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ABSTRACT 
Modeling of traffic stream behavior requires establishing some relationship between the 
traffic stream flow, speed, and density (also known as the Fundamental Diagram). A 
reasonable model can estimate the maximum flow rate of motorways and the corresponding 
traffic quality more accurately. Using different theories such as car-following theory, queuing 
theory, or theory of fluid dynamics, different models for the Fundamental Diagram can be 
established. Based on queuing theory, several models can be found in the literature, for 
example, the model from Brilon and Ponzlet [1] and the model from Heidemann [2]. The 
existing queuing models consider a roadway cross section as a stand-alone queuing counter 
and thus the interaction between consecutive vehicles cannot be considered sufficiently. This 
paper presents a new model treating a road stretch as a series of many queuing counters. The 
new model yields a single-regime Fundamental Diagram that fully corresponds to the well-
known Van Aerde model [3, 4]. In the Van Aerde model, the model parameters can be easily 
measured and calibrated using loop detector data. The application and calibration of the 
model is demonstrated using sample of datasets and compared to other models. The results 
demonstrate the superiority of this model in capturing traffic stream behavior. 
 
Keyword: Fundamental Diagram, Capacity, Queuing theory, Tandem queue 
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INTRODUCTION 
The rapid development of personal computers over the last few decades has provided the 
necessary computing power for advanced traffic micro-simulators. Today, microscopic traffic 
simulation software are widely accepted and applied in all branches of transportation 
engineering as an efficient and cost effective analysis tool. One of the main reasons for this 
popularity is the ability of microscopic traffic simulation software to reflect the dynamic nature 
of the transportation system in a stochastic fashion. 

The core of microscopic traffic simulation software is a car-following model that 
characterizes the longitudinal motion of vehicles. The process of car-following consists of 
two levels, namely modeling steady-state and non-steady-state behavior [5]. Ozaki defined 
steady state as conditions in which the vehicle acceleration and deceleration rate is within a 
range of ±0.05g [6]. Another definition of steady-state or stationary conditions is provided by 
Rakha [7] as the conditions when traffic states remain practically constant over a short time 
and distance. Steady-state car-following is extremely critical to traffic stream modeling given 
that it influences the overall behavior of the traffic stream. Specifically, it determines the 
desirable speed of vehicles at different levels of congestion, the roadway capacity, and the 
spatial extent of queues. Alternatively, non-steady-state conditions govern the behavior of 
vehicles while moving from one steady state to another through the use of acceleration and 
deceleration models. The acceleration model is typically a function of the vehicle dynamics 
while the deceleration model ensures that vehicles maintain a safe relative distance to the 
preceding vehicle thus ensuring that the traffic stream is asymptotically stable. Both 
acceleration and deceleration models can affect steady-state conditions by reducing queue 
discharge saturation flow rates. 

Traffic stream models describe the motion of a traffic stream by approximating for the 
flow of a continuous compressible fluid. The traffic stream models relate three traffic stream 
measures, namely: flow rate (q), density (k), and space-mean-speed (u). Gazis et al. [8] were 
the first to derive the bridge between microscopic car-following and macroscopic traffic 
stream models. Specifically, the flow rate can be expressed as the inverse of the average 
vehicle time headway. Similarly, the traffic stream density can be approximated for the 
inverse of the average vehicle spacing for all vehicles within a section of roadway. Therefore 
every car-following model can be represented by its resulting steady-state traffic stream 
model. Different graphs relating each pair of the above parameters can be used to show the 
steady-state properties of a particular model; including the speed-spacing (u-s) and speed-
flow-density (u-q-k) relationships. The latter curve is of more interest, since it is more 
sensitive to the calibration process and the shape and nose position of the curve determines 
the behavior of the resulting traffic stream. 

A reliable use of micro-simulation software requires a rigorous calibration effort. 
Because traffic simulation software are commonly used to estimate macroscopic traffic 
stream measures, such as average travel time, roadway capacity, and average speed, the state-
of-the-practice is to systematically alter the model input parameters to achieve a reasonable 
match between desired macroscopic model output and field data [9]. 

