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(with correction in eq.(9)) 
 
Abstract 
This paper presents a model for estimating capacity and delay at signalized intersections. Making use 
of the queuing system at signalized intersections, the capacity can be estimated by measuring the cycle 
overflow probability at stop-line detectors. Based on a given queuing model, the stochastic 
characteristics of signalized intersections can be estimated as well. Then, delays and queuing lengths 
can be obtained using the estimated parameters. The results of the presented model are underlined by a 
comprehensive sensitivity analysis. Furthermore, a VISSIM simulation study is conducted to 
demonstrate the capability of the model. 
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1 Introduction 
Capacity at signalized intersections is a basic parameter in urban transport networks. The capacity 

of a signalized intersection depends on existing geometric, control, weather, and other conditions. 
Estimation of capacity at signalized intersections is one of the most important topics in traffic 
engineering and transportation science. If the capacity can directly be measured, the delay or queue 
length at signalized intersections and thus the traffic performance and quality of service can be 
calculated according to the functional relationship between delay or queue length and capacity. 
Unfortunately, under real world traffic conditions, the capacity cannot easily be measured directly for 
an existing intersection, especially under unsaturated flow conditions where the demand is lower than 
the capacity. 

This paper presents a model for estimating capacity of an existing signalized intersection under 
unsaturated flow condition based on the cycle overflow probability which can be directly measured by 
loop detectors at stop lines. The cycle overflow probability is just the proportion of the number of 
cycles with fully occupied detector during green phases to the total number of cycles. Also the demand 
can directly be measured by loop detectors at stop lines. According to the queuing theory, the cycle 



 

 

overflow probability is a function of the degree of saturation, i.e. a function of demand and capacity. 
Thus, by measuring the cycle overflow probability and the demand, the capacity can be estimated 
according to the functional relationship. Based on the given queuing model, the stochastic 
characteristics of signalized intersections can be estimated as well. Then, delays and queuing lengths 
can be obtained using the estimated parameters. 

The proposed model can be verified by simulation studies under unsaturated conditions. For 
validation the model, capacities obtained for saturated flow condition (cycles with fully occupied 
detector during green phases) where the capacity can be considered as the measured flow rate are used 
as a reference. 

The proposed model provides a useful tool for estimating capacity and delay at signalized 
intersections under unsaturated conditions. Using the proposed model, the capacity and thus the traffic 
quality of service at existing signalized intersections can directly be estimated using data from loop 
detectors at stop lines. The model is theoretically reasonable and easily to use for practitioners. The 
results of the calibration and validation are very promising. 

The paper is organized as follows. In the following section 2, a theoretical background and 
motivation of the proposed model is presented. In section 3, some numerical studies are conducted in 
order to examine the sensibility of the model and its parameters. In section 4, possible applications of 
the proposed model are presented and discussed. Then, examples of the model using simulated data 
are illustrated in section 5. And finally, a conclusion and outlook is given in section 6.  

2 Theoretical Background 
The model derivation in this paper is based on the following basic conditions in traffic modelling: 

a) under-saturated flow condition, i.e. the degree of saturation x should be less than 1; b) stationary 
flow state, i.e. the mean value of traffic demand and capacity is constant over time; c) fixed-time 
signals, i.e. the signal control is independent of demand; and d) M/Bunch/1 queuing system, this 
indicates that the probability of idling state is not equal to 1 - x, where x is the degree of saturation. 
Notice the delay model in HCM (TRB, 2010) and HBS (FGSV, 2015) are based on an M/D/1 queuing 
model that overestimates delays or queue lengths under unsaturated conditions. 

However, the here derived approach can be extended to following conditions without losing 
generality: a) non-Markovian input process; b) temporal oversaturation; b) piecewise stationarity; and 
d) actuated and coordinated signals. 

2.1 Queuing Model at Signalized Intersections 
In order to estimate the capacity and traffic state at traffic systems, Measures of Effectiveness 

(MOE) for the corresponding queuing systems have to be collected. For the traffic performance 
analysis at signalized intersections, delay and queue length are the most common MOEs. For 
calculating the queue length or delay at signalized intersections, the capacity and the characteristics of 
the queuing system must be known. Thus, the capacity C and the characteristics at signalized 
intersections have to be estimated in advance. However, it is not an easy issue to measure the capacity 
and the queuing characteristics in the reality. 

