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ABSTRACT 

According to the intra-vehicle interaction, a traffic flow can generally be divided into three 

homogenous states 1) that of free driving, 2) that of bunched driving, and 3) that of 

standing. The parameter describing the state of free driving is the desired speed, for the 

state of bunching it is the intra-vehicle gaps (time headway) within the convoy and the 

mean speed of the convoy, and for the state of standing its is the maximum jam density. 

These are the most essential parameters which do not depend on the actual traffic situation.  

This paper introduces a new model which considers the Fundamental Diagram (equilibrium 

speed-flow-density relationship) as a function of the homogeneous states. All traffic 

situations in reality can be considered as combinations of the homogenous states and 

therefore can be described by the essential parameters mentioned above. The non-congested 

(fluid) traffic is a combination (superposition) of the states of free driving and bunched 

driving, the congested (jam, Stop and Go) traffic is a combination of the states of bunched 

driving (Go) and standing (Stop). The contribution of the traffic states within the differently 
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congested traffic situations can then be easily obtained from the queuing and probability 

theory. As a result, Fundamental Diagram in all equilibrium traffic situations is derived as 

simple functions of the essential parameters. 

According to the new model the capacity of freeways and rural highways can be 

determined by measuring the essential parameters. This is much easier than measuring the 

capacity directly. 

Furthermore, the probabilities of the various traffic states can be obtained from the new 

model. This leads to new possibilities in real-time controlling and telematics.  

The new model is verified by comprehensive measurements carried out on freeways and 

rural highways in Germany. 

Keywords: 

Fundamental Diagram, speed-flow-density relationship, freeway, rural highway  

1 INTRODUCTION 

The traffic flow on freeways and rural highways is described traditionally in terms of three 

parameters: the mean speed v, the traffic flow rate q, and the traffic density k. The 

functional relationship between these three parameters is called Fundamental Diagram. The 

three parameters can in general be determined by on-site measurements. However, these 

parameters are defined as values under equilibrium conditions. These values cannot be 

measured exactly. All measured values on real-world roads should be considered as 
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approximations only. Normally, the measured mean values of the parameters over a long 

time interval can be used for describing the Fundamental Diagram. In the Fundamental 

Diagram, the traffic flow rate q is measured as a time-mean value, the traffic density k and 

the mean speed v as space-mean values. These three parameters are associated with each 

other by the equilibrium relationship q = v ⋅ k. Accordingly, the Fundamental Diagram is 

defined clearly if a function between two of the three parameters is defined. The 

Fundamental Diagram is featured by the parameters: the desired speed v0, the maximum 

jam density kmax, the maximum traffic flow rate qmax, and the optimal density kopt, where 

kopt corresponds to qmax. The relationship between k, q, and v - represented in the q-v 

Diagram - forms the elementary knowledge for dimensioning freeways and rural highways. 

The mean traffic flow rate attained at a given traffic density serves as a measure of the 

traffic quality. Normally, for analyzing traffic qualities, the k-v relationship is applied since 

this functional relationship is monotonous: v decreases continuously with increasing k. 

The Fundamental Diagram is actually a 3-dimensional function (cf. Figure 1). The data for 

this figure is collected on the German freeway A43. The measure station is located between 

two major freeway interchanges, one 4 km downstream, one 3 km upstream. The locally 

measured time-mean speeds are converted to space-mean speeds according to the traffic 

flow theory. This 3D function has a maximum for q. This means that for v and k there exist 

optimal values at which q achieves its maximum value. For measurements in the reality, 

this maximum traffic flow of the road can hardly be determined because the measurements 

always indicate the bottleneck capacity in front or in back of the location of the 

measurement. Moreover, the capacity of a bottleneck (normally the capacity here is defined 
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as the maximum of the bottleneck) is different whether it is measured before or after the 

traffic breakdown. For a long tern consideration, for instance, by determining the 

equilibrium capacity, the capacity must be averaged over a long time interval during which 

breakdown can occur by chance. The equilibrium capacity must be between the maximum 

output flow before breakdowns and the maximum queue discharge flow after breakdowns. 

