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Delays and Queue Lengths at Traffic
Signals With Two Greens in One Cycle

Werner Brilon1 , Ning Wu1 , and Ralph Koenig2

Abstract
Under specific circumstances signal timing at a traffic signal allows the switching of two green times within one cycle.
Practitioners expect a reduction in delays and queue length as a result of this control strategy. However, no analytical metho-
dology is available to quantify this effect. To resolve this deficit, analytical considerations have been undertaken. They follow
the principles that are also the basis for conventional signal performance analysis. The basic difference compared with a single
green is that, within each cycle, the maximum length of the vehicle queue remains shorter under the two-green regime. This
effect is expressed by the term uniform delay, w1. For that parameter, a specific deterministic derivation is proposed. The sec-
ond element is the incremental delay, w2, which stands for the effects of randomness and temporary oversaturation. The anal-
ysis confirmed that this parameter could be adopted from conventional methods. Different formulas for the estimation of w2

were investigated using simulation studies. Thus, a set of equations is given for the prediction of average delay and of percen-
tile queue length in the case of two green times. Verification of the derived formulas was performed using Monte Carlo simu-
lations. The results could easily be applied in practice and might be implemented into guidelines. The application
demonstrated how a second green within one signal cycle reduced delays and, notably, queue lengths.
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Traffic signals, on certain occasions, offer the possibility
of two green times to specific signal groups within each
cycle time. Here, we discuss two green times that are
separated by an intermediate red signal under fixed-time
signal control. The potential for two greens is usually
reported for pedestrian signals. However, quite fre-
quently this option also exists within signal timing plans
for vehicular movements. For right-turn movements par-
ticularly, establishing a second green time may be an
option in several cases.

In practice, setting a separate second green within
one cycle requires the signal controllers to allow this kind
of switching, which is usually the case for controllers in
central Europe (1). Also, in the NTCIP (National
Transportation Communications for ITS Protocol) and
NEMA (National Electrical Manufacturers Association)
standards (2, 3), a second green time can be implemented
using what are referred to as overlaps. In Germany, the
cycle time in fixed-time control is usually between 60 and
90 s. In some cases, 120 s is applied. In reality, however,
most traffic signals operate in a traffic-responsive

manner, differing widely in the level of sophistication
used in controlling the traffic. Most of these traffic-
actuated signals also follow a sequence based on a fixed-
time phasing scheme. Thus, the question of implement-

ing a second green into this type of sequence is also rele-
vant. Controllers allow the switching of signals in every
second of the cycle time. In detail, signalization is as fol-

lows: it is mandatory that the ‘‘green’’ is announced by
‘‘red and yellow’’ (1 s). Between ‘‘green’’ and the follow-
ing ‘‘red’’ a ‘‘yellow’’ is displayed for a duration of 3 s

(under 50 km/h maximum speed), 4 s (60km/h), and 5 s
(70km/h). Speed is always limited: the maximum allowed
is 70 km/h. The ‘‘green’’ can be displayed as a full green

circle, meaning that turning drivers have to give priority
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to conflicting traffic, that is, opposing traffic and parallel
pedestrians and cyclists. The traffic light ‘‘green’’ may
also be indicated as an inserted green arrow, which
means that conflicting traffic need not be expected (‘‘pro-
tected movement’’). Inserted green arrows can be applied
for right- and left-turning movements as well as for
straight ahead traffic. A green arrow signal may be the
predominant signalization in the case of two greens for
right-turning traffic (‘‘protected right-turn’’).

In practice, a second green time is typically implemen-
ted into capacity and performance estimation by adding
both green times and then treating them as a single
green. However, this simple method does not account
for the total positive effects that evolve from the second
green, which will be demonstrated later in this paper (see
Figures 5 and 6).

The purpose of this paper is to present the analytical
equations that estimate the average delay and queue
lengths in cases of two green times. Here, we concen-
trated our derivations on cases in which drivers did not
have to contend with conflicting traffic during the green
(i.e., ‘‘protected green’’).

