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1. Introduction

In my bachelor’s thesis I am going to examine the solvability of Pell’s equation using the theory
of continued fractions and discuss the Euler-Muir theorem.

1.1. What's Pell’s equation?
Pell’s equation (after John Pell') is given as
2 —dy? =1

where d is a fixed positive integer and the question to be examined is whether there exist integer
solutions (x,y), that is, it is a so-called Diophantine equation.
Obviously, (z,y) = (1,0) is a trivial solution that we will not discuss any further. In general,
we will see that this equation has infinitely many non-trivial solutions if d is not a perfect square.
The negative Pell’s equation is the related Diophantine equation

22 —dy? = -1

where d is a fixed positive integer as well.

This equation does not have a trivial solution except when d = 1, where (x,y) = (0, 1) solves
the equation. The criteria for the solvability of the negative Pell’s equation are a bit too complex
for the introduction and will be discussed in section 3.2.

We further note that if (z,y) solves one of the above equations, we see from n? = (—n)? that
(z,—vy), (—x,y) and (—x, —y) are solutions as well, which is why we will only permit positive
values for z,y from now on.

1.2. What's a continued fraction?

A continued fraction is a finite or infinite expression

1
lag, a1, az,...] == a0+7a - ;
1 az+...

we call the continued fraction simple if all a; are integers.

Every common fraction (every rational number) can be developed into a simple finite cont’d

fraction and every irrational number has a simple infinite continued fraction representation as

we will see later in this thesis — for example, we have
17

1 . 1
—=[12=5+-—7 and V11=[3,36]=[3,3,6,3,6,...] =3+ —7—.

"mistakenly, as Wikipedia states that Pell never analysed the solvability of this equation, a more fitting name
would be Fermat’s equation as Fermat was the first European to discuss its solvability, although this equation
was already known to Indian mathematicians Brahmagupta in the 7*" and Bhaskara II. in the 12" century



1.3. What's the link between these topics?

We will prove that the solvability of the (classical or negative) Pell’s equation
22 —dy? = +1

is linked to the continued fraction representation of v/d, by means of which we can not only
answer the question of solvability, but calculate all non-trivial solutions directly.

As we will see further down in this thesis, the infinite continued fraction representation of v/d
is periodic if d is not a perfect square — the above example lists

V1l = [373776] = [3737673161"'] =3+ > 1
with period length 2 and the solutions of 22 — 11y? = 1 can be calculated as follows:
10
13,3 ==, 10?2 —11-3% =100 — 99 = 1;
(1 3
199
2 _ [3,3,6,3] = —, 199% — 11 - 60% = 39601 — 39600 = 1;
Y2 60
3970
s _ [3,3,6,3,6,3] = ——, 39702 — 11 - 11972 = 15760900 — 15760899 = 1
Y3 1197

and so on. We should note that, for v/d = [ag,ar,...,a@mn] with period length m > 1, only
the convergents [ag, a1, ..., akm—1] with k& € N give solutions of the generalised Pell’s equation
2? — dy? = (—1)™, for instance we have [3, 3, 6] = 63/19, but

63% — 11 -19% = 3969 — 3971 = —2 # 1.

In particular, the negative Pell’s equation 22 — dy? = —1 is only solvable when the period in
the continued fraction expansion of v/d has odd length — for d = 11 we have a period length of
2, so #2 — 11y% = —1 has no solutions. On the other hand, we have v/13 = [3,1,1,1, 1, 6] with
period length 5 and the negative Pell’s equation 22 — 13y? = —1 is solvable:

18
ﬁ:[3,1,1,1,1]:€, 182 —13-5% =324 — 325 = —1.
Y1

1.4. What's the Euler-Muir theorem?

The period in the continued fraction expansion of vd = [ag, @1, -, Gm) apart from its last entry
is palindromic — we have ay = ay—y for 1 <k <m/2:

Vd = [ag, @1, a3, G2, 1, Q)

furthermore we have a,, = 2ag. The Fuler-Muir theorem now allows us, given a palindrome
(a1,a2,...,as,a1), to calculate the three coefficients of a quadratic polynomial

f(n) = An? + Bn +C,

such that for all n € N the continued fraction representation of /f(n) contains this palindrome
and for all d which have this palindrome in the continued fraction expansion of their square
root, there exists an n such that d = f(n):

VI@) = (V) 01,0, 02,120/ T ()]
The Euler-Muir polynomial for the palindrome (1,1,

Vi) =vV7=12,1,1,1,4], V)
V(3 =V75=1[8,1,1,1,16), f(4

—_

) is f(n) = 9n? — 2n, and we have
V32 = [5,1,1,1, 10],
V136 = [11,1,1,1,22] and so on.