The capacity obtained through a Fundamental Diagram is the capacity in sense of the 

equilibrium capacity. This equilibrium capacity is the subject of this paper. 

Considering the three projections of this 3D figure, the individual relationships between q, 

k, and v are received. The measured data are described completely by each of the three (k-

v, q-v, and k-q) relationships. Here, for further consideration, the k-v relationship is used 

predominantly. For example, a measured k-v relationship on the German freeway A43 (cf. 

also Figure 1) is shown in Figure 2, left. 

Usually, measured data exhibit in the k-v relationship two concentrated data clusters. The 

two clusters have different characteristics. Here, the traffic density k can be distinguished 

into two regions. The region of the traffic density within which the traffic can operate with 

high speed is the region of fluid traffic. The region of the traffic density within which the 

traffic can only move with STOP and GO is the region of jam (congested) traffic. 

It can be seen clearly that between the two regions there exist only very few data points. 

This indicates that the traffic state is unstable in this transition region and the traffic flow 

only persists in this state for very short periods. If the measured data is used as the basis of 

a regression -- a 1-part or a 2-part function can be used for the regression -- the 
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Fundamental Diagram in the transition region is always overridden by data within the 

regions of fluid traffic and jam traffic. 

However, just the transition region is needed for determining the maximum traffic flow 

rate, qmax. The distortion of the Fundamental Diagram in this region would decisively 

falsify the predicted capacity of roads (cf. Figure 2, right). 

In order to represent uniformly the actual shape of the Fundamental Diagram over the entire 

data area the class means instead of the individual data points can be employed as a 

database. In this way only one value of v for one value of k remains. As a result, the real 

shape of the Fundamental Diagram is clearly emphasized (Figure 3, left). 

Traditionally, the relationships between the traffic parameters are described by 

mathematical functions using regression techniques. The shape of these mathematical 

functions is normally determined by trial and error. 

The classical model for describing the relationship between the equilibrium traffic 

parameters of the Fundamental Diagram (q, v, and k) is the one-part, linear model for the k-

v relationship from Greenshields (1935). This model often fails because in general only 

very few measurement points are available in the transition region. From experience, the 

description of the traffic process at high traffic densities is unrealistic. The capacity of 

roads (especially for high-speed roads, e.g., freeways and rural highways) is overestimated 

by this model. 

Because there are very few measured data points in the transition region, there exist 

different models and theories for describing the k-v relationship. Two-part models (e.g. 
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May and Keller, 1969) for fluid and jam traffic with separate approaches are an example of 

these models, another is the non-linear model for the k-v relationship from van Aerde 

(1995). Different models also result in different capacities C (= maximum flow rate qmax) 

for the same database (Figure 3, right). 

The traditional models are macroscopic, equilibrium models. Their disadvantage is the 

consolidation of traffic flows within the whole regression data region. The traffic flow in 

the considered region is always assumed as homogeneous. And no microscopic features of 

the traffic flow, e.g., gaps (time headways), desired speeds, are taken into account directly. 

The description of the capacity by these traditional models is dependent on the scope of the 

data and therefore not always reliable. The models are not extendable to traffic conditions 

with additional parameters (e.g. proportion of slow-traffic (e.g. trucks), gradient etc.). 

Assuming that the traffic flow be always homogeneous does not correspond to the reality, 

neither for fluid traffic nor for jam traffic. 

In the past decade, many efforts were devoted to developing the so-called high-order 

macroscopic models which generally not assume that traffic flow is homogenous. However, 

these high-order models still need the equilibrium v-k solutions as a parameter in their 

mathematical formulation. Although some of these macroscopic models (cf. Helbing 1997, 

Klar, 1999; and Hoogendoorn and Bovy 2000) are found on macroscopic behavior and 

include microscopic parameters (such as desired speeds, acceleration times, overtaking 

probabilities, densities, speed variances, length of vehicles, and reaction times), the 

relationship between the macroscopic behavior (such as the equilibrium flow-speed-density 

relationship) and these microscopic parameters are not explicitly defined.  
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The subject of this paper is to develop a reasonable macroscopic, equilibrium solution 

which is based on measurable microscopic parameters. Therefore, the high-order 

macroscopic models are not further taken into account.  