Our derivations started from the traditional methodol-
ogy for estimation of performance measures at traffic sig-
nals. These were then expanded to account for the effects
of the second green. To validate the resulting equations,
simulations were performed. Our conclusions in relation
to practical applications are discussed.

Review of Relevant Literature

Documentation was examined in a thorough search of
quantitative analyses of the consequences for vehicular
traffic generated by double green times during one cycle
at a traffic signal. However, no references for scientific
research could be identified. In several consulting reports
covering real-world cases, their authors expected reduc-
tions in delays and queue lengths without being able to
quantify their expectations. The application of double
greens seemed to be mainly concentrated on right-turn
movements in an exclusive lane. However, surprisingly,
this solution has also been proposed for protected left-
turn movements in a few cases (3, Example 7).

The majority of occasions in which two greens were
discussed related to pedestrian signals. In such cases, the
determination of delay was not problematic since the maxi-
mum delay (which determines the level of service, according
to Handbuch fuer die Bemessung von Strassen [HBS; 4]) and
the average delay (Highway Capacity Manual [HCM; 5]) are
given by the duration of the red times.

In U.S.-based literature, the problem is covered by the
term ‘‘signal overlap.’’ This denotes a green time that is
provided within two phases of a signal timing plan. One
example is illustrated in Exhibits 5-13 and 5-14 of the
Signal Timing Manual (2). Usually, overlap means a

green time that is provided during two succeeding
phases. But this kind of phase scheme might also lead to
two separate greens within one cycle if the relevant
phases are disconnected. A method to estimate the con-
sequences of such a control scheme is not discussed
within that manual.

Analytical Solution for Average Delays

The current methodology for the estimation of capacity
and traffic performance at traffic signals was based on
theoretical analysis. Empirical methods were not the pre-
ferred option here since a statistically reliable observation
of the required parameters in real traffic did not seem
possible.

All the following considerations apply only to a fixed-
time signal.

One Movement With One Single Green

As a fundament of all derivations, we start from the esti-
mation of average delay at a traffic signal with one green
time per cycle. The classic formula is by Webster, which
postulates that the total average delay is the sum of two
components (6),

w=w1 +w2 s ð1Þ

where
w1 = delay caused by the continuous alternation

between red and green (referred to as uniform
delay in HCM [5]), s; and

w2 = delay caused by randomness in the arrival pro-
cess and by temporary oversaturation (incre-
mental delay in HCM [5]), s.

The basic uniform delay, w1, is calculated as (see
Webster [6])

w1 =
s � R2

2 � U � s� qð Þ =
(1� l)2 � U
2 � (1� q=s)

s ð2Þ

where
U = cycle time, s;
G = effective green time, s;
R = effective red time = U – G, s;
l = G / U = proportion of green -;
q = traffic volume (demand), vehicles

per hour vph;
s = saturation flow = capacity for

uninterrupted green, vph
= 3,600 / tb;

tb = departure headway between queued vehicles
at the stop line, s;

x = q / C = degree of saturation; and
C = capacity, vph,
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= l � s= G

U
� 3, 600

tb

vph ð3Þ

This equation is only applicable for x ł 1, that is, for
undersaturated conditions (q ł C). In the case of a time-
dependent solution with temporal oversaturation in the
considered peak interval (i.e., q.C), this equation is
applied with x = 1. Thus, Equation 2 can be written as
follows (see HCM Equation 19-19 [5]):

w1 =
(1� l)2 � U
2 � (1� x̂ � l) s ð4Þ

where
x̂= min (1, x)
The total consequences of randomness and temporary

oversaturation are expressed by the incremental delay
term, w2. The incremental delay, w2, is calculated as

w2 =
NGE � 3, 600

C
s ð5Þ

where
NGE = average length of the queue at the

end of green, measured in vehicles veh.
Incremental delay consists of two delay components.

One accounts for delay from the effect of random, cycle-
by-cycle fluctuations in demand that occasionally exceed
capacity. The second accounts for the delay from a sus-
tained oversaturation during the peak interval.

Here, the major problem is the estimation of NGE; sev-
eral solutions have been published in the past. Here the
more relevant equations are specified.