The queue length and delay at signalized intersections can be estimated according to the stochastic 
input (demand q) and output (capacity C) process. At signalized intersections, the queue length at end 
of green time NGE is the most crucial parameter. The value of NGE can be directly measured at end of 
green time. Once this parameter NGE is known, the corresponding delay and queue length at other 
stage of cycle time (e.g. end of red time or end of back-of-queue) can be calculated according existing 
mathematical models (cf. Wu, 1996). Another parameter which describes the characteristics of 



 

 

queuing system under consideration is the so-called cycle overflow probability Po. The cycle overflow 
probability Po can be obtained by measuring the detector occupancy during the green time g.  

Both parameters NGE and Po are functions of demand q and capacity C. Using these functions, the 
capacity can be estimated by measuring the queue length NGE or the probability of cycle overflow 
probability Po at end of or during the green time g. Furthermore by measuring the parameters NGE or 
Po the characteristics of the corresponding queuing system can be estimated as well. Between the 
parameters NGE and Po, there is a clearly defined inter-relationship.  

According to the queuing system at signalized intersections, the value of NGE or Po can be 
expressed as functions of the degree of saturation x and the cycle capacity m. That is, Po = f(x, m) and  
NGEˆ= f(x, m). According to Miller (1978) is  
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with m = sg  
  =  capacity per cycle [veh] 
 s = saturation flow rate [veh/s] 
 g = effective green time [s] 
 x  = degree of saturation = q/C = n/m [-] 
 q = traffic demand [veh/s] 
 C = capacity demand [veh/s] 
 n = qc = traffic demand per cycle  [veh] 
 c = cycle time  [s] 
 A, B = model parameters describing the queuing characteristics,  

 for fixed-time signals: A = 1.58 and B = 1.33 = 0.84A  

Eqs.(1) and (2) yield  
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Wu (1990, 1996) provided two other regression functions for the two parameters as follows. 
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with a, b = model parameters describing the queuing characteristics, 
 for fixed-time signals a = 1.77 and b = 1.42 =0.8a 

These equations yield  



 

 

)
1

(
ma

oPx   [-] (7) 

and  

)1(2
)

1
(

8.0

ma

o

o
GE

P

P
N



  [veh] (8) 

Then, delays at signalized intersections can be calculated as follows (Miller, 1978; Akcelik, 1980 
Webster, 1958; Webster and Cobbe, 1966; Kimber and Hollis, 1979) for a stationary queuing system 
as signalized intersections. 
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where PF is the so-called progression factor accounting for signal coordination (cf. TRB, 2010).  
For fixed-time signals, both approaches deliver almost identical values of  and Po (cf. Wu, 1990). 

Eqs. (5) and (6) have simpler structures and they are preferred in the application. The value of Po can 
more easily be obtained by detectors at stop-line than the value of NGE. In this paper, only the value of 
Po is used for further derivations. Then, x and NGE can be obtained as a function of Po. 

The parameters A and B or a and b describe the stochastic characteristics of the corresponding 
queuing system. The values of them can be calibrated with measured field data.  

For practical reasons, the degree of saturation can be rewritten as x = n/m. Thus, eq. (1) yields 
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And eq. (5) yields   
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These are very general expressions of Po. They are no more functions of the cycle time c and the 
green time g.  

 
x m=5 m=7.5 m=10 m=12.5 m=15 m=17.5 m=20 m=22.5 m=25 

0.3 0.005 0.001 0 0 0 0 0 0 0 
0.4 0.018 0.007 0.003 0.001 0.001 0 0 0 0 
0.5 0.05 0.026 0.014 0.008 0.005 0.003 0.002 0.001 0.001 
0.6 0.111 0.072 0.049 0.034 0.024 0.017 0.012 0.009 0.006 
0.7 0.217 0.164 0.127 0.101 0.081 0.066 0.054 0.045 0.037 
0.8 0.384 0.326 0.281 0.247 0.218 0.194 0.174 0.157 0.142 
0.9 0.636 0.591 0.553 0.522 0.495 0.471 0.45 0.431 0.413 

0.95 0.802 0.774 0.751 0.731 0.713 0.696 0.681 0.668 0.655 
0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

Table 1 – Exact values for cycle overflow probability Po  
(numerical results obtained by Markov Chain) 



 

 

The exact values of Po can be calculated numerically (Table 1 and Figure 1) using a Markov Chain 
(Wu, 1990). Compared to these exact values, eq. (5) (or eq. (11)) has a standard deviation s = 0.00077 
and eq. (1) (or eq. (10)) has a standard deviation s = 0.00098. Thus, eq. (5) (or eq. (11)) is slightly 
better than eq. (1) (or eq. (10)) fitting the theoretically exact values. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y 

o
f 

cy
cl

e
 o

ve
rf

lo
w

 P
o

[-
]