~—



2. The theory of continued fractions

Definition 1 (cont’d fraction). For ag,...,a, € R with a; > 0 for £ > 1 we inductively define
(i) [ao] := ao,
(ii) [ag,...,an] = |ag,...,an—1+ i}

If ap, € Z for all k, we call the continued fraction simple.

Remark 1.1. We have

| = a0+ ——
ag, .. .,an] = a
0 n 0 aL +
o
which implies
1
ag,...,0an| = ag +
[ n] [ala ) an]
Remark 1.2. For ay,...,a, we have
[ag,...,an] = [ag,...,an —1,1].
Proof.
1
[ag,...,an —1,1] = ao,...,an—l—i—I = lag, ..., an).
O
Definition 2 (Auxiliary sequences for evaluating continued fractions, [2, equation 7.6]).

Let (an)n>0 be a sequence where a,, > 1 for n > 1. We define (hy,)p>—2 and (ky,)n>—_2 by
hp = anhpn_1 + hp_o, kyn = ankp_1+ kn_o formn >0, h1=ko=1, h_o=k_1=0,
or, written out using matrices,

()= (o i) (r0) memzos (2 02) =G0 Y)
Lemma 3. We have 1 = kg < k1 and ky, < kn11 forn > 1. Also, we have the bound k, > n.
Proof. The k, are recursively defined by

kn = ankn—1+ kn—2,
in particular we have
ko=aok_1+k o=k o=1, ki =aiko+ k-1 =a1 > 1.
The induction base is given by
ko = agkyr + ko > k1 + ko > k1
and using k,_1 > ko for the induction step we have k,_1 > 0, so we can conclude
Vn>1: kpy1=anky + ko1 > ankn > kn.

The bound k,, > n holds for n € {0,1} and inductively follows for n > 2 by

kn=ankp-1+kn2>1-n—1)+kg=mn—-1)+1=n.



Theorem 4 ([2, theorem 7.3]). For any x € Ry we have

[CL a .fU] — xhn—l + hn—2
0y+--»Un-1, xk‘n_l—f—kn_g'

Proof (by induction). For n = 0 we have

xh71+h72_x-1+0_
k1 +k_o _."L"O—i—l_

x = [z].
Using the equation for a fixed n as an induction hypothesis, we can conclude

1 (an + %) hn—1 4 hn—2 aphp—1+ hp—2 + %hn—l
[ao,...,an,x]: agy...,0p—1,0np + — | = 1 — z
x (an+ L) kno1 +kn—2  ankp—1+ kn—g + tkn_1

bt thaoy zhy +haoa

B kn + %knfl B xkn + knfl '

O
Corollary 5 ([2, theorem 7.4]). With ry, := [ag,...,ay] for n > 0, we have ry, = hy/ky.
Proof.
n — [@0s .-, Un—-1,Un _ankn—1+kn—2 _kn
O
Lemma 6 (evaluating a continued fraction using matrix multiplication).
We can evaluate [ag, . .., ay,] using matriz multiplication: for
A B orfa 1 A
<C D) .—H)(l 0) we have [ao,...,an]—g.
Proof. On the one hand, the recursive definition 2 implies:
hp  hp-1 _ hn—1 hp_o an 1
kn kn—l N kn—l kn—2 1 0
. hn—2 hp_3 ap—1 1 an 1
- \kn—2 kns 1 0 1 0
o hfl hfg - a; 1
- (o)
1 0\ 1y (ai 1
(o II(T o)
N 1 0/ \C D)’
=0
on the other hand we showed in corollary 5 that
0y---rUn| — kn - C
O



Lemma 7 (reversed continued fractions, [2, exercise 7.5]). If ap > 1, we have

hn,
hnfl

= lan,...,a9] formn >0, = lan,...,a1] formn>1.