Akcelik (7):

NGE =

T � C
4
� x� 1ð Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� 1)2 +

12 � x� x0ð Þ
T � C

r" #
for x.x0 veh

ð6Þ

NGE = 0 elsewhere
where

x0 = 0:67+ k
600

�
T = duration of the peak interval under concern, h.

Wu (8):

NGE =
T � C

4
� x� 1ð Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� 1)2 +

8 � m � x
T � C � 2ffiffiffi

k
p

s" #
veh

ð7Þ

where
k = s�G

3, 600
= maximum number of departures

within one green time, veh;
M = factor for the degree of randomness

in vehicle arrivals;

= 1 for totally random, for example,
for an M/M/1 queuing system;

= 0.5 for an M/D/1 queuing system,
= 0 for a D/D1 system (=constant headways

between arriving vehicles and uninterrupted depar-
tures with constant headways).

The best agreement between the simulation (see
below) and application of Equation 7 for this study was
achieved for m = 0.6.

HCM (5):
The HCM (5) indicates the incremental delay, w2,

directly via Equations 19 to 26 without referring to NGE,
from which it was derived. A transformation of that
equation back to NGE for a pretimed signal leads to
Equation 8.

NGE =
T � C

4
� x� 1ð Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� 1ð Þ2 + 4 � x

T � C

r" #
veh

ð8Þ

HBS (4):

NGE =

max

0:58�T �C
4
� fin � x� 1ð Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(fin � x� 1)2 + 4�fin�x

0:58�T �C

q� �
T �C

4
� x� 1ð Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� 1)2 + 4�x

T �C

qh i
8><
>: veh

ð9Þ

where
fin = factor to account for variable traffic flow during

the peak hour under concern for T = 1h –

fin = 1+
4 � q15=q� 1

1:5
ð10Þ

where
q15 = largest traffic volume (demand) during a 15-min

interval within the peak hour, vph.
The delay formula (Equation 9) in the HBS (4) is an
extension of the delay formula (Equation 8) from the
HCM (5) to account for the nonstationarity of traffic flow
within the peak period of duration, T, by factor fin. If the
nonstationarity remains disregarded (i.e., fin = 1), the sec-
ond line of Equation 9 will always be valid. Thus, in this
case the HCM delay formula (Equation 8) and the HBS
solution (Equation 9) are identical. Note, the HCM delay
formula uses an interval duration of 0.25h, whereas the
HBS delay formula is applied for T = 1h and, thus, needs
adaption to nonstationarity by the term fin to account for
variable traffic volumes during the 1-h period.

Unlike the delay formulas in HCM and HBS
(Equations 8 and 9), which are based on an M/D/1 queu-
ing system, Equations 6 and 7 consider the specific prop-
erties of a queuing system at traffic signals. That is, the
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departure process is not a steady-state, deterministic one.
Instead, the signal creates bunched departures. The max-
imum number of departures during one green time,

expressed by the term k (in Equation 7), accounts for
these bunched departures. A queuing system with
bunched departures delivers, in general, lower delays

compared with an M/D/1 queuing system.
Equation 6 does not consider the queue length, NGE,

below a degree of saturation, x0. This leads to an under-
estimation of delays in this range and a discontinuity of
the delay estimation. Also, the simulations described in
this paper showed larger discrepancies for Equation 6.

Thus, Equation 6 will not be further considered in the
following comparisons.

Finally, it must be noted that the whole set of equa-
tions (Equations 1 through 9) is only an approximation,
since a mathematically exact solution for the delay at sig-

nalized intersections under time-dependent conditions is
not yet available. All equations for NGE (Equations 6
through 9) account for a peak period of duration T,

where the initial queue length is 0 and where the traffic
volume after that period is assumed to be 0 as well. The
average delay is formed over all vehicles that arrive dur-

ing the peak period. Thus, the delay that queued vehicles
experience after the end of the peak period (until the
final queue is completely dissolved) is also attributed to
the average. To solve this problem for oversaturated

conditions, the coordinate transformation technique (so-
called transition technique), which was first established
by Kimber and Hollis (9), is the basis for all the equa-

tions mentioned.