This paper first derives the Van Aerde traffic stream model using tandem queuing 
theory. Subsequently, the paper presents methods for calibrating the model and compares the 
model to other state-of-the-art traffic stream models. Finally, the conclusions of the paper are 
presented. 
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MODEL DESCRIPTION 
First, a single cross section (Figure 1, cross section A) of a road stretch is considered. When 
no vehicles are within the distance L0 = τV0/3.6 (length of the interaction zone A to B) 
downstream of the subject vehicle, a vehicle just behind the cross section A can travel the 
interaction zone without being impeded by any vehicles ahead of it. The minimum intra-
vehicle headway τ corresponds to the reciprocal of the maximum potential capacity C0 of a 
stand-alone cross section under free-flow conditions. The potential capacity C0 for free-flow 
conditions cannot be obtained in the real-world because the traffic flow will break into 
congestion before this capacity is reached. However, the potential capacity C0 can be 
estimated by the so-called Product-Limit-Method (PLM) [10] which is based on the theory of 
probability and statistics. Using the PLM, the distribution function of the potential capacity at 
a cross section under consideration can be estimated. C0 is then the mean value of the 
distributed potential capacity.   

Approximating the queuing system under consideration as a generalized G/G/1 
queuing system, the travel time through the interaction can be computed as 

 
0
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= = the degree of saturation of the queuing system, 

q  = flow rate in veh/h, 

0C = capacity of the queuing system (estimated by the Product-Limit-Method or as the 
reciprocal of minimum intra-vehicle headway τ within bunched vehicles) in 
veh/h, 

stk  = factor that accounts for geometric roadway restrictions and the stochastic nature 
of traffic, 

τ  = minimum intra-vehicle headway (s) = time threshold of interaction between two 
vehicles = 3600/C0 

0V = free-flow speed (km/h), and 
L0 = length of interaction zone (m). 

 
Under real-world traffic conditions, the parameter kst is calibrated using measured 

field data. Normally, the value of kst is smaller than 0.5 and can be assumed to be constant. 
Thus, the actual speed V can be expressed as a function of the actual flow rate (q) as 
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If the traffic stream becomes denser, one or more vehicles may be present in the 

interaction zone L0 (A to B). In this case, a simple G/G/1 queuing system is no longer suitable 
for the modeling of the traffic stream motion.  
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Now, a more realistic configuration is considered (Figure 2). In this case, each vehicle 
is considered to pass its own counter. We have a Tandem-queue system that consists of at 
least two counters.  

Obviously, the Tandem-queue system may have a lower capacity in comparison to a 
single-queue system because impedance occurs in the area L0. The capacity C0

* of the 
Tandem-queue system can be estimated by applying a factor kC to the capacity C0 of the 
single cross section. 

Substituting C0 by C0
* in equation (2) yields the flow-speed relationship for the 

Tandem-queue system as 
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where )density( dfkC = . When d = dmax then kC = 0. In this case, all vehicles are standing 
and the number of queuing counters under consideration is infinite. For d = 0 then kC = 1. In 
this case, the single counter situation applies. The function kC = f(d) may be obtained using 
complicated mathematic formulations. In general, it is a monotonically descending function. 
Under real-world conditions, this function can be assumed using an approximately linear 
function (cf. also [11]). That is,  
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Thus, equation (3) can be written as 
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By re-arranging the variables in Equation (4) and solving for the flow rate q the 

following speed-flow relationship is derived 
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The speed-density relationship can be obtained by substituting d for q/V as 
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This function can also be used as a car-following model using the distance-speed 

relationship as 
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This function is identical to the Van Aerde model [3, 4] which was established earlier 

heuristically. The model by Van Aerde is expressed as  
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Solving Equations (7) and (8) simultaneously yields 
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Solving for the constants c1, c2, and c3 we derive 
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Equations (7) and (8) can be rewritten as  
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Thus, the Van Aerde [3, 4, 7] heuristic model is hereby derived theoretically 

considering a tandem queue and thus demonstrating the theoretical basis for the model. The 
parameters c1, c2, and c3 can be related to macroscopic traffic stream parameters that can be 
directly estimated and calibrated in the field, as demonstrated in Equation (9). Other 
publications have also demonstrated how these parameters can be calibrated using field 
traffic stream data [4, 12]. In Figure 3, the properties of the various model parameters V0, C0, 
dmax, and kst are illustrated. It can be seen, that the shape of the density-flow relationship is 
defined by these four parameters.  

