
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where  

 c
SH,flared

  =  capacity of the shared/flared lane [veh/h]  

 c
R
  =  capacity of the right‐turn movement [veh/h] 

 c
L+T

  =  capacity of the through and left‐turn movements [veh/h] 

 v
R
  =  right‐turn volume [veh/h] 

 v
L+T

  =  through and left‐turn volume [veh/h] 

 n
F
  =  storage places in the flared area (see FIGURE 4) [veh] 

For the special situation of shared lanes without any flaring area (n
F
 =0) this equation yields 

(cf. also eq.(3)) 
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The procedure for shared/flared-lane of minor-street approaches in the HCM can be 

significantly improved and simplified. 

 

In a major approach at a TWSC intersection the queue in the though movement has to be 

understood as a moving convoy with a time headway tmin between the consecutive vehicles, 

because vehicles in the though movement do not really come to a stop. This convoy does not 

establish any impedance in sense of the calculation procedures in the HCM. Only such 

vehicles which arrive directly at the end of a queue in the left turn movement and then really 

come to a stop will result into additional impedance for the minor movements. Thus, for the 

major approach, the merge point A will be occupied by the through movement T only if the 

queues in both movements T and L are larger than the length NK. That is, with the 
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This equation satisfies the following boundary conditions which must be fulfilled for a major 

approach: 
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In reality, there are still more arrivals coming into the end of queue when the queue in front is 

being discharged. This effect is called Back-of-Queue. The effect of Back-of-Queue is 

derived as following (cf. also the derivation for the part 1 of delay in the Webster (1958) 

formula for signalized intersections). 

 

We consider an arbitrary duration of time t (cf. FIGURE 5). Without considering the effect of 

Back-of-Queue, the time occupied at merge point A by the movement T within a time of 

duration t is 

tx kN

T 
1

  (25) 

Denoting the additional duration of time (from the end of tx KN

T 
1

) that the Back-of-Queue 

is totally discharged as 
*t , the input-output analysis for the time point when the Back-of-

Queue is totally discharged yields 
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The solution for 
*t  is 
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The total duration 
**t  of occupied time by movement T with considering the effect of Back-

of-Queue is then 
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Thus, in case of taking account the Back-of-Queue, the proportion of time, during which no 

blockage occurs, is  
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That is, if the effect of Back-of-Queue has to be taken account, we must multiply the tern 
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with the factor )1/(1 Tx . Thus (cf. eq.(21)),  
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 1

1

,,0
1

111   (32) 

Also this equation satisfies the following boundary conditions necessary for a major 

approach: 

LxBOQM xp
T




1
0|,,0  

LNBOQM xp
k




1
|,,0  

1
0|,,0 

LxBOQMp  

T

L

NBOQM
x

x
p

k 


 1
1

0|,,0   (cf. Harders 1968 and 17-16 in HCM 2000)  

0
1|,,0 
 LT xxBOQMp   (Corresponding to xT + xL = 1, the approach is saturated) 

In FIGURE 6, a comparison between the probabilities of queue free state with (p0,M, eq.(24)) 

and without (p0,M,BOQ, eq.(32)) Back-of-Queue is illustrated. One can recognise that the 
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probability with Back-of-Queue is always smaller than the probability without Back-of-

Queue.  

 

In case without Back-of-Queue we have the generalized form  

 





 


 

0

11
*

1 1

,0

L Ln n

kji
i

xxx
Maxp   (33) 

And in case with Back-of-Queue 

 
 



















0

1
11

*
1

1

,0

L

L

n

kj

n

kj

i
i xx

xx
x

Maxp   (34) 

where 

i = 1 or 4 

j = 2 or 5 

k = 3 or 6 

p0, i
* = probability of a queue free state on the shared lane  

of the major street [-] 

xi, xj, xk = degree of saturation for movements i, j, k [-] 

 

According to the conducted simulation studies earlier, the results for the probability p0,i
* of 

queue-free state are very sensitive to the simulated capacities in movements 4 and 5. The 

deviations of those probabilities are highly dependent on the deviations of the capacities. On 

the other side, the conducted, event-oriented simulation cannot reproduce the effect of Back-

of-Queue. 

In order to cover the deviation of capacities in the simulation and to account for the effect of 

Back-of-Queue, an additional time-oriented simulation study is conducted with predefined 

average capacities for movements 4 and 5. The queuing systems in movements 4 and 5 are 

presumed as M/M/1 queuing systems. That is, both intra-vehicle headways and service times 

are assumed to be exponentially distributed. That means, the arrivals and the capacities in a 

given time interval are assumed to be Poison-distributed. The simulation is conducted in a 

time step of 0.1s. The probability of queue-free state in the major approach (movements 4 

and 5) can be extracted directly. 

In Table 2, combinations for average demand/capacity values used in the simulation study are 

illustrated. The probabilities of queue-free state can be obtained both in cases with and 

without Back-of-Queue. In FIGURE 7, the results without Back-of-Queue are illustrated. 

FIGURE 8 shows the results with Back-of-Queue.  

The results of all conducted simulations indicate that eq. (33) and eq. (34) lead to more 

realistic results for the probabilities of queue-free state in major approaches with shared 

movements 4 and 5 under presumed conditions (with or without Back-of-Queue). Because 

the effect of Bach-of-Queue does exist in the reality, eq. (34) is finally recommended to be 

incorporated into guidelines (HCM and HBS). 