One Movement With Two Greens

As a first step, uniform delay, w1, must be determined
(see Equation 1). We assume that the cycle starts with a
first red R1. The sequence of timing is then:

R1!G1!R2!G2. This means the second green ends at
the end of the cycle. This convention is only made to
illustrate the following derivations. The resulting equa-
tions are valid for all kinds of two greens and two reds in

one cycle.
To estimate the uniform delay, w1, again, as in the pre-

vious section, we have to exclude oversaturation, that is,
x ł 1.

Here, we use the following terminology:
U = cycle time, s;
G1 = duration of the first green time, s;
G2 = duration of the second green time, s;
R1 = duration of the first red time, s;
R2 = duration of the second red time, s;

‘‘Red time’’ and ‘‘green time’’ stand for
the effective red- and effective green time, s;

a1 = time for the dissipation of the queue from
the beginning of the first green time, s;

a2 = time for the dissipation of the queue from
the beginning of the second green time, s;

q = traffic volume (łC), vph;
l = (G1 + G2) / U= proportion of green;
C = capacity, vph,

= l � s= G1 +G2

U
� s vph

s = saturation flow = capacity for
uninterrupted green, vph;

= 3,600 / tb;
tb = average departure headway between

vehicles at the stop line, s;
x = q / C = degree of saturation.

Here we have to distinguish between three cases (see
Figures 1 to 3),

1. a1 ł G1 and a2 ł G2

2. a1.G1

3. a2.G2

Figure 1. Derivations for Case 1: (a) sum of arriving and
departing vehicles and (b) length of the queue.
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where
a1 =

q�R1

s�q
and a2 =

q�R2

s�q

Based on x ł 1, more than these three cases is not
possible.

We have to remember that the sum of all delays is
equal to the area, F, under the curve for the number of
queuing vehicles (see Figure 1). Therefore, we have to
calculate this area for the three cases. The uniform delay,
w1, then is

w1 =
F

U � q=3, 600
s ð11Þ

Case 1: a1 ł G1 and a2 ł G2 (Figure 1)

The maximum number of vehicles in the queue for each
of the two subperiods occurs at the end of the relevant
red time (Figure 1b). Then the maximum during the
whole cycle is

Nmax =max NR1,NR2ð Þ=
maximum length of the queue veh ð12Þ

where

NR1 =
R1 � q
3, 600

veh

NR2 =
R1 � q
3, 600

veh

The maximum extension of the queue—upstream from
the stop line—(back-of-queue [BOQ], Figure 1a) is

Nmax=max N1,N2ð Þ=maximum back-of-queueveh ð13Þ

N1 =
a1 � s
3, 600

=
q � R1

3, 600 � (1� x̂ � l) veh

N2 =
a2 � s
3, 600

=
q � R2

3, 600 � (1� x̂ � l) veh

The total deterministic delay (sum of all delays) is repre-
sented by the area of the two triangles in Figure 1a),

F =
1

2
� R1 � N1 +

1

2
� R2 � N2 ! F =

1

2
�

R1
2 +R2

2
� �

� q
3, 600 � (1� q=s)

vps

ð14Þ

The average deterministic delay is then

w1 =
F

U � q=3, 600
=

1

2 � U �
R1

2 +R2
2

1� q=s

=
1

2 � U �
(R1 +R2)

2

1� q=s
� 1

2 � U �
2 � R1 � R2

1� q=s
s

ð15Þ

For delay calculation under time-dependent conditions
with temporary oversaturation, the degree of saturation

Figure 2. Average queue lengths for Case 2: (a) sum of arriving
and departing vehicles and (b) length of the queue.

Figure 3. Sum of arrivals (upper blue curve) and departures
(lower blue curve) over one cycle for Case 3.