 
DISCUSSION 
By computing the derivative of Equation (5) and setting it equal to zero, the speed-at-capacity 
can be computed as 
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This equation yields 
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This is the condition under which the maximum flow rate qmax is reached. If the 
optimum speed Vopt corresponding to the maximum flow rate qmax is pre-defined, the kst 
parameter can be computed as  
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Otherwise, Equation (12) yields 
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Correspondingly, the maximum flow qmax can be computed as 
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The corresponding optimum density dopt can then be computed as 
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The value of qmax is significantly smaller than the capacity (C0) considering a stand-

alone queuing counter. 
Rakha [7] demonstrated that two conditions need to be satisfied in order to ensure that 

the Van Aerde model does not produce densities that exceed the jam density at speeds greater 
than zero. These conditions are cast as 
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Rakha [7] also derived the wave speed as 
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Consequently, the capacity of the single tandem queuing system (C0) can then be computed 
as 
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The density at which the two waves intersect (d*) can be computed by equating the 

flow at the intersect as 
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Solving Equation (20) for the density and subsequently the flow rate we obtain the 

following 
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Special Cases 
Earlier publications [7] demonstrated that by setting the speed-at-capacity (Vopt) equal to half 
the free-flow speed (V0) and the optimum density (dopt) equals to half the jam density (dmax), 
the c1 and c3 parameters revert to zero generating the Greenshields model [13]. Furthermore, 
Rakha [7] demonstrated that the wave speed of Equation (17) equals the free-flow speed in 
the case that the speed-at-capacity is half the free-flow speed (Greenshields model). 

Consequently, by setting c1 and c3 to zero as 
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The parameters can be computed as 1=stk  and max00 dVC =  which when substituted 

in Equation (18) considering that the wave speed equals the free-flow speed (V0) and in 

Equation (14) yields 0

2opt
VV =  (Equation (18)) and 0 max

4max
V dq =  (Equation (14)). This is 

consistent with the Greenshields’ model parameter values. 
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Substituting the values of Vopt and qmax in Equation (10) the car-following model can 
be cast as  
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The speed-density relationship can be written as 
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The Greenshields model was calibrated to 5-min. aggregated field data gathered from 

the Split Cycle and Offset Optimization Tool (SCOOT) system along an arterial, as illustrated 
in the sample calibration of Figure 4. The figure demonstrates that because the Greenshields 
model only offers two degrees of freedom, it fails to provide a good fit for all regimes across 
all data planes. Specifically, in order to provide a reasonable estimate of roadway capacity, 
the jam density is underestimated. 

Rakha [7] also demonstrated that by setting the speed-at-capacity (Vopt) equal to the 
free-flow speed (V0), the c2 parameter reverts to zero. This model is commonly known as the 
Pipes model [14] and is used as the steady-state car-following model in a number of 
commercial traffic simulation software including CORSIM, VISSIM (Weidemann 99 model), 
and Paramics. The Pipes model is also known as the triangular fundamental diagram in some 
literature given that the flow-density relationship is triangular, as illustrated in Figure 5. 
Substituting c3 for zero in Equation (9) results in a kst value of zero. Furthermore, the 
maximum flow can be estimated by replacing V0 for Vopt in Equation (14). In this case qmax 
equals q*

max. In other words the capacity is computed using Equation (22). 
The Pipes model was calibrated to the same arterial data that were presented earlier, 

as illustrated in Figure 5. The Pipes model provides a better fit to the data in comparison to 
the Greenshields model fit; however the model tends to over-estimate the traffic stream speed 
at higher flow levels in the uncongested regime. The Pipes model offers three degrees of 
freedom by calibrating three model parameters (V0, dmax, and qmax). 