2 A NEW APPROACH FOR MODELING THE FUNDAMENTAL DIAGRAM 

2.1 Division of traffic flow into homogeneous states 

According to the car-following behavior and the relative position of the vehicles, the traffic 

flow in both the fluid and jam regions can be sub-divided into states which are in fact 

homogeneous (cf. Table 1). These homogeneous states are traffic states in sense that they 

are describable by only one state parameter. For fluid traffic, one can distinguish between 

individual vehicles travelling freely (state FREE) and bunched vehicles travelling in 

succession (state CONVOY). For jam traffic, one can distinguish between bunched 

vehicles (state GO) and standing vehicles (state STOP). 

One can compare the four homogeneous states of traffic flow with the three physical phases 

of water. The individual freely travelling vehicles are like molecules in the GAS (steam) 

state, the bunched vehicles are like molecules in the WATER state. The Standing vehicles 

are like molecules in the ICE state. Accordingly, the fluid traffic flow is a GAS-WATER 

mixture, the jam traffic flow is a WATER-ICE mixture. For our analogy, the WATER in 

fluid traffic can possess other features than the WATER in jam traffic. This difference 

results in different capacities of a bottleneck before and after a breakdown. Zhang (1999), 

argues that the difference in high flows prior breakdown and queue discharge rates is 
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(partly) due to retarded acceleration and deceleration in case of busy traffic, when drivers 

mainly react the vehicle direct in front of them. On the contrary, Dilker and Bovy (1997) 

argue that differences in car-following behavior stem from behavioral differences in free-

flow and congested regimes. According to the approach proposed in this paper, these 

differences can be modeled by deferent reaction times for closing and opening phases in the 

STOP and GO traffic. In general, the reaction time following a deceleration (brake) action 

is shorter than that following an acceleration action. That leads to a larger time headway in 

congested (stop and go) traffic compared to the fluid traffic condition. 

The four homogeneous states can be determined by a few simple parameters. For the state 

FREE, it is the desired (or free flow) speed v0, for the state CONVOY the mean net gap (or 

mean net time headway) τko within the convoy (and the mean speed vko within the convoy), 

for the state GO the mean net gap τgo, and for the state STOP the maximum jam density 

kmax. If the probabilities for the individual states are given, the Fundamental Diagram is 

clearly defined as superposition (averaged mean value over a large time-space terrain) of 

these homogeneous states (cf. Table 1). 

In Figure 4, the shape of the k-v relationship of the individual homogeneous traffic states is 

represented: The state FREE is a level straight line; the state CONVOY is only a point; the 

state STOP is also a point. Under the assumption that the average net gaps τ between the 

bunched vehicles in a convoy is constant (i.e., it is independent of the speed), the state GO 

is a hyperbolic function (vgo=f(kko)). This assumption is supported by numerous 

measurements. Figure 5 shows the measured mean gross gaps (time headway from the front 

of one vehicle to the front of the following vehicle) within convoys according to different 
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authors. Using a mean net gap (time headway from the rear of one vehicle to the front of 

the following vehicle) of a length of 1.2 s and an average vehicle length of 6 m, the mean 

gross gaps from the measured data can be obtained directly. The constant net gap within the 

convoys also corresponds to a car-following mechanism using the principle of the "relative 

distance". 

It can be assumed that the mean net gap within the state CONVOY in fluid traffic flow is 

shorter than the mean net gap within the state GO in jam traffic flow. The difference is 

between zero and the difference between the reaction times for the opening phase and the 

reaction time for closing phase in a convoy, dR=TR,open-TR,close. In such a way, a small shift 

here between the state CONVOY and the state GO is established (cf. Figure 4). 

The parameters of the individual states can be determined from experience or from 

measurements. For instance, v0=130 km/h, vko=80 km/h, τko=1.5 s, τgo=2.0 s, and 

kmax=veh/7.5 m=133 veh/km can be used as default values for German freeways. These 

values are average values over the total cross-section of the carriageway. 