Degree of saturatiion x [-]

m=5

m=7.5

m=10

m=12.5

m=15

m=17.5

m=20

m=22.5

m=25

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

P
ro

ba
bi

lit
y 

o
f 

cy
cl

e
 o

ve
rf

lo
w

 P
o

[-
]

Number of vehicles per cycle [veh/cyc]

m=5

m=7.5

m=10

m=12.5

m=15

m=17.5

m=20

m=22.5

m=25

 

Figure 1 : top: Po as a function of degree of saturation x; bottom: Po as a function of number of vehicles per 
cycle n; legend: capacity of a cycle m 

2.2 Estimation of Model Parameters 
Using eqs. (10) and (11), the capacity per cycle m and the parameter a (or A) can be estimated by 

measuring the values of the probability of cycle overflow Po and the demand per cycle n from 
detectors at stop-lines. In the practice, the probability of cycle overflow Po can be defined as the 
proportion of the number of cycles with fully occupied detector during green phases to the total 
number of cycles. In the practice, the on-site detector has to be calibrated for measuring the probability 
of cycle overflow Po beforehand. 

Eq.(10) can be linearized as follows. 
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This equation delivers more accurate results for estimating the capacity per cycle m and it is 
preferred for further applications. That is, for estimating the capacity m, the following linear function 
is utilized. 
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The coefficients C0 and C1 of the linear equation can be estimated using a linear regression model. 
Then, the capacity per cycle m and the parameter A can be calculated as  
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Eq.(11) can be linearized as follows. 
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Again, the coefficients C0 and C1 of the linear equation can be estimated using a linear regression 
model. Then, the capacity per cycle m and the parameter a can be calculated as  
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In Figure 2, the linearized relationships between n, m, and Po are illustrated for both eqs. (10) and 
(11). It can be seen, that by eq. (10) with higher values of capacity per cycle m the curves cannot be 
distinguished clearly. This fact could induce higher inaccuracy of estimated parameter m. 
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Figure 2 : left: linearized data for Miller’s model (eq. (10)); right: linearized data for Wu’s model (eq. (11)); 

legend: capacity of a cycle m  

In the reality, the cycle time c and the green time g can be measured as well. Thus, the saturation 
flow rate s and the capacity C can be calculated as follows. 
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3 Regression Studies and Sensibility Analysis 

3.1 Regression Analysis 
For demonstrating the regression results and the sensibility of the proposed approach, several 

regression studies are conducted. For estimation of capacity, the traffic demand or the degree of 
saturation has to vary in a certain range in order to conduct the regression. The conducted regression 
uses values for x = 0.6 - 0.95 with all together 8 data points (incremental step x = 0.05) and additional 
randomized values (standard deviation = 0.1*mean) for n and m as input parameters (cf. Figure 3) in 
order to simulate inaccuracy of measurements. 
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Figure 3 : left: randomized linear data from (10); right: randomized linear data from (11)  

(data range: x = 0.6 - 0.95); legend: capacity of a cycle m  

 



 

 

Data no. m=3 m=10 m=20 m=30 m=40 m=50  
1 3.16 9.27 19.9 31.00 34.90 47.90 
2 3.20 10.04 19.10 32.35 35.88 45.47 
3 3.33 10.01 20.25 28.83 34.64 47.83 
4 3.12 8.78 17.99 33.57 42.50 49.88 
5 2.94 9.19 19.78 31.54 35.86 50.83 
6 3.16 9.89 18.91 31.28 38.45 49.40 
7 3.11 8.86 20.70 30.68 42.87 49.63 
8 3.24 8.67 19.24 29.35 35.52 45.13 
9 2.81 8.95 17.85 38.94 48.03 54.79 

10 2.91 9.48 18.77 34.65 40.46 57.53 
11 3.04 9.96 18.21 33.33 40.06 48.64 
12 3.19 10.55 19.02 30.60 38.10 49.05 
13 2.76 11.00 21.00 28.37 44.23 46.90 
14 3.14 10.50 23.26 33.13 41.00 42.78 
15 2.72 9.51 18.12 30.41 39.96 45.38 
16 2.68 9.69 18.87 28.37 43.05 60.15 
17 3.12 8.82 17.76 27.12 37.77 52.70 
18 2.98 10.41 20.51 33.29 39.36 54.49 
19 2.63 11.25 21.80 35.65 42.60 44.26 
20 3.22 10.59 18.56 26.98 40.86 51.49 