Proof. We shall prove these statements using induction. The base case is given by

hg agp k1 a
- = — = d _— = — =
P =Y fa) and == ()
the induction step is given by
hn, _ anhp—1+ hp—o a4 1 —y 1 _ [a ao]
hn—l hn—l " hn—l/hn—Z " [an—la . 7a0] e
and
kn, ankn—1 + kn—o 1 1
= —ap+—— =+ —— = Jan,...,a1l.
kn—1 kn—1 " knei/kn—2 " [an-1, ..., a1 lan 1

Theorem 8 ([2, theorem 7.5]). For n > 0 we have
hpkn—1 — hp_1kn = (*1)71_1’ hnkn—o — hp_2kn = (*1)nan'
Proof (by induction). For n = 0 we can easily verify these equations:

hok—1 —h_1ko=ho-0—1-kg=(=1)-1=(=1)°"",
hok‘,g - h,Qko == ho -1—-0- ki(] = ag = (*1)00,0.

Using the first equation for a fixed n as an induction hypothesis, we obtain

s 1kn — hokns1 = (ans1hn + ho1)kn — b (Gns1kn + kn_1)
= hp_1kn — hpkn_1
= (=1) - (hnkn—1 — hn-1ky)
= (=1)- (=1)" = (=",
s 1kn1 — ho1kns1 = (@nsihn + ho1)kn—1 — b1 (@ns1kn + kn_1)
= i1 (hnkn_1 — hn_1kn)
= ap (1" = (1) ans.

Corollary 9 ([2, theorem 7.5]). We have

S
knknfl

(=D"an

forn >1, Tp—Tpo=—"—— forn>2.
knk’an

Tm —Th—-1=

If a, € Z for all n > 0, we have ged(hy, ky) = ged(hp, hnt1) = ged(kn, kpt1) = 1.

Proof. The equations can be obtained by dividing the equations from the previous theorem by
knkn_1 and kpk,_o respectively. If a,, € Z for all n > 0, we can conclude that h,, k, € Z for
n >0, and if d € N divides ged(hn, k), ged(hn, hnt1) or ged(kn, kny1), we can see from 8 that

d | (hntikn — hokng1) = (=1)"71,

so we must have d = 1.



Theorem 10 ([2, thm. 7.6]). The sequence (y,)nen converges to a number & € R and we have
rg<Tog<ry<...<EC. .. <r5<r3<ry.

Proof. Per lemma 3 we have k,, > 0 for all n > 0. For n > 2 we have a,, > 0, so the expression
for r,, — rp—o from corollary 9 has the same sign as (—1)" which gives us

Tp—o <Tn if2]|n, Ty < Tp—go if 24n.

Furthermore, the expression for r, — 7,1 from corollary 9 has the same sign as (—1)""!, so we

have 1, < r,—1 for 2 | n and we can conclude for [ > 1 and m > 0 that

Tom < Tomaal < Tomi2i—1 < To—1.

Therefore, the subsequence (72, ),eN 18 monotonically increasing and bounded above by 71, so it
converges. Analogously, the subsequence (72,,41)nen is monotonically decreasing and bounded
below by rg, so it converges. Using the bound from lemma 3 we see that the expression for
Ty — rp—1 from corollary 9 tends to zero, so both subsequences as well as the sequence (7y,)neN
itself converge to the same limit £ € R. As the subsequences are strictly monotonous, this limit
is never reached as there would have to be an n such that r, = rp42. ]

Definition 11 (infinite continued fraction, [2, definition 7.1]).
For (an)nen with a, > 1 for n > 1 we define the infinite continued fraction

[ag,a1,az,...] == lim ry,
n—oo
and we call 7, the n'" convergent of [ag, a1, ag,...]. If there exist [ > 1 and N > 0 such that

Ap = Q4] Vn>N,

we call the continued fraction periodic and we write

[ao, ai,ag, .. ] = [ao, e, AN 1, AN, ... ,aN+l,1].
As in the finite case, we call the continued fraction simple if a,, € Z for all n > 0.

Lemma 12 ([2, theorem 7.15]). Ifz > 1 with x = [ag, a1, ...] and if hy /Ky, is the n'® convergent
of z, the (n + 1)% convergent of 1/x = [0, ag, a1, .. .| is the reciprocal value ky/h.,.

Proof. Evaluating the n'" convergent of = using matrix multiplication, we obtain
hp  hp—1 _ ﬁ a; 1
kn knfl 0 1 0 )
1=

Evaluating the (n + 1)5* convergent of 1/x using matrix multiplication, we obtain

(O (I 8) =0 O G ) =G o).

1=

so the (n + 1)%* convergent of 1/x is indeed ky,/hy,. O



From now on, we assume that a,, € Z for n > 0.