When the probabilities for the individual states are given, the shape of the k-v relationship 

can be constructed. The k-v relationship for fluid traffic is then the mean value of the state 

FREE and the state CONVOY. The k-v relationship for jam traffic is the mean value of the 

state STOP and the state GO. The mean value of the parameters k and v is understood as 

space-mean value according to their space-related definitions. 
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2.2 Determination of probabilities of the individual homogeneous states 

How can the probabilities for the individual states be determined?  

First, the jam traffic is considered. The traffic density k within the jam traffic can be 

constructed from kgo and kstop=kmax. The following relationship between the traffic density 

in the state GO, the state STOP, and the traffic density of the entire region of jam traffic can 

be stated: 

 
max
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This function yields the probability pgo of the state GO as a function of k, kko, and kmax: 
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Note that the value pgo is a space-mean value. pgo means that, for a given time instance, 

from totally M vehicles on a road (which is long enough to fulfil the equilibrium condition) 

pgo*M vehicles are in state GO and (1-pgo)*M vehicles are in state STOP. Under the 

assumption that the mean net gap τ go within the convoy is a constant value, the space-mean 

speed of the state GO is then a function of τgo, kgo, and kmax: 

 ⎟
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The space-mean speed of in the jam traffic region, vjam, is then a function of τgo, k and kmax: 
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 ⎟⎟
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Since τgo and kmax are constant values, the equation (4) is a hyperbolic function of the traffic 

density k. This applies to all street types. Figure 6a shows the good agreement between the 

measured data on a 2-lane carriageway and results from the model computation. 

Accordingly, in the region of jam traffic, the shape of the Fundamental Diagram is always a 

hyperbolic function in the k-v relationship and therefore a straight line in the k-q 

relationship. The shape of the Fundamental Diagram in the region of jam traffic is always 

the same for all street types (freeways, rural highways etc.). Unfortunately, this feature 

cannot be obtained for the fluid traffic. 

However, it is possible to derive the functional k-v relationship of the Fundamental 

Diagram in the region of fluid traffic for all street types according to queuing and 

probability theory. 

Every vehicle which must be overtaken by other vehicles can be considered to be a flying 

counter in the sense of queuing theory. According Tanner (1962) the time-mean probability 

of bunching on a single traffic lane is given by (assuming an M/G/1 queue system) 

 pbunch, singel lane = saturation degree = 
maxq
q  

Analogously, the space-mean probability of bunching (=vehicles travelling in convoy = pko) 

can be obtain by  
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 pko, singel lane = relative occupancy quotient = 
kok
k  

The capacity of the queue system is achieved if all of the vehicles are travelling in a 

convoy, say, in the case of k=kko. 

For a 2-lane carriageway, a vehicle cannot overtake and must put itself into a convoy if on 

the overtaking lane already a convoy exists. The probability that a vehicle must join a 

convoy is then equal to the probability that there is a convoy on the overtaking lane. Thus, 

pko= pko,overtaking lane= k/kko (assuming homogeneous distribution of traffic on both traffic 

lanes for simplicity) and pfree=1-k/kko. Again, pko and pfree are apace-mean values. The 

resulting function for the space-mean speed in the fluid traffic region, vfluid, is a linear 

equation of k: 

 
ko
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Therefore, the k-v relationship for fluid traffic on a 2-lane carriageway is always a linear 

function. The measured data confirm this linear k-v relationship (Figure 6b). 

For a 3-lane carriageway on a 6-lane freeway, the derivation can be carried out 

correspondingly. Since 2 traffic lanes are available for overtaking, the probability that a 
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vehicle must join a convoy is equal to the probability that these are convoys on both of the 

overtaking lanes. Thus, pko=(k/kko)2 and pfree=1-pko.  

Therefore, the k-v-relationship for the fluid traffic on a 3-lane carriageway is always a 

square function of traffic density k: 

 
2

ko
ko00kofree0freefluid k

k)vv(vv)p1(vpv ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−−=⋅−+⋅=  (6) 

Here, the measured data confirm also the result of the model, i.e., a square function in the 

k-v relationship (Figure 6c). 