 

As a conclusion, eq. (34) with consideration of Back-of-Queue is recommended to be used in 

HCM (or in other guidelines) for estimating the queue-free probabilities in major approaches 
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in place of eq. 17-16 in the HCM. In addition, from eq. (34) also the blocking probabilities pi
* 

in the major approach caused by the left-turn movement can be estimated as following:  

 
 

1

1

,0
1

1*1* 






 L

L

n

kj

n

kj

iii
xx

xx
xpp   (35) 

For nL = 0 eq. (34) yields. 

 
 



















kj

kj

ii
xx

xx
xp

1
11*,0   (36) 

 
 



















kj

kj

ii
xx

xx
xp

1
1*   (37) 

These are the queue-free probability in the major approach and the blocking probability that 

the through movement is blockaded by left turn movement in the shared-lane situation.  

 

The shared/short‐lane capacity on major streets can be then computed as  













 







 
  21,

21

21,

21

, ,
*

min,min i

j

iij

i

M

iij

shortSH s
p

vvv
s

x

vvv
c  (38) 

where  

c
SH,short

  = capacity of the shared/short lane on major streets [veh/h] 

p
j
*
 

= probability that there will be queue in the major  [-] 

street shared/short lane (eq.(35)) 

 = 1- p
0,j

*   

p0,j
*

 
= probability that there will be no queue in the major  [-] 

street shared/short lane  (eq.(34)) 

j  =  1, 4 (major‐street left‐turning vehicular movements)  

i1  =  2, 5 (major‐street through vehicular movements)  

i2  =  3, 6 (major‐street right‐turning vehicular movements)  

v
j
  =  major‐street left‐turning movement flow rate [veh/h] 

s
i,1+2

  =  

2

2

1

1

21

i

i

i

i

ii

s

v

s

v

vv




 = combined saturation flow rate  [veh/h] 

for the major‐street through movements  

(this parameter can be measured in the field)  

s
i2

  =  saturation flow rate for the major‐street  [veh/h] 

and right-turn movements 

(this parameter can be measured in the field);  

v
i1

  =  major‐street through movement flow rate [veh/h] 

v
i2

  =  major‐street right‐turn flow rate [veh/h] 

(or 0 if an exclusive right‐turn lane is provided).  
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Brilon (7) introduced another model dealing with the same problem. However, his model is 

considered only as a simplification. The model introduced in this paper is a modification to 

the earlier model from Brilon (7). According to the simulation studies, the new model is more 

accurate than the earlier model (7). Thus, it is preferred to use the new model instead of the 

earlier model (7).  

4. SUMMERY 

This paper provides several theoretical derivations of the shared-short lane formulas to be 

applied in the case of shared-short lane situations on the major street at TWSC intersections, 

especially for major streets with shared-short lanes. The developed formulas are 

recommended for further applications. These formulas could be verified by a series of 

simulations. In addition, these formulas can be extended to cover also the effects of a short 

left-turn lane (e.g. a left-turn pocket) on major streets. Those extended formulas fulfill all the 

restrictions which are typical for the problem. 

In the upcoming new edition of the HCM, eq. 17-16 of the HCM 2000 is replaced by the new 

formula eq. (34). This approach is also incorporated into the new edition of the German HBS 

(2). 

Finally, it should be noted that also these derivations are not an exact mathematical solution 

to the problem of TWSC intersections. Like the whole gap acceptance theory, also the 

derivations submitted in this paper are more like an application of rather pragmatic 

mathematics, since a series of simplifying assumptions are needed to come to a solution 

ready for use in practice.  
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Table 1 - Necessary boundary conditions for capacities of an approach  

at TWSC intersections with short-shared lanes 

 

No. boundary condition note 

1 cM,L  cL a) 

2 cM,T  cT a) 

3 cM = cL for vT = 0 b) 

4 CM = cT for vL = 0 b) 

5 cM = min(cL(vL+vT)/vL, cT(vL+vT)/vT) for Nk   c) 

6 cM = cSH for Nk = 0 d) 

a) The capacity of a short lane is always smaller than the capacity of an exclusive lane 

b) The capacity of the approach is equal to the capacity of an exclusive lane if the flow rate of one of both lanes 

is zero 

c) The ratio between the flow rates of both lanes remains constant for Nk  
d) The capacity of the approach is equal to the capacity of a shared lane for Nk=0 
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Table 2 – Demand/capacity combinations for the simulation study 

 

v5 (veh/h) 700 700 700 900 1000 600 

vm,5 (veh/h) 1800 1800 1800 1800 1800 1800 

v4 (veh/h) 100 200 300 200 200 300 

cm,4 (veh/h) 500 500 500 500 500 500 
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FIGURE 1 - Definition of movements at an unsignalized intersection in the HCM 2000 
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FIGURE 2 - Shared lanes (a) and shared- short lanes (b) 
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FIGURE 3 - Relationship between a shared lane and its sub - movements 
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FIGURE 4 - Flared Minor-Street approach 
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FIGURE 5 – Effect of Back-of-Queue 
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FIGURE 6 - Comparison between the probabilities of queue free-state  

with (p0,M, eq.(24)) and without (p0,M,BOQ, eq.(32)) Back-of-Queue 
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FIGURE 7 - Probabilities of queue-free state p0,i
* in case without considering Back-of-

Queue compared to the M/M/1 simulation results for eq. (33)  

R2=0,9989 
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FIGURE 8 - Probabilities of queue-free state p0,i
* in case with considering Back-of-

Queue compared to the M/M/1 simulation results for eq. (34)  

 

 

R2=0,9992 