Lemma 13 ([2, theorem 7.13]).
If 1€b — a| < |Eky, — hy| fora € Z, b € N and n > 0, we have b > kyy1.

Proof. We assume that b < k,4+1 and consider the system of linear equations
T a Ry hpia
A = , A= (" Tt ) .
R R e
Using theorem 8, we see that the determinant of A is
hnkn—l—l - hn+lkn - (_1)n+17
so the inverse of A is

—kny, hn,

The system of linear equations therefore has the solution

AT = (—p)nt! (kfn+1 _hn+1> _

T = (_1)n+1(kn+1a — hn11b), Y= (_1)n+1(hnb — kna),

but we are only interested in the fact that z,y € Z. We can’t have x = 0, for this would imply

b7k7l+1 eN
e

b= kn+1y Yy < N - b > kn+17

contradicting our assumption. On the other hand, we can’t have y = 0, for this would imply
(a,b) = (zhy, xky) = |€b — a| = |x| - |Ekn — hn| > |Ekn — hyl.

If y < 0, we see from
0<b=knxr+ knt1y,

that z > 0. On the other hand, if y > 0, our assumption implies that
b<kpi1 <knri1y=0b—kyzx — x < 0.
This proves that  and y have different signs. We have
§b —a = E(kn® + kny1y) = (ha@ + hny1y) = 2(Ekn — hn) + y(Ekns1 — hnya),

and we can conclude from theorem 10 that &k, — hy, and £k,4+1 — hp+1 have different signs,
as & — ry, and & — rpy1 have different signs. We can thus conclude that z(¢k, — hy) and
y(€knt1 — hny1) have different signs, but this implies

1€b — a| = 2(Ekn — hn) + y(Eknt1 — hnta)| = 2] - [Ekn — hn| + Y| - [Eknt1 — Bns1| = |Ekn — B,
contradicting our assumption, so we must indeed have b > k1. O

Theorem 14 ([2, theorem 7.14]).
If |€ —a/b| < 1/2b% for a € Z, b € N, there exists an n > 1 such that a/b = r, = hy/kn.

Proof. As (kp)nen is strictly monotonically increasing and unbounded, there exists a unique
n € N such that k, < b < k,11. Lemma 13 then implies that

1
kp — hn| < 60— —.
e — il < [6b—a] <
We now assume that a/b # hy/ky, so |ak, — bhy,| > 1. This yields the contradiction

1 < |akyn — bhy| < |§bky — aky| + [E0ky — bhy| = knl6b—al +0|8ky — hn| < o + o7 < 5+



Corollary 15. £ is irrational.

Proof. For € = p/q with p € Z and ¢ € N we would have |£¢ — p| = 0 < 1/2¢?, so the previous
theorem gives us an n € N such that r, = p/q = &, contradicting theorem 10. ]

Lemma 16. Writing « + yv/d := = — yv/d, we have a -8 =a- 3 and a/3 = @/B.
Proof. We have
a+bV/d- A+ BVd=(a—bVd)(A— BVd) = (aA+bBd) — (aB + Ab)Vd
= (aA+bBd) + (aB + Ab)Vd

= (a+ bVd)(A + BVd)
and
1/(a+bVd) = (a — bVd)/(a% — b2d) = (a + bVd)/(a® = b%d) = 1/(a — bVd) = 1/(a + bVd).
O
Theorem 17 ([2, thm. 7.19]). Every simple periodic continued fraction corresponds to a number
[ag, ... an—1,aN, - anyi—1] =& = a+c\/6

with a,c € Z, b € N and c # 0, where b is not a perfect square. Conversely, any such number
(a+V/b)/c can be developed into a simple periodic continued fraction.

Proof (=). Writing 0 := [an, ..., anyi—1], we have
0=lan,...,aN1-1,0N, -GN i-1] = [an, .-, ant1-1,0)]
and theorem 4 implies that there exist H, H', K, K’ € Z with K > 1 and K’ > 0, such that
0H + H’

0= — KPP+ KO=HO0+H = K60* + (K'— H)§ — H =0.