In the same way, the k-v relationship for carriageways with more than three traffic lanes 

can be determined. It only needs to raise the quotient k/kko to the power of the number of 

the traffic lanes minus one. That is: 

 
1N

ko
ko00fluid k

k)vv(vv
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−−=  (7) 

with N = number traffic lanes of the carriageway 

In the model, the overtaking maneuver is not limited to the left-hand overtaking which is 

strictly stipulated in Germany. Thus, the results of the new model can be used also in 

countries (such as U.S.A., Canada etc..) where overtaking on the right-hand is allowed. 

Even the k-v relationship for 2-lane 2-way rural highways can be obtained from the 

queuing and gap-acceptance theory. Assuming that a vehicle needs a gap t0,2 within the 

opposing traffic flow for overtaking and a gap t0,1 within the direction traffic flow for 
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remerging, the probability that a vehicle can carry out the overtaking maneuver, i.e., the 

vehicle does not need to join a convoy, is equal to the probability that the gap in the 

opposing traffic flow is larger than t0,2, and the gap in the direction traffic flow is larger 

than t0,1. This yields    

 )tttt(Pp 2,021,01free >>= I  (8) 

It can be yet assumed that either in the opposing traffic flow or in the direction traffic flow 

the gaps are exponentially distributed (this assumption is suitable because the traffic flow 

rate is seldom larger than 1200 veh/h on 2-lane 2-way rural highways). Then  

 000 k/ktvk
0 ee)tt(P −⋅⋅− ==>   with  )tv/(1k 000 ⋅=   , (9) 

 )tvktvk(
free

2,02,021,01,01ep ⋅⋅+⋅⋅−=   , (10) 

and therefore for a 2-lane rural highway  

 kofreefreefreefluid v)p1(vpv ⋅−+⋅=   . (10)* 

That is an exponential k-v relationship. 

Up to now, the k-v relationships separately for fluid and jam traffic are derived. Since the 

mean net gap τko within the fluid convoy (state CONVOY) is smaller than the mean net gap 

τgo within the jam convoy (state GO) there exists a region within which the two k-v 

relationships are overlapping themselves. In this region, the state of the traffic cannot be 

determined clearly. The traffic may be observed either in the fluid convoy or in the jam 

convoy. The state of the traffic can jump up and down. The probability that the traffic goes 
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from the fluid convoy into the jam convoy increases with increasing traffic density. In 

reverse, the probability that the traffic goes from jam convoy into fluid convoy increases 

with decreasing traffic density. 

It can be expected that the fluid traffic immediately breaks down into the jam traffic at 

k=kko (i.e., at the state that the average length of the net gaps between the vehicles is equal 

to τko in the fluid convoy), and that the jam traffic immediately turns back upwards into the 

fluid traffic at k=kgo,min (i.e., at the state that the average length of the net gaps between the 

vehicles is equal to τgo in the jam convoy). Defining the return probability that the traffic 

turns back from jam traffic into fluid traffic as pu, then pu=1 at k=kgo,min and pu=0 at k=kko. 

Here, the shape of pu is assumed to be a linear function for simplicity. Accordingly, the 

shape of the k-v relationship in the overlapping region can be determined as a superposition 

(space-mean value) of the fluid convoy and of the jam convoy. 

Over the whole area of the traffic density, the Fundamental Diagram can now be 

represented as a combination (superposition) of the four homogeneous states (the speed v is 

a space-mean value of the speeds in the corresponding homogeneous states). The k-v 

relationship is represented by 
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with )kk/()kk(1p min,gokomin,gou −−−=  
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Thus, the Fundamental Diagram is completely described by the five parameters: v0, τko, vko, 

τgo, and kmax. All of these parameters can be empirically measured on real-world roads. 

In the region of fluid traffic, the shape of the Fundamental Diagram in the k-v relationship 

is either an exponential, or a linear, or a square, or a cubic function and so forth, depending 

on how many traffic lanes are available. In the region of the jam traffic, the shape of the 

Fundamental Diagram in the k-v relationship is always a hyperbolic function for all street 

types. In the transition region, it is the overlapping of the two functions in the fluid and jam 

traffic. The transition region is limited by kko and kgo,min. The optimal traffic density kopt is 

located between kko and kgo,min. The phenomenon of "Capacity Drops" can be modeled by 

the difference between τko and τgo. 

