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Abstract 
This paper presents an approach for estimating the stochastic distribution of 

bottlenecks capacities on freeways. Using the so-called Product-Limit Method, it is able 
to determine the distribution of capacities on freeways before a breakdown. The 
distribution of capacities after a breakdown can be observed directly by measuring the 
departure capacity behind the bottleneck. Combining the capacities before and after a 
breakdown, the presented paper introduces a mathematical method to obtain the 
distribution of the overall capacity which takes both the free traffic and sporadic 
breakdowns into account.  

Using the results of the presented approach, the mean capacity and the risk of 
disruption (breakdowns, duration of congestion) of the traffic flow on freeways can be 
estimated and analyzed.  
Keywords: capacity estimation, distribution of capacity, freeway, traffic flow control 

Introduction 
Capacity is one of the most important measures in traffic facilities analysis. As 

usually known, the bottleneck's capacity on freeways has a dual feature (duality): the 
capacity before a breakdown is higher than the capacity after a breakdown (cf. Figure 1). 
The difference between these two capacities is called "capacity drop". Furthermore, 
theses capacities are not constant but stochastically distributed values. 

Normally, the mean value and the distribution of capacities after a breakdown can 
be directly measured at a bottleneck under congested traffic conditions. The distribution 
of capacities before a breakdown cannot be estimated so easily because it cannot be 
directly observed. However, using an mathematical approach from the life science, it is 
able to determine the so-called revival (residual) probability of bottleneck's capacities on 
freeways before a breakdown (Minderhoud, 1998 and Zurkinden, 2003). The approach is 
called "Product-Limit Method" (PLM). From the revival (residual) probability of 
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capacities, the distribution of capacities can be calculated. Furthermore, combining the 
distributions of capacities before and after a breakdown, the distribution of overall 
capacities which takes both the free traffic flow and the sporadic breakdowns into 
account can be obtained.  

Thus, according to the presented approach, it is able to estimate the overall capacity 
considering both the free (before a breakdown) and the congested (after a breakdown) 
traffic condition. Using the distributions of capacities before and after a breakdown and 
the overall capacity distribution, and combining them with a given distribution of traffic 
demands, the probability of breakdown (the demand is higher than the capacity before a 
breakdown), the probability of recovery (the demand is lower than the capacity after a 
breakdown), and the probability of congestion (the demand is higher than the overall 
capacity) can be calculated. 

Using the results of the presented approach, the risk of disruption (breakdowns, 
duration of congestion) of the traffic flow on freeways can be estimated and analyzed. 
The approach can be used for planing and dimensioning of freeways and for controlling 
traffic flow on freeways in purposes of congestion warning or ramp access control.  
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Figure 1: Duality of the capacity on a freeway 

Product-Limit method for estimating the capacity before traffic breakdowns 
The Product-Limit Method (PLM) for estimating bottlenecks capacity on a freeway 

is based on the general approach for statistical analysis of lifetime data (Lawless, 1981). 
The PLM can take both the uncensored data (observed lifetimes) that can only be 
observed in a portion of the observation period and the censored data (ages of people 
alive which are older than some observed lifetimes). In the work of Minderhoud et. al. 
(1998), a detailed formulation of the PLM for the capacity analysis of freeways is given. 
Zurlinden (2003) adopted the PLM for congestion analysis in Germany. The basic idea 
and some results of these works are demonstrated here for a better understanding of the 
PLM.  

Considering a bottleneck on a freeway (e.g.: lane reduction, downstream area of a 
on-ramp etc.) for traffic flow analysis (cf. Figure 2), the uncensored data are related to 
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the capacities (here, the traffic flow values immediate before a breakdown are 
considered as capacities), and the censored data are related to the uncongested (free) 
traffic flow values which are higher than some observed capacity values.  
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Figure 2: Traffic flow values before and after a breakdown  

The PLM is constituted on the idea that each uncongested flow observation having 
a higher flow rate than the lowest observed capacity rate contributes to the capacity 
estimate since this observation gives additional information about the capacity value. 
Such uncongested flow observations indicate that the corresponding capacity value has 
not been reached, although its flow value exceeds other observed capacity values. These 
observations are called "censored" observations, since the actual capacity value is not 
directly measured but has an unknown, higher value. The censored values can be taken 
into account by considering the survival (residual) function of the capacity. 