0K + K'
The quadratic formula yields the solutions

)e {(H ~ K+ (K'—H?+4KH' (H-K')— /(K — H)? +4KH’}

2K 2K

and both cases can be expressed as

,_A+VB
C
with A,C € Z, B € N and C # 0. Using theorem 4 again, we get h,h’, k, k' € Z such that
§ = [CL(), e, AN 1, AN, ... ,aNJrl,l] = [ao, N ,CLN_l,ﬁ]
_ Oh+n
Ok + K

_ (A+VB)h+CH
~ (A+VB)k+CK
_ (Ah+CH) +VBh
(
_(

Ak + CK') + VBk
(Ah + CW) + hvV/B)((Ak + CK') — kv/B)
(Ak + CK')2 — BE2
((Ah + CH')(Ak + Ck') — Bhk) + C(hk' — W'k)V/B
(Ak + CK')2 — Bk2
((Ah + CH)(Ak + Ck') — Bhk) + \/(C(hk' — 1W'k))?B
(Ak + CK')2 — Bk2




and using suitable a,c € Z, b € N and ¢ # 0, we can write

£:a+\/l;

Cc

where b cannot be a perfect square, as £ would then be rational, contradicting corollary 15. O
Proof (<=). We define mg := alc|, d = bc? and qg = c|c| and show that the algorithm given by

My +Vd d—m?2
an = [&nl, &= """, Mpi1 = angn — M, qn+1:q7n+lez\{0}

QTL n

computes the continued fraction representation of (a + v/b)/c, i.e. for n > 0 we must have

a+ b

C

= [a(), cee 7an—17§n]-

We obtain the induction base case n = 0 by expanding with |c| = Ve

a+Vvb alc|+vb2  mog+Vd

€o = [&o]-
c clc] %
For the induction step, we obtain
t _a _mptVd—angn _ Vd—mnp _ d-mipy, gen 1

" " qn dn Qn(\/g + Mpt1) Mp41 + Vd o n ’
so, using the induction hypothesis, we see that

a+ \/l; 1

:[a07-~7an—17§n] = |G0,---,0n-1,0n + = [aﬂa”~7an—17an7€n+1]'
c Ent1

What’s left to prove is that ¢, € Z\ {0} for all n > 0. Due to

2

d—m?2 d— (a —my)? d—m
net_ A (o’ Ao g - g,

dn dn gn

dn+1 =

we have to show that (d — m2)/q, is an integer for n > 0.
For n = 0 this is clear from the definition as
d —m _ be? — (alc|)? _ be? — a?c? _ i(b o),

% clc] clc] ]

for n > 1 it follows from

2 d-m2 gna In—1
.= L =gy =g € L,
qn dn—1 dn dn

d—m

and we always have ¢, # 0, for else we would have d = m2, implying that b is a perfect square.
Theorem 4 gives us

g_CL—I—\/E_[GJ a g]_gnhn—l"i_hn—Q
0 — c - 0y yUn—-1,Qn| — fnkn_l‘i‘kn_Q

and using & := &, = (m, — V/d)/q,, lemma 16 yields the equation

& hp—1+ hp—
e & (E0kn1 = hn-1) = hn2 — &k
/ hn72 - g(l)kn72 i kn72 <£(/) - hn2/kn2)

Ry S TR P Sy

I

10



For n — oo both numerator and denominator of the fraction in brackets tend to &) — &y # 0,
so said fraction tends to 1. Hence, there exists an ng € N, such that the fraction in brackets
becomes positive for n > ng, making £/, negative. On the other hand, for n > 0 we have

1 1 1
— £n+1 = 5 = >1

n — An fn - \‘fnJ

fn = n =
n n §n+1

and hence for all n > ng:

n d n—VvVd 2vd
0<€n—€,2=mq+\f—mq\f= ;f — gn > 0.

From the definition of m,, and ¢,, we can thus conclude for n > ng:
1<qn S @i =d—my <d, miy <miy + Gnnsr = d, (2.1)

but since d is fixed and my,, ¢, € Z, the pairs (my,, g,) can only take a finite number of values,
so 3 N € Ny,l € N with (my,qn) = (mN+1,qn+1). Since

_my+Vd  myy+Vd
qN 4N+l

EN

=N+

and (€41, Mn+1,Gn+1) is computed solely from (&,, my, g,), it inductively follows that

a—i-\/l;
c

VnZNian: L‘SHJ = L§n+lJ = An+l = :[G/Oa"'7afN—17afN7"'7aN+l—1]'
O

Theorem 18 (continued fraction representation of square roots, [2, theorem 7.21}).
If d € N is not a perfect square, the continued fraction representation of \/d takes the form

Vd =[|Vdl,ai,...,a,2|Vd]]

and we have (a1, ...,a;) = (a,...,a1) with | € Ny, hence ap = aj_1+1 for 1 <k <.