According to the new model, the Fundamental Diagram can be described completely in the 

k-v relationship with a few parameters since the shape of the k-v-relationship are prescribed 

by the model. These parameters are the desired speed v0, the mean speed vko of the fluid 

convoy, the mean net gap τko in the fluid convoy, the mean net gap τgo in the jam convoy, 

and the maximum traffic density kmax in jam traffic. 

In order to take the proportions of slow-traffic (e.g., trucks) and other variables into 

account, further parameters that affect the mean net gap τ within the convoy must be 
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included (cf. Table 2). All parameters mentioned here are to be determined 

microscopically. Some parameters depend even on the Road Traffic Act (e.g., the speed-

limits). If no measured values are given, the recommended values (Table 2) can be used. 

It can be recognized that the k-v relationship is mainly determined by the mean net gap 

τ within the convoy. The mean net gap τ is again dependent on other variables. These 

variables include a) the minimum gap in the fluid convoy, b) the discharging gap of a 

queue, c) the intra-vehicle distance in the jam traffic, d) the proportion of slow-traffic, e) 

the environment conditions, e.g., wetness and darkness, f) the lane distribution of traffic 

flow, g) the gradient and slope, h) the curvature, i) and the regulation of speed limits. In 

addition, the length of the measurement intervals has a role to play for the determination of 

the mean net gap with the convoy. The net gap within the convoy, averaged over all lanes 

of a carriageway, can be calculated as following: 

 
lveh,truckpc,veh

*
veh

x,,splitflow,truckx
*

x

fll

ff

⋅=

⋅⋅τ=τ τ−τ
 (12) 

Where the index can be substituted either by "ko" or by "go". Using the given values τx
* 

and lveh
*, Fundamental Diagrams - that take into account the proportion of slow-traffic and 

the flow-split on the traffic lanes - can be constructed. 

Using the recommended values from Table 2 the minimum (for queue discharge) and 

maximum (prior breakdown) capacities can be obtained for a single traffic lane: 

 2415
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For a 2-lane carriageway the minimum and maximum capacities are  
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  (16) 

The equilibrium mean capacity is between Cmax and Cmin. The factor fflow-split,τ=1,1 or 1.2 

represents the fact that at capacity 55% or 60% of all vehicles are on the left traffic lane.  

By varying the parameters different Fundamental Diagrams can be constructed, thereby 

different environment conditions can be taken into account. In Figure 9 the variations 

considering the proportions of trucks and the gradients for a 4-lane freeway are depicted. 

Here, only the mean speed within the convoy vko and the net gap τ are varied. It can be 

recognized that realistic capacities can be obtained through these simple calculations. 

In Figure 10 variations taking into account the gradients for a 2-lane 2-way rural highway 

are depicted. The calculated capacities also agree very well with the measured values.  

The new model was applied on different measured data in Germany. In Figure 11, the 

measured data in the k-v and q-v relationships for two 4-lane freeways are represented. The 

agreement between the model and the measured data is very good. The applied parameters 
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are indicated in the illustrations. All parameters lie in a plausible range. In Figure 12, the 

measured data in the k-v and q-v relationship for two 6-lane freeways are represented. The 

agreement also appears good. The measured data and the model calculation for a 2-lane 2-

way rural highway are depicted in Figure 13. 

It can be recognized that the Fundamental Diagrams of all types of Highways can be 

described very well by the new model using suitable parameters. This shows that the new 

approach can model the regularity between the macroscopic and the microscopic 

parameters realistically. The new model is able to generate Fundamental Diagrams from 

microscopic parameters for all street types. 

Fundamental Diagrams can be generated appropriately by varying the parameters. Different 

environment conditions can thereby be considered. By fine-tuning the parameters, it can be 

expected that the new model can describe the Fundamental Diagrams of all street types 

very realistically. 