Brilon et al 5

(a)
EN F

T

T "2+* 1
'$' /

“F E
L c

/ ‚

A <k fR1* *  4 ‚+ ‚G1„ ,  R2 f fG2  f/—>

‘ _ U * 4 __>

(19)
N A

T iNR1 ‘ T
A 

\1 N* \
—V_

<* fR1 f  >4* *G1f+%<fR2  + * GZ? ‚ f ,

‚ az  , f ,

“EN F

\
N1 

«A—

G ! G1
+*  l 

“ .

\ ” u
D E 01N12  Nz

A
B

_ :
fR1 f  « G1 fR2——>« ‚ G{+ ‘

+ ‚ 81 f  32  ‚ »

|“ U ‚ +



can exceed the value of 1 in the peak interval. However,
the uniform delay is only calculated below a limit of q /
s = x̂�l. Thus,

w1 =
1� lð Þ2 � U

2 � (1� x̂ � l)�
R1 � R2

(1� x̂ � l) � U s

=w1, one green �
R1 � R2

(1� x̂ � l) � U

ð16Þ

where
x̂= min (1, x)
w1,one green

= uniform delay for one green time (G1 + G2) in a
cycle (Equation 4) s

Case 2: a1.G1 (cf. Figure 2)

F = area within the polygon A – F – E – D – B – A
= area F(A-F-C) - area F(B-D-E-C)

=
1

2
� R1 +R2ð Þ � N12 � R2 �

s

3, 600
� G1 vps

=
1

2
� R1 +R2ð Þ2 � q
3, 600 � (1� q=s)

� R2 � s � G1

3, 600

ð17Þ

where N12 =
(a1 + a2) �s

3, 600
= (R1 +R2)�q

3, 600�(1�q=s) =
(R1 +R2)�q

3, 600�(1�x̂�l) veh =

auxiliary parameter for the calculation of the area F(A-
F-C).

The area F represents the sum of all delays. Thus, for
q=s= x̂ � l the average deterministic delay, w1, is

w1 =
F

U � q=3, 600
=

1� lð Þ2 � U
2 � (1� x̂ � l)�

G1 � R2

(1� x̂ � l) � U s

=w1, one green �
G1 � R2

(1� x̂ � l) � U
ð18Þ

In Figure 2, different parameters for the queue lengths
for Case 2 are calculated as follows.

The queue length at the end of the first green is

N�=
q � R1 +G1ð Þ

3, 600
� s � G1

3, 600
isø 0 veh ð19Þ

The maximum number of vehicles at the end of the queue
(BOQ) in greens No. 1 or No. 2 is

Nmax=max N1,N2ð Þ=maximumbackofqueueveh ð20Þ

where

N1 =
a1 � s
3, 600

=
q � R1

3, 600 � (1� x̂ � l) veh

N2 =
N �+ q � R2

3, 600 � (1� x̂ � l) veh

Case 3: a2.G2

Case 3 is symmetrical to Case 2. Exchanging the indexes
1 and 2 in Case 2 leads to the corresponding equations
for Case 3. Thus,

w1 =w1, one green �
G2 � R1

(1� x̂ � l) � U s ð21Þ

Obviously, if Equations 16, 18, and 21 are compared with
Equation 4, two green times in a cycle will always lead to
a reduction in delays compared with a single green time
(G1 + G2) even if the sum of green times is identical.

Examples and Verification by Simulation

One Single Green

In the first step, the set of equations for the average
delay at a traffic signal with only one green per cycle was
tested. One purpose of these tests was to identify the best
solution for NGE among Equations 6 to 9.

The results from the analytical equations were com-
pared with the simulation results. The Monte Carlo-type
simulation generated headways between arriving vehicles
either from an exponential distribution or from a hyper-
Erlang distribution. The latter could also generate
bunched arrivals in the approaching traffic depending on
the traffic volume (10). This represents a traffic stream
traveling on a single lane. Figure 4 demonstrates the
results for two cases. For both cases: tb = 1.8 s was used,
which is equivalent to a saturation flow of s =
2,000 vehicles per second (vps). The curve referred to as
‘‘HBS and HCM’’ was determined by Equations 8 or 9
where fin = 1. The curve called ‘‘Wu (1998)’’ was calcu-
lated using Equation 7 where m = 0.6 .