Proof. Theorem 17 yields a representation
|Vd| +Vd=[ag,...,ax-1,aN,- - an]
and using the notation from said theorem, we have (a,b,c) = (|Vd],d,1). We write

M + Vd

& = & = =
" dn " dn
and using lemma 16, we see that
1 1
=& —an - P :ﬂb—an.
Ent1 nt1

We now show that —1 < £/, < 0 for all n > 0. For n = 0 this is clear from
56 = L\/;U - \/g’
and inductively it follows from ag = ||Vd] + Vd| = 2|Vd| > 2 and a,, > 1 for n > 1 via
1

— =& —a, <0—-1=-1 — -1<¢&,,,<0.
n+1

11



We now conclude for all n > 0:

.1 1 1 1
an:gn_ 7 — -1- 7 <ap < —7F— — an = |—5—| -
n+1 n+1 n+1 n+1

Therefore, if there exist indices j < k with §; = &, then & = §; implies that

1

1 1 1
aj_1 = {—EEJ = {—%J = ap_1 = §j—1=a;_1+ g =ag—1+ & =&k-1,

and by induction we get an = a4 (x—j) for all n > 0. As En = {nti41, We get

Vd| +Vd=[2|Vd],ai,...,a) = [2|Vd],a1,...,a,2|Vd]]
and it follows that
Vd = (|Vd] +Vd) - [Vd] = [|Vd],a1,...,a,2|Vd]].

We now note that by theorem 4, & := L\/&J + V/d satisfies the quadratic equation

h; + hi_
§=lag, .. a,&] = W — ki€? + (ki1 — )€ — hy—y = 0.
We now denote the n'' convergents of 6 := [a;,...,ap] by H,/K,, where these fractions are
reduced to lowest terms and K,, € N. Lemma 7 now implies that
H _ [, ag] = u Hi _ (a, a1] = k.
K T hi—y’ K, T ki1’

and since H;/Kj, h;/h—1, H;—1/K;—1 and k;/k;—1 have positive denominators and are reduced
to lowest terms by corollary 9, we have the equalities

Hy =y, K =hi-1, Hi_1 =k, K1 =k_;.
Theorem 4 now implies that

_ 0H; + H;_4 _ Oh; + Kk

UK+ Ky Ohg + ki
- hl_192 + (ki1 — )0 — k=0

(=1), /62 ~1\? ~1
N k«0>-um1—m<e)—m1:m

so —1/0 satisfies the same quadratic equation as £&. But as —1/0 < 0 < £ = [V/d] ++/d and the
two solutions of a quadratic equation always take the form (A 4 +/B)/C, we conclude that

0 =lay,...,ap,0

1 G == ————
TV — ] = 0=
On the other hand, we have
m—m=<W&J+¢&>—2N&J=£—ao=[0"“““’““‘“)]:M
and hence
1

m = [ar, - ag, ao).

As the continued fraction representation per theorem 17 is unique, it follows that

(a1,...,a;) = (ag,...,a1).

12



Theorem 19 ([2, theorem 7.22]). If d € N is not a perfect square,

V= [|Vd],a1,...,a,2|Vd]]
and I minimal, then with g, as in theorem 17, we have
hy = dky = (=1)""'qns1 forn> -1,
where gny1 = 1 holds if and only if (1 + 1) | (n+ 1) and we never have gn41 = —1.
Proof. With &,, m, and ¢, as in theorem 17, we have

§n+1hn + hn+1
va = En+1kn + knt1
_ (mn+1 + \/g)hn + Gny1hnt
(Mg + VA + Gt kns
_ (mng1hn + Gnyihng) + Vidhy,
(Mns1kn + qni1kns1) + Vdk,
_ ((mns1hn + gnrhnsr) + Vdhy) (Mg 1kn + Gnirknir) — Vdky)
 ((Mngrkn + ngrkng) + Vkn) (Mt kn + gnitknar) — Vaky,)
((mns1hn + G 1hns1) (Mns1kn + Gny1bnt1) — dhnkn) + o1 (hng1kn — hnkn-&-l)\/g
(Mpt1kn + Gni1kni1)? — dk2 '

As this equation takes the form A + Bvd = A’ + B'v/d with A,B, A, B’ € Q, we must in
particular have A = A’ and B = B’. Comparing coefficients yields two equations

(mn—l—lhn + Qn+1hn+1)(mn+1kn + Qn—i-lkn-l—l) - dhnkn - 07 (I)
(mn+1kn + Qn+1kn+1)2 - dki = Qn+1(hn+1kn - hnkn—i-l)- (II)
For n = —1 we can easily verify this claim: with ¢ as in 17, we have

2, —dk*, =12 —-d-0’=1=1-1=1-¢|¢| = (=1)2qo.
For n > 0 we have hy,, k, # 0, and multiplying (I) by k,/hy yields

hns1kn,
0= <mn+1kn + 1 ;Lrl ) (Mns1kn + qny1kni1) — dk2.