Finally, the full Van Aerde model offers four degrees of freedom by calibrating four 
model parameters (V0, Vopt, dmax, and qmax). The addition of the fourth parameter demonstrates 
the model superiority in capturing the full range of data, as illustrated in Figure 6. The model 
offers a good fit to the data for the full range of data across the three data planes.  
In addition, further analysis was conducted using data from an 88 km/h (55 mi/h) speed limit 

freeway. Table 1 summarizes the estimates of the four traffic stream parameters 
considering different traffic stream models, as calibrated and tabulated in the literature 
[15]. In addition, the Van Aerde functional form was calibrated to the data as part of 
this research effort and the four traffic stream parameters estimated by the model are 
summarized. The literature also provides independent estimates of the valid ranges of 
observed values for each of the four parameters of interest. These observed validity 
ranges serve as an independent measure of the quality of fit of the various models to 
the subject data. The results of Table 1 demonstrate that the Van Aerde functional 
form is the only functional form that ensures that all key traffic stream parameters are 
within the valid ranges. These results demonstrate that the Van Aerde functional form 
provides the required level of flexibility to capture all four parameters and match the 
field data, as illustrated in  
Figure 7. 



Wu and Rakha (09-0149)  11 

Finally a sensitivity analysis of the model parameters was conducted considering a 
free-flow speed of 100 km/h, a desired capacity of 2200 veh/h/lane, and a jam density of 150 
veh/km/lane. The speed-at-capacity (Vopt) was varied from 50% to 100% the free-flow speed. 
The value of the kst parameter varied from 0.25 to 0.00, as illustrated in Figure 8. 
Furthermore, Figure 8 demonstrates that the C0 and q*

max parameters approach qmax as the 
speed-at-capacity approaches the free-flow speed. Specifically, q*

max equals qmax when the 
speed-at-capacity equals the free-flow speed. 

 
CALIBRATION AND EVALUATION 
The calibration of the Van Aerde model can be achieved using two approaches. The first 
approach involves computing the C0 parameter and then estimating qmax from C0. 
Alternatively, the qmax parameter can be calibrated using a heuristic approach that was 
presented earlier [12]. The first approach is illustrated in this paper. 

For a typical 4-lane motorway (two lanes each direction) in Germany, the new model 
is validated using the parameters C0 = 4532 veh/h (obtained by using the Product-Limit 
method, cf. [16]), Vopt = 80 km/h, dmax = 285.7 veh/km (= 1 km / length of a car * number of 
lanes = 1000m / 7m * 2), and V0 = 130 km/h. As a result kst = 0.048, qmax = 3556 veh/h, and 
dopt = 44.45 veh/km are obtained. These values correspond very well to the real-world traffic 
conditions. For this example, the q - V, d - V, and d - q relationships are illustrated in Figure 
9. 

Using the proposed new model the number of lanes and the proportion heavy vehicles 
(HV) can be modeled by simply setting different values for the 4 parameters dmax, V0, C0, and 
kst. The mean values of C0, V0, and dmax from passenger cars and trucks can be used in order 
to account for the proportion of heavy vehicles (here, the value of kst is considered as a 
constant). In Figure 10, an example of the flow-speed relationships for different proportions 
of heavy vehicles is illustrated. In this example, the parameter Vopt = 80 km/h for both 
passenger cars and trucks, dmax = 1000m / 7m * 2 = 285.7 veh/km for passenger cars, dmax = 
1000m / 14m (length of a truck) * 2 = 142.6 veh/km for trucks, V0 = 130 km/h for passenger 
cars, V0 = 80 km/h for trucks, and a passenger car equivalency of 1.5 for trucks are used as 
input parameters. 

In Figure 11, the proposed new model is illustrated together with the Greenshields 
model and a measured data set. It can be seen that the new model describes traffic flow under 
real-world traffic conditions quite well. Again, it can be seen that the value of qmax is always 
smaller than the value of C0. 

 
The Van Aerde model was calibrated to a number of datasets from Europe and North 

America using the SPD_CAL calibration heuristic [12], as summarized in Table 2. The 
results demonstrate that on freeways the speed-at-capacity is approximately 80% of the free-
flow speed. Alternatively, the speed-at-capacity tends to half the free-flow speed for lower 
geometric design facilities (e.g. arterial and tunnel facility). The kst parameter ranges from 
0.0058 to 0.2700 and is typically higher on lower design facilities. The wave speed on North 
American freeways ranges from -21 to -25 km/h, which is consistent with what is reported in 
the literature (~20 km/h). The study, however demonstrates that the wave speed may be very 
different on arterials or on freeways with a very high free-flow speed, like for example an 
Autobahn. 
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CONCLUSION 
The paper demonstrated the theoretical background model for the Van Aerde model using the 
tandem-queuing theory. This theoretical background demonstrates that, unlike single-tandem 
queuing approaches, the tandem-queue approach captures the interaction between 
consecutive vehicles within the traffic stream. This theoretical background also allows for a 
generalization of the Van Aerde model.   