We see here and in other examples that the equations
from HBS (or HCM) did not precisely represent the
simulation results. In the comparison, only the second
line of Equation 9 (for fin = 1) was used, which rendered
the results identical to the HCM solution (Equation 19
to 26 in HCM; see Equation 8). Conversely, the solution
by Wu (8), which considered the specific property of
bunched departures at a traffic signal, more closely
matched the simulated delays, especially for the case of
more realistic vehicle arrival patterns (i.e., hyper-Erlang).
Also, the fit was not perfect. However, the deviation
between the approximate analytical solution and the
simulation results in the area for intermediate degrees of
saturation was typical for the coordinate transformation
technique after Kimber and Hollis (9).

6 Transportation Research Record 00(0)



Compared with the HCM/HBS model (Figure 4), expo-
nential arrivals generated lower delays. This was a result of
the imbedded M/D/1 queue in this model, where M means
exponentially distributed arrivals. An M/D/1 queue overes-
timated the delay at signalized intersections where the depar-
ture was not steady state (cf. letter ‘‘D’’ for ‘‘deterministic’’

in M/D/1) within the cycle time. Since there was no depar-
ture during the red time at all, the departures were not com-
pletely deterministic. Deterministic departures only occur
during green time. Exponential arrivals provide a better fit
at higher flows because this effect becomes less significant at
a higher degree of saturation.

Figure 4. Estimation of average delay depending on traffic volume obtained by four different approaches for two examples: (a) U = cycle

time = 72 s; G = green time = 22 s and (b) U = cycle time = 90 s; G = green time = 40 s.

Figure 5. Average delay depending on traffic volume : (a) first green: from sec 10 to sec 40 / second green: from sec 60 to sec 70 and

(b) first green: from sec 10 to sec 30 / second green: from sec 55 to sec 75
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As an outcome from these studies the estimation for
NGE offered by Equation 7 was regarded as the most rea-
listic solution.

Two Greens in One Cycle

The results from Equations 16, 18, and 21 were tested
for the two cases quantified in connection to Figure 5.
Here a larger departure headway tb= 2 s (larger than in
the previous example) was applied, since this value is
typical for right-turn traffic. For both cases in Figure 5
the cycle time is U = 90 s and the sum of green times is
40 s, which means a capacity of 800 vph. The duration of
the observed peak period is 1 h. The dependency between
traffic volume and delay was analyzed for both cases.
The following analytical solutions were applied:

� W-HBS (one green): total delay equations accord-
ing to HBS or HCM (Equations 8 or 9) for the fic-
titious case of one green (G1+G2),

� w (NGE after Wu, m = 0.6): total delay, where
delay, w1, is estimated by Equations 16, 18, and
21 for two greens and NGE is estimated by the Wu
formula (Equation 7) with m = 0.6 for two green
times.

These solutions are compared to simulation results for
the total delay, obtained by simulation with hyper-
Erlang distributed headways (Sim-HyperErlang in
Figure 5).

Figure 5 shows a comparison of the results. It is clear
that the approximate use of equations for a single green
time of duration G1 + G2 (upper curve) led to an overes-
timation of delay. The resulting error was rather large—
compared with the true value (lower curve)—for low and
medium traffic volumes.

Again—also for the case of two greens—the applica-
tion of Wu’s equation for NGE (Equation 7) with m =
0.6 represented the simulated results very well. The use
of this formula led to a nearly perfect fit with the simu-
lated values.

The difference between Figure 5, a and b, is the
arrangement of the two green times within the cycle. In
Figure 5a, the two greens are different whereas in Figure
5b the two greens are symmetrically arranged within the
cycle. The latter led to slightly lower delays, although the
difference was quite small.

This result can be treated as confirmation of the fol-
lowing statements:

a. Application of Equations 16, 18, and 21 within
Equation 1 represents the average delay incurred
by a traffic stream that is controlled by two green
times in each cycle.

b. Wu’s equation for NGE (Equation 7) is a good
representation of the effects of randomness and
temporary oversaturation also in case of two
greens.

c. The second green time contributes to a significant
reduction in delays.