Formally, the observation is called "right censored" at flow rate q if the unknown 
capacity value of the observation is only known to be a greater than or equal to q. The 
capacity estimation is apparently a problem of "right censoring" (Minderhoud et. al., 
1998).  
In order to estimate the distribution of the capacity, the capacity observations are 
assumed to be identically and independently with probability density function fC(q), 
probability distribution function FC(q), and probability survival (residual) function SC(q) 
= 1-FC(q). Then, the likelihood of a sample is (Minderhoud et. al., 1998): 
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where  n = number of the observation periods  
 δi = 0 for uncensored q-value (q = C = observed capacity) 
 δi = 1 for censored q-value (all other q-values) 

For the capacity estimation, Zurlinden (2003) used a Weibull-distribution as a 
capacity distribution function. That is, 
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The likelihood is then given by 
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Here, a is the shape parameter and b the scale parameter (=mean value) of the 
Weibull-distribution. Note, that the Weibull-distribution is a asymmetric, right-shifted 
distribution. The value of the median is lower than the mean value. For the special case 
of q=b (q at mean value), the cumulative probability of the Weibull-distribution (eq.(2)) 
is equal to 0.63, which is much higher than the probability of the median (=0.5).  

For freeway capacity estimation a discrete non-parametric form of the capacity 
survival (residual) function SC(q)=1-FC(q) can be used. In order to deal with both 
censored and uncensored data, the Product-Limit estimate of the survival function is 
given by (cf. Lawless, 1981 and Minderhoud et. al., 1998) 
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1 2 3 4 5 6 7 8

intervall
q

(veh/h)
capacity (C)
free flow (F)

order
 j k mj (mj-1)/mj

SC
(q)

1 3000 F 2 - -
2 2500 F 1 - -
3 3500 C 3 1 6 5/6 5/6=0.83
4 4000 F 4 - -
5 4300 C 6 3 3 2/3 5/6*3/4*2/3=0.41
6 4500 F 7 - -
7 4600 C 8 4 1 0/1 5/6*3/4*2/3*0/1=0
8 4100 C 5 2 4 3/4 5/6*3/4=0.62  
Table 1: Example of PLM calculation (source Minderhoud et. al., 1998) 

In eqs.(4) and (5), k is the number of observed capacities having value lower than or 
equal to the value of Ck; index j indicates the all observed capacities Cj having value 
lower than or equal to the value of Ck; mj is the number of all observations (all q values, 
also by q=C) having value higher than or equal to the value of Cj. In Table 1, an example 
of the PLM calculation is presented to explain the PLM calculation procedure. Note, the 
values of observed capacities depend on the length of the observation period T. In this 
paper, the T = 5 min is used for estimating the capacity. 
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Figure 3: Results of the Product-Limit estimation for two freeways in Germany  

(5-min intervals, Source Zurlinden, 2003) 

Using the PLM, Zurlinden (2003) investigated the capacity on German freeway. He 
estimated the distribution of capacities for two freeways (one 2-lane and one 3-lane 
freeway) in Germany (Figure 3). In Figure 3, the results of both Product-Limit-Weibull 
distributed estimation and Product-Limit-parameter free estimation are depicted 
together. It can be seen, that the Weibull-distribution is a very good approximation of the 
parameter free estimation. From this example (cf. Figure 3), the capacity of a two-lane 
freeway is 4532 veh/h and that of a three-lane freeway is 7170 veh/h under the actual 
traffic conditions. Because the traffic flow will break down if the actual flow rate q is 
higher than the capacity C, the probability of breakdown Pbr(q) is simply equal to the 
value of the distribution function FC(q). For example, on the two-lane freeway, a traffic 
flow rate of q=4000 veh/h would causes a breakdown with a probability of 0.15 (cf. 
Figure 3, a)).  

It is to be point out, that the capacity estimated from the PLM is not the 
"conventional" capacity that can be utilized by a real freeway. They are theoretical 
limiting value in the sense of queuing theory. This theoretical capacity can never be 
reached under real traffic conditions because of the disruption of the traffic flow. If the 
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actual flow rate reaches the value of this capacity, the probability of a breakdown is 
already higher than 0.5 (0.63 for Weibull-distributed capacities). This capacity from 
PLM is higher than the "conventional" capacity by a factor 1.25 (Zurlinden, 2003; cf. 
Figure 4). The "conventional" capacity is a overall capacity taking into account all the 
possible conditions under consideration, also the congested traffic condition.  
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Figure 4: Difference between the "conventional" capacity and the capacity from PLM 

(5-min intervals, Source Zurlinden, 2003) 

The capacity of a bottleneck and its distribution after a breakdown can be directly 
observed. It can be defined as the departure capacity of the bottleneck during the 
congestion. For the same freeways mentioned in Figure 3 the capacity distribution 
functions after a breakdown are illustrated in Figure 5 together with the capacity 
distribution functions before a breakdown. Denote the capacity distribution function 
after a breakdown with FC(q)* and the probability that the traffic flow can recover from 
the congestion with Pre(q), then is Pre(q)=1-FC(q)*.  