Estimation 3.02 9.77 19.48 31.47 39.80 49.71 s
Input 3 10 20 30 40 50 1.07

Table 2 – Values of parameter m obtained from eq. (10) (data range: x = 0.6 - 0.95) 

 
Data no. m=3 m=10 m=20 m=30 m=40 m=50  

1 2.96 9.67 18.72 27.68 36.65 47.68 
2 2.97 10.22 15.05 29.51 36.57 47.11 
3 2.73 8.68 19.90 27.19 40.24 46.69 
4 3.00 10.24 21.07 31.66 42.11 50.69 
5 2.97 10.14 18.36 30.85 41.61 50.89 
6 3.00 9.23 17.95 31.60 37.94 46.66 
7 2.45 10.09 18.97 24.63 36.39 57.53 
8 2.83 10.68 21.80 28.23 36.44 52.42 
9 2.91 12.03 19.22 28.49 41.83 45.44 

10 3.33 9.68 18.55 30.41 40.43 47.47 
11 2.74 9.75 21.34 28.75 41.81 46.03 
12 3.02 10.75 18.75 29.67 43.53 54.65 
13 3.10 9.22 20.63 29.13 42.10 52.15 
14 2.75 9.23 20.72 30.03 43.59 46.81 
15 3.26 10.22 18.98 26.83 34.33 48.53 
16 2.90 9.42 19.85 29.42 43.17 44.31 
17 2.80 10.00 19.17 29.57 42.83 54.72 
18 3.05 10.52 18.70 30.64 45.25 45.97 
19 2.76 8.80 20.52 29.96 37.93 52.40 
20 3.17 10.03 20.21 29.34 38.14 50.49 

Estimation 2.94 9.93 19.42 29.18 40.14 49.43 s
Input 3 10 20 30 40 50 0.55

Table 3 – Values of parameter m obtained from eq. (11) (data range: x = 0.6 - 0.95) 



 

 

The results of altogether 20 regression studies are illustrated in Table 2 and Table 3. It can be seen, 
that the variation of estimation is evident in the conducted 20 estimations. However, the average result 
of eq. (11) (standard deviation s = 0.55) is better than eq. (10) (s = 1.07) for reproducing the capacities 
m. The estimated value of a (=2.27) and A is (=1.71) are larger than the input data (1.77 and 1.58). 
That means the randomization of values for n (demand) and m (capacity) leads to a change of 
stochastic characteristics of the queuing system under consideration.  

In Figure 4, the accuracy of the estimated results is illustrated together in dependence of the value 
of cycle capacity m. It can be seen, that the deviations are very small. The deviation in estimating 
cycle capacity m is a direct result of randomized input values of n (demand) and m (capacity). 
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Figure 4 : Comparison of estimated and input data for the cycle capacity m  
left: results from eq. (10); right: results from eq.(11)  

(data range: x = 0.6 - 0.95) 

According to the conducted sensitivity analysis, eqs. (11) and (10) deliver almost the same results. 
However, eq. (11) is relatively simple and robust. Thus, eq. (11) and its corresponding derivations 
(eqs. (17) through (20)) are recommended for capacity estimation at signalized intersections.  

4 Possibility of Practical Applications 
First of all, the proposed model can be used for generating a database of saturation flow rates using 

historical or online detector data with respect to different geometrical and traffic conditions such as 
geometric design of intersections, proportion of heavy vehicles, time interval under consideration, 
weather influence, and so on. 

For on-line applications the model can be combined with other techniques such as Flying 
Windows, Smoothing, Rolling Regression, or Kalman Filter (cf. AIDA, 2000; Bernhard and Riedel, 
1999; Friedrich, 1999, 2000; Mück , 2001; Papageorgiou, 1991; Wu, 2004). 

For capacity estimation, the model is also applicable for data from oversaturated situation and from 
actuated or coordinated traffic signals. The model has the capability to estimate the stochastic 
characteristics of the queueing systems for actuated or coordinated traffic signals. For calculating 
delays and queue lengths under unsaturated situations, the estimated queue length at end of green time 
NGE (eq. (2) or eq.(6)) can be used directly (cf. eq. (9)). This applies also to actuated and coordinated 
traffic signals. 



 

 

5 Application Examples with Simulation Data 
To examine the capability of the proposed model, a comprehensive VISSIM simulation study is 

conducted. The simulation is carried out for a two-lane approach using different input parameters 
depicted in Table 4. The duration of the simulations is 10 hours for any input dataset. The last 9 hours 
are used for the regression calculations while the first hour serves as a preload of the system. 