3 STANDARD DEVIATIONS OF MEAN SPEEDS 

It is even possible to compose the standard deviations of the mean speeds sv using the 

standard deviations of the four homogenous traffic states. It is to be pointed out, that the 

standard deviation of the mean speeds is not identical with the deviation of the local speed 

distribution. For the computation example, the standard deviations of the mean speeds in 1-

minute-intervals are calculated for a 20-minutes period. Then, one can consider the 

standard deviation sfree of the state "Free" and the standard deviation sko of the state 
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"Convoy" as constant values. Then the standard deviation sfluid of the fluid traffic is a linear 

function of the traffic density k. The standard deviation sjam of the jam traffic is a also linear 

function of k. The function sjam=f(k) go through the point (kmax, 0). As a result, the standard 

deviation strans in the transition region is also a linear function of k (cf. Figure 14). 

Likewise, the measurements agree with model calculations with respect to the standard 

deviations. In Figure 14, sfree=25 km/h, sko=15 km/h, and sjam.max=36 km/h are applied. 

These values confirm the measured values in the real world. 

4 CONCLUSION 

According to measurements cited in the literature, it can be determined that the mean net 

gap within a convoy can be considered as a constant value. Base on this fact a new model 

for constructing Fundamental Diagrams is established. 

According to this model, the Fundamental Diagram can be represented as a superposition of 

four homogeneous traffic states. The shape of the k-v relationship of the Fundamental 

Diagram can be defined by this model: 

• In the region of fluid traffic it is exponential for 2-lane 2-way rural highways, linear for 

2-lane carriageways, square for 3-lane carriageways, cubic for 4-lane carriageways.  

• In the region of jam traffic it is hyperbolic for all street types.  

• In the transition region there is an overlapping of the two functions of fluid and jam 

traffics.  
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According to the model, the Fundamental Diagram can be described completely by five 

essential parameters: 

• the desired speed v0,  

• the net gap τko within a fluid convoy,  

• the mean speed vko of the fluid convoy,  

• the net mean gap τgo of the jam convoy,  

• and the maximum jam density kmax.  

The relationship between the microscopic and macroscopic parameters can be constructed. 

Using the microscopic parameters, Fundamental Diagrams of all type of roads can be easily 

generated. 

The new model is verified by comprehensive measurements carried out on freeways and 

rural highways in Germany. 

According to the new model the capacity of freeways and rural highways can be 

determined by measuring the essential parameters. This is much easier than measuring the 

capacity directly. 

Furthermore, the probabilities of the various traffic states can be obtained from the new 

model. This leads to new possibilities in real-time controlling and telematics. 
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LEGENDS TO TABLES AND FIGURES 

Table 1 - Homogeneous traffic states and their corresponding parameters 

Table 2 - Recommendation for applied parameters 

 

Figure 1 - Fundamental Diagram as a 3D function (data: German freeway A43, measured 

between two major freeway interchanges, one 4 km downstream, one 3 km 

upstream) 

Figure 2 - Traffic statuses in k-v and q-v relationships (data: cf. Figure 1) 

Figure 3 - k-v relationship with the class means and some traditional approaches as 

regressions with the corresponding capacities (data: cf. Figure 1) 

Figure 4 - Homogeneous states in the k-v relationship 

Figure 5 - Measured gaps within convoys from different authors 

Figure 6 - Shape of the Fundamental Diagram in the k-v relationship, a) in the region of 

jam traffic (data: German freeway A43), b) in the region of fluid traffic, 2-lane 

carriageway (data: German freeway A43), c) in the region of fluid traffic, 3-

lane carriageway (data: German freeway A8), d) in the region of fluid traffic, 2-

lane rural highway (data: 2-lane rural highways in the state Baden-

Württemberg) 
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Figure 7 - Overtaking possibilities on different roads  

a) 2-lane carriageway 

b) 3-lane carriageway 

c) 2-lane 2-way rural highway 

Figure 8 - Overlapping of the fluid and jam traffic 

Figure 9 - Variations taking into account the proportions of trucks and the gradients for a 4-

lane freeway 

Figure 10 - Variations taking into account the gradients for a 2-lane rural highway 