Queue Lengths and Back-of-Queue

The described derivations can be extended to calculate
queue lengths. First, as in the derivation of w1, the
lengths of the queue must be obtained for the determinis-
tic case where x ł 1. Two kinds of queue length are of
interest (cf. Figures 1 and 2):

� NR1 or NR2 = number of vehicles in the queue at
the end of red time R1 or R2; and

� N1 or N2 = position of the BOQ (given as number
of vehicles) in the 1st or 2nd period of the cycle. BOQ
we understand to mean the farthest position apart
from the stop line where an arriving vehicle is impeded
by a preceding vehicle waiting for departure.

These are deterministic values without accounting for the
incremental queue at the end of green NGE. Formulas for
these terms are given in Table 1.

To get the real average queue length, Nreal
R , at the end

of each red or the real average BOQ, Nreal
BOQ, the term NGE

Table 1. Equations for Different Kinds of Queue Lengths for the Deterministic Case Where x < 1

Case 1 Case 2 Case 3

NR1 =
q�R1

3, 600 NR1 =
q�R1

3, 600 NR1 =
q�R1

3, 600 +N�case 3

NR2 =
q�R2

3, 600 NR2 =
q�R2

3, 600 +N�case 2 NR2 =
q�R2

3, 600

N1 =
q�R1

3, 600�(1�x̂�l) N1 =
q�R1

3, 600�(1�x̂�l) N1 =
1

1�x̂�l �
q

3, 600
� R1 +N�case 3

� �
N2 =

q�R2

3, 600�(1�x̂�l) N2 =
1

1�x̂�l �
q

3, 600 � R2 +N�case 2

� �
N2 =

q�R2

3, 600�(1�x̂�l)

N�case 2 =
q� R1 +G1ð Þ

3, 600
� s�G1

3, 600
N�case 3 =

q� R2 +G2ð Þ
3, 600

� s�G2

3, 600

x̂= min (1, x)
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(cf. Equations 6 through 9) has to be added to each of
the terms in Table 1 to account for the effects of random-
ness and temporary oversaturation.

Within each of the three cases, the maximum number
of vehicles in the queue, on average, is

Nreal
R = max (NR1 +NGE; NR2 +NGE) veh ð22Þ

Within each of the three cases the larger BOQ is, on
average,

Nreal
BOQ =Nreal

max= max (N1 +NGE; N2 +NGE) veh ð23Þ

In addition to average queue lengths, practitioners are
interested in the maximum expected queue length for the
dimensioning of short auxiliary lanes for turning traffic.
In many cases the 95th percentile is taken as a representa-
tion of the expected maximum. Here the maximum BOQ
is of primary interest. To extend the derivations for the
average values into percentiles, three approaches have
been proposed in guidelines or literature,

� HBS (4), Figure S4–17 based on the equation

Nreal
95,BOQ = e0:022�(95�50) � 1

	 

�
ffiffiffiffiffiffiffiffiffiffiffi
Nreal

BOQ

q
+Nreal

BOQ veh ð24Þ

� HCM (5), Equation 31-150 through 31-153 (the
so-called initial queue and the upstream adjustment
factor are neglected here for simplification)

Nreal
95,BOQ =Nreal

BOQ�

min 1:8; 1:0+ 1:64 �
ffiffiffiffiffiffiffiffi

1
Nreal

BOQ

q
+ 0:60�

�

(1:64)0:24 � l0:33 � (1:0� e2�2x)

� for x\1:0

min 1:8; 1:0+ 1:64 �
ffiffiffiffiffiffiffiffi

1
Nreal

BOQ

q� �
for x ø 1:0

8>>>>>>><
>>>>>>>:

veh

ð25Þ

� Wu (8)

Nreal
95,BOQ =N95:GE + 1:20 � NBOQ + 1:29 � q

3, 600
� U

� �0:26

veh

ð26Þ

where

N95,GE =
T � C

4
�

x� 1ð Þ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� 1ð Þ2 + 2:97 � 8 � m � x

T � C � 2ffiffiffi
k
p

s" #
veh ð27Þ

NBOQ = max (N1; N2) veh

where N1 and N2 have been defined in Table 1; and for
m, k refer to Equations 6 and 7.