 

   c=60s  

   q [veh/h]  

Data no. 
x  

(for s=0.56 veh/s) g=10s g=20s g=30s 
1 0.6 400 800 1200 
2 0.7 467 933 1400 
3 0.8 533 1067 1600 
4 0.9 600 1200 1800 
5 0.95 633 1267 1900 

Table 4 – Input data of the simulation study 

In the simulation study, detectors are placed direct at the stop-lines for both lanes separately. The 
detectors register each second of occupancy. If every second of green time is occupied, the cycle is 
considered as overloaded. The cycle overflow probability Po is then calculated as the proportion of 
number of overloaded cycles to number of all cycles under consideration. The number of passing 
vehicles per cycle n can be counted directly by the detectors as well. 

 

  c=60s 

.  g=10s g=20s g=30s 
Data 
no 

x  
(for s=0.56 veh/s) Po n Po n Po N 

1 0.6 lane 1 0.1352 3.24 0.0111 6.38 0.0010 9.47 
  2 0.1241 3.22 0.0093 6.43 0.0010 9.51 

2 0.7 lane 1 0.2500 3.84 0.0333 7.37 0.0093 10.90 
  2 0.2370 3.80 0.0370 7.39 0.0093 10.92 

3 0.8 lane 1 0.3519 4.22 0.1130 8.37 0.0370 12.35 
  2 0.3704 4.30 0.1148 8.37 0.0463 12.34 

4 0.9 lane 1 0.5074 4.71 0.2259 9.35 0.1167 14.06 
  2 0.5056 4.76 0.2259 9.35 0.1167 14.05 

5 0.95 lane 1 0.6093 5.09 0.3167 9.78 0.1704 14.55 
  2 0.6259 5.03 0.3148 9.75 0.1926 14.56 

6 
 

m in saturated cycles 
corresponding s (veh/s) 

5.53 
0.55 

11.36 
0.57 

17.16 
0.57 

7 
 

estimated m  
corresponding s (veh/s) 

5.81 
0.58 

11.24 
0.56 

17.05 
0.57 

8 estimated a 3,50 8,21 12,01 
Table 5 – Results for the simulation study 

The results of the simulation study are illustrated in Table 5 and Figure 5. By the simulation, 
numbers of vehicles during saturated cycles are counted separately. These numbers (no. 6 in Table 5) 
can be considered as the capacity because all cycles used here are saturated. This capacity can be used 
as a counter-check for the estimated capacity under unsaturated conditions (datasets no 1 through 5). 



 

 

The two estimated capacities are not identical but comparable (cf. dataset no.6 vs. dataset no.7 in 
Table 5). 

The estimated values of parameter a (cf. dataset no.8 in Table 5) are much larger than the model 
value (1.77 for eq. (11)) for the theoretical M/Bunch/1 queuing system. Larger values of parameter a 
mean the simulated traffic flow at signalized intersections is less random than the predefined 
M/Bunch/1 queuing system. The value of parameter a depends on the green time g, thus on the cycle 
capacity m. Obviously, the Markovian assumption doesn’t apply for the input process at real 
intersections. In addition, at double lane approaches, the traffic flow at any single lane is less random 
because vehicles can chose the lane before the stop line if the input flows of both lanes are 
imbalanced. Furthermore, the real traffic flow gets more and more bunched with increasing flow rate 
because vehicles must maintain minimum time headways in between. All of the effects reduce the 
randomness of input flow.  
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Figure 5 : Simulated data for Po = f(n, g); legend: green time g for the simulation  

6 Conclusions and Outlook 
Based on the queue theory at signalized intersections, relationships between capacity and 

stochastic characteristics of signalized intersections are investigated. It can be seen that the capacity 
and the characteristics of signalized intersections can be estimated by measuring the cycle overflow 
probability. The model is validated and verified by a simulation study. For demonstrating the ability 
and applicability of the model a sensitivity analysis is conducted. Two basic queue approaches are 
tested for the proposed model. It turns out, that both models can reliably estimate the capacity at 
signalized intersections. However, eq. (11) is relatively simple and robust. Thus, eq. (11) and its 
corresponding derivations (eqs. (17) through (20) are recommended for capacity estimation at 
signalized intersections. Then, eq. (8) can be used for calculating queue lengths at end of green time 
and eq. (9) for calculating delays at unsaturated intersections with traffic signals.  

In the next step, an investigation will be conducted applying the model to on-line collected data at 
real intersections (fixed-time, actuated or coordinated) in order to estimate the variation of capacities 
and delays and to investigate the stochastic characteristics of the queueing systems for actuated or 
coordinated signals.  
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