Figure 11 – Comparison of k-v and q-v relationships on 4-lane freeways  

top: German freeway A43, speed limit 

bottom: German freeway A1, no speed limit 

Figure 12 - Comparison of k-v- and q-v-relationships on 6-lane freeways  

top: German freeway A1, speed limit 

bottom: German freeway A8, no speed limit 

Figure 13 - Comparison of k-v- and q-v-relationships on 2-lane rural highways (rural 

highways in state Baden-Württemberg) 

Figure 14 - Standard deviation of mean speeds from measurements and model calculations 

for a 2-lane carriageway (data: German freeway A43, speed limit) along with 

the mean speed v 
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region homoge

neous 

state 

Short cut Analogy to the 

physical states 

of water 

descriptive 

parameters

corresponding 

probability 

free 

vehicles 

FREE Gas (steam) v0 pfree  

fluid 

traffic bunched 

convoy 

CONVOY Water I τko (+ vko) pko=1-pfree 

bunched 

convoy 

GO Water II τgo pgo  

jam 

traffic standing 

vehicles 

STOP Ice kmax pstop=1-pgo 

 

Table 1 - Homogeneous traffic states and their corresponding parameters 
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Parameter Measured value recommendation Note 

v0 

[km/h] 

fast (pc):130-140 

slow (truck): 80-90 

130 

80 

desired speed in state 

FREE 

vko 

[km/h] 

75-80 80 speed in state 

CONVOY 

≈ vtruck 

τko 

[s] 

1.1-1.4 1.2 minimum mean net 

gap in state CONVOY 

in the far-left lane 

τgo 

[s] 

1.5-2.0 1.6 mean net gap in state 

GO 

in the far-left lane 

kmax 

[pcu/km) 

150-160 155 for a length of a 

vehicle lveh=6.5m 

ftruck,lveh 

[truck/pc] 

1.61 1.6 ftruck,lveh = ltruck/lpc 

l = length of a vehicle 

ftruck,τ 

[truck/pc] 

1.7-1.9 1.8 ftruck,τ =τ truck/τpc 

fflow-split,τ 

[-] 

2 lane: 1.2-1.4 

3 lane: 1.2-1.5 

1.2 

1.3 

fflow-split,τ= τcarriageway/τ 

 

Table 2 - Recommendation for applied parameters 
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Figure 1 - Fundamental Diagram as a 3D function (data: German freeway A43, measured between two major freeway interchanges, 

one 4 km downstream, one 3 km upstream) 
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Figure 2 - Traffic statuses in k-v and q-v relationships (data: cf. Figure 1) 
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Figure 3 - k-v relationship with the class means and some traditional approaches as regressions with the corresponding capacities 

(data: cf. Figure 1) 
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Figure 4 - Homogeneous states in the k-v relationship 
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Figure 5 - Measured gaps within convoys from different authors 
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Figure 6 - Shape of the Fundamental Diagram in the k-v relationship, a) in the region of jam traffic (data: German freeway A43), b) 

in the region of fluid traffic, 2-lane carriageway (data: German freeway A43), c) in the region of fluid traffic, 3-lane carriageway 

(data: German freeway A8), d) in the region of fluid traffic, 2-lane rural highway (data: 2-lane rural highways in the state Baden-

Württemberg)  
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Figure 7 - Overtaking possibilities on different roads  

a) 2-lane carriageway 

b) 3-lane carriageway 

c) 2-lane 2-way rural highway 
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Figure 8 - Overlapping of the fluid and jam traffic 
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Figure 9 - Variations taking into account the proportions of trucks and the gradients for a 4-lane freeway 
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Figure 10 - Variations taking into account the gradients for a 2-lane rural highway 
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Figure 11 – Comparison of k-v and q-v relationships on 4-lane freeways  

top: German freeway A43, speed limit 

bottom: German freeway A1, no speed limit 
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Figure 12 - Comparison of k-v- and q-v-relationships on 6-lane freeways  

top: German freeway A1, speed limit 

bottom: German freeway A8, no speed limit  
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Figure 13 - Comparison of k-v- and q-v-relationships on 2-lane rural highways (rural highways in state Baden-Württemberg)  
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Figure 14 - Standard deviation of mean speeds from measurements and model calculations for a 2-lane carriageway (data: German 

freeway A43, speed limit) along with the mean speed v 

 