Figure 6. Back-of-queue and its 95th-percentile depending on traffic volume: (a) first green: from sec 10 to sec 40 / second green: from

sec 60 to sec 70 and (b) first green: from sec 10 to sec 30 / second green: from sec 55 to sec 75
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The three approaches revealed similar results, how-
ever, with limited differences.

In Figure 6, the results for the BOQ are illustrated for
the same configurations as in Figure 5. The top of the
three curves (N95-BOQ one green) represents the 95th
percentile of the BOQ for a single green of 40-s duration
within a 90-s cycle. This would be the solution for con-
ventional calculations in which the two greens are treated
as a single one. The curve in the middle shows the 95th
percentile of the BOQ (N95-BOQ two greens) in the case
of two greens whereas the lower curve (N-BOQ two
greens) indicates the average BOQ (N-BOQ). From the fig-
ure we can ascertain that for low and medium traffic
volumes the second green time contributes to a quite signifi-
cant reduction in the maximum queue length. On the other
hand, for oversaturated conditions, the second green has, in
absolute numbers, a similar effect. However, relatively, the
difference becomes less important. It can also be seen, that
with balanced green times (Figure 6b, G1 = G2 = 20 s) the
queue lengths are smaller than with imbalanced green times
(Figure 6a, G1 = 30 s and G2 = 10s).

In interpreting the calculated queue lengths, it should
be noted that these values are somewhat artificial as these
so-called vertical queues are obtained from queuing the-
ory. Usually, real queue lengths in front of a traffic signal
are shorter depending on the speed of vehicles approach-
ing and departing at traffic signals. As a simplified solu-
tion, a reduction factor of 0.9 could be applied to the
calculated vertical queue lengths to estimate real-world
queue lengths (cf. Akcelik [7] and Wu [8]).

Conclusion

To date, one shortcoming of traffic signal analysis has
been the lack of estimation procedures for traffic perfor-
mance generated by two green times within one signal
cycle. This allocation for signal timing may be mainly
applied for right-turn movements. Modern signal con-
trollers should be able to implement corresponding sig-
nal switching.

To resolve this deficit in quantitative methods, analy-
tical considerations have been undertaken. They follow
the same principles that underlie conventional signal per-
formance analysis. They follow Webster, who postulated
that the total average delay can be formed from the sum
of uniform delay, w1, and incremental delay, w2 (6). w1

stands for fluctuation of the queue length during the sig-
nal cycle. For this parameter, a specific deterministic
derivation was proposed for two greens that included
three potential cases for the arrangement of the green
times. The second element, w2, stands for the effects of
randomness and temporary oversaturation. Here the
existing equations for a single green could be adopted.
Among the formulas for the estimation of w2 the

equation proposed by Wu proved to be the best fit (8).
This formula also has the potential to improve the preci-
sion of the delay formulas in the HCM (5) and HBS (4).
The sequence of Equations 1, 5, and 8 is recommended
for estimation of average vehicle delay at a pretimed traf-
fic signal with a single green time.

For the case of two green times within the cycle, a set
of equations is given for the prediction of average delay
and queue length. Average delay can be estimated by the
sequence Equation 1 (Equations 16, 18, or 21), and
Equation 8, where the application of Equations 16, 18,
or 21 depends on three cases for the arrangement of the
two greens within the cycle.

The formulas were validated using Monte Carlo simu-
lations, as were the existing methods. The derivations
apply only to fixed-time signal control—like the corre-
sponding methods for single green times. The results are
ready to be applied in practice and might be incorpo-
rated into guidelines. This application has demonstrated
how a second green within one signal cycle could reduce
delays and—notably—queue lengths.

Further research should investigate whether and how
the results could be extended to applications for actuated
signal control. Modification of the results to incorporate
permitted movements could also be studied in the future.
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