According to this Van Aerde model, a Fundamental Diagram can be defined 
completely by four parameters: 1) the free flow speed V0, 2) the jam density dmax, 3) the 
potential capacity of the cross section C0 which can be estimated by the so-called Product-
Limit Method (PLM), and 4) a system parameter kst that describes the stochastic properties of 
the queuing system. The first three parameters can be measured directly. Only the system 
parameter kst has to be calibrated. 
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Table 1: Comparison of Flow Parameters for Single-Regime, Multiple-Regime Models, 
and Proposed Model 

 
Type of Model Model Free-speed 

(km/h) 
Speed-at-Cap. 
(km/h) 

Capacity 
(veh/h/lane) 

Jam density 
(veh/km/lane) 

Valid Data Range [15] 80-88 45-61 1800-2000 116-156 

Greenshields 91 46 1800 78 
Greenberg ∞ 37 1565 116 

Underwood 120 45 1590 ∞ 
Single-Regime 

Northwestern 77 48 1810 ∞ 

Edie 88 64 2025 101 

2-Regime 98 48 1800 94 

Modified Greenberg 77 53 1760 91 
Multi-Regime 

3-Regime 80 66 1815 94 

Van Aerde 80 60 1827 116 
Source: May, [15] pp. 300 and 303. 
Highlighted cells: Outside the valid data range for specified parameter. 
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Table 2: Summary Results on Different Facilities 
 

Data n V0 (km/h) Vopt (km/h) qmax (veh/h) dmax (veh/km) C0 (veh/h) q*max (veh/h) kst w (km/h)
Freeway 24 80 61 1827 116 2685 2082 0.0281 -23.15
Tunnel 24 68 34 1263 125 2287 1799 0.2695 -18.30
Arterial 33 45 23 582 102 939 779 0.2047 -9.21
I-4 Fwy 288 87 76 1906 116 2530 2023 0.0058 -21.81
401 Fwy 282 106 90 1888 100 2487 2013 0.0071 -24.87
Amsterdam Fwy 1199 99 86 2481 115 3460 2652 0.0066 -30.16
Autobahn 3215 150 108 2100 90 2911 2395 0.0337 -32.34  
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L0=τ·V0/3.6=Area zone, τ=3600/C0 

L>L0=τ·V0/3.6=Area zone 

A B 
 

Figure 1: Interaction area between two consecutive vehicles. C0=3600/τ= maximum 
capacity of a cross section without interaction between consecutive vehicles (C0 can be 

obtained using the Product-Limit-Method (PLM)). 



Wu and Rakha (09-0149)  18 

 
 
 
 
 
 
 

L0=τ·V0/3.6=Area zone, C0=3600/τ 

L<L0=τ·V0/3.6 L<L0=τ·V0/3.6 

B 

A 

 
 

Figure 2: Tandem-queue system for more than one vehicle  
in the interaction zone L0 (A to B) 
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Figure 3: Properties of the key parameters V0, C0, dmax, and kst in the density-flow plane 
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Figure 4: Sample Greenshields Model Calibration 
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Figure 5: Sample Pipes Model Calibration 
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Figure 6: Sample Van Aerde Model Calibration 
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Figure 7: Example Illustration of Model Calibration to Freeway Data 
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Figure 8: Variation in Capacity Parameters as a Function of Vopt 
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Figure 9: Fundamental Diagram for a typical 4-lane motorway (two lane each direction) 
from the new model 
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Figure 10: Flow-speed relationships for different proportions of heavy vehicles 
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Figure 11: Comparison of the present model with field data (proportion of heavy 
vehicles, HV≈10%). Data: Zurlinden ([11]) 
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