Transition of probability between capacities before and after a breakdown 
According to the previous section, the capacity distribution functions both for "free" 

(before a breakdown) and "congested" (after a breakdown) traffic flow are known and 
therefore also the probabilities that the traffic flow changes from "free" to "congested" 
(Pbr) and that the traffic flow changes from "congested" to "free" (Pre). Denote the 
probability that the traffic flow is in the state "free" with Pfree and that the traffic flow is 
in the state "congested" with Pcong, then the following equation system (Markov Chain) 
is true: 
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Where k and k+1 are indices for the k-th and k+1-th interval. For the equilibrium 
condition, this equation becomes  
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with Pfree(q) + Pcong(q)= 1. The equation (7) yields the solution: 
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Figure 5: Capacity distribution functions before a breakdown FC(q) and after a 

breakdown FC(q)* (5-min intervals) 



 8

For the example illustrated in Figure 6, the meaning of the three probabilities Pbr(q), 
Pre(q), and Pcong(q) can be understood as following for a two-lane freeway with an actual 
flow rate of 4000 veh/h: if the traffic is in the state "free", the probability that the traffic 
flow within a 5-min period could break down from the free flow state to the congested 
flow state is ca. 0.13 (Pbr); if the traffic is in the state "congested", the probability that 
the traffic flow within a 5-min period could recover from the congested flow state to the 
free flow state is 0.11 (Pbr); thus, the probability that the traffic within a 5-min period is 
in the state "congested" is 0.14/(0.14+0.11)=0.56. That is, the traffic flow under this 
predefined condition is ca 56% congested and 44% free. 
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Figure 6: Probability of breakdown Pbr(q), recovery Pre(q), and congestion Pcong(q)  

(5-min intervals) 

The probability that the traffic flow is congested is equal to the probability that the 
flow rate is higher than the overall capacity, that is 
 )Pr()( overallcong CqqP >=   

Thus, the overall capacity distribution function is (Figure 7) 

 
))(1()(

)(
)()(

)(

)()Pr()(

*

,

qFqF
qF

qPqP
qP

qPCqqF

CC

C

rebr

br

congoveralloverallC

−+
=

+
=

=>=
 (10) 

Assuming the resulting capacities are Weibull-distributed, the mean capacity 
corresponds to FC(q)=0.63. Thus, from Figure 7, the mean overall capacity is about 2000 
veh/h/lane both for the 2-lane and 3-lane freeway. This corresponds very well to the 
experience values in Europe. 
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Figure 7: Distribution function of capacities before a breakdown FC(q), after a 
breakdown FC(q)*, and of the overall capacities FC,overall(q) (5-min intervals) 

The probability Pcong(q) can be used for estimating the average duration of free and 
congested period and its distribution. For example, given the length of the measurement 
intervals T (e.q. 5 min), the probability that the traffic flow is in Ncong consecutive 
intervals, that is in the time period Lcong=T⋅Ncong, congested is 

 congN
congcongcong qPNTL )()Pr( =⋅=  (11) 

The average length of the congested period is  
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The average length of the free flow period is respectively 
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Certainly, the calculation of the average congested or free period can only be 
conducted if the average flow rate q  is lower than the overall capacity Coverall. 
Otherwise the traffic flow is non-stationary and the congestion would increase with time. 
For the example of a two-lane freeway, the probability of congestion Pcong(q) is ca. 0.56 
with q =4000 veh/h (cf. Figure 6 a)). Thus, the average congested time period )(qLcong  
is ca. 0.56/(1-0.56)2⋅5 = 14.42 min and the average free flow time period )(qL free  is ca. 
(1-0.56)/0.562⋅5 = 7.02 min. The average circulation time of stop-and-go is then ca. 
17.42+7.02=21.44 min. 

Conclusion 
Using the Product-Limit method, distributions of bottlenecks capacities (eq.(5)) 

before a breakdown can be estimated for freeways (Minderhoud et. al., 1998; Zurlinden, 
2003). According to this distribution functions, the probability of breakdown (from free 
to congested traffic condition) by a given traffic flow rate can be calculated. Using the 
measured bottlenecks capacities after a breakdown, the distribution of capacities after a 
breakdown and the probability of recovery (from congested to free traffic condition) by 
a given traffic flow rate can be obtained as well. Combining the capacity distribution 
functions both before and after a breakdown, the probability of congestion (portion of 
time that the traffic is in a congested state) and the distribution function of the overall 
capacities (average value of capacities over all free and congested traffic conditions) can 
be calculated by the presented approach (eqs.(8) and (10)). 

The results of the presented approach can be useful for estimating the risk of 
disruption (breakdowns, duration of congestion) of the traffic flow on freeways (cf. also 
Wu, 2002) and for planing and dimensioning of freeways as well as for controlling 
traffic flow on freeways in purposes of congestion warning or ramp access control.  
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