For all A, B, C, the following identity holds:
(A+C)YA+B)=(A+B)? - (A+B)*+(A+C)(A+B)=(A+B)*+ (A+ B)(C - B),

using which we can rewrite (I) as

hps1kn,
0= (mn—‘rlkn + Qn+1kn+1)2 - dk% + (mn—l—lkn + Qn+1kn+1)Qn+1 < ;;1 - kn—f—l)

Mp+1kn + Gny1kn
= (mn+1kn + Qn+1kn+1)2 - dki + H h i1 Tntd Qn-i-l(hn-i-lkn - hnkn-i-l)'

Substituting (II) into (I) and reducing ¢n+1(hnt1kn — hnknt1), we obtain

Mpr1kn + qna1knit
0=1+ 2t - nltnt e —hp = Mg 1kn + Gng1kns1. (%)
n
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Substituting this result into (II) and applying theorem 8, we obtain

h?: — dk? = (=hy,)? — dk?

(;) (mn-i-lkn + Qn+lkn+1)2 - dk'?l

11
(:) dn+1 (hn+1kn - hnknJrl)

8
= (_1)RQn+1

and the claim follows.
We can never have ¢,+1 = —1, for this would imply n + 1 > 0 and hence

1< &1 = —Mmpq1 — Vd,

o.t.0.h. we would have —1 <, | = —my41 + Vd < 0 as in thm. 18, yielding the contradiction

0<Vd<mpy <—1—Vd<O0.

If I1+1)] (n+1), then periodicity implies that g,+1 = qo = 1. Conversely, g,+1 = 1 implies
that &,41 = mp+1 + Vd, and from —1 < &, = mpu1 — Vd < 0 we see that m, 1 = |Vd] and
hence &,41 = |Vd]| +Vd = &, and the minimality of [ necessitates (I + 1) | (n + 1). O

Corollary 20. We have h? — dk? = 41 if and only if there exists an r € Ny such that
n=r7r(l+1)— 1. In particular, we can only have h? — dk? = —1 if 2| I.

Proof. We have h2 — dk2 = +1 if and only if g,+1 = 1, i.e. for (I +1) | (n+1).
If 211, we have

B2 — k2 = (—1)"1 = (=1)r0FD=2 — (@021

O]

Corollary 21. Forvd = [|Vd],a1,...,a;,2|Vd]], | minimal, we have |vd] > ay for1 <k <1.

Proof. With N, ng, ax, mk, q; as in the proof of 17 we have N = 1, ng = 0 and like (2.1) we have

m2 < d = mp < Vd St my < [Vd| (2.2)

n

for n > 1. On the other hand, we have
My + Mpy1 = My + (anQn - mn) = AnQn

and we showed in (2.1) that
1< g, <d, (2.3)

which in conjunction with (2.2) implies that

2 vd]

an

Angn < 2L\/gj — an <

Lastly, we will show that ¢, > 2 for 1 < n <[ for this would imply the inequality
an < |Vd].

Theorem 19 states that g, = 1 can only hold for (I + 1) | n, which in conjunction with (2.3)
proves the claim. O
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2.1. The Euler-Muir theorem and equipalindromic numbers

The following section was inspired by the website [1] which describes the Euler-Muir theorem
without giving a proof. For proving this theorem, we need the following lemma:

Lemma 22. Foray,...,a; withl € No, ap € N, ap = a;_4+1 V k and A, B,C, D given by

A B\ (a1 1 azg 1\ (a1

C D) \1 0 1 0 1 0)°
we have B = C and B> = AD — (=1), furthermore A> B (A > B forl # 1) and A> D.
Proof. We prove the statement using induction over [1/2]. If [ = 0 (empty product), we have

<C D>_<0 1), B*=0*=0=1-1=AD—(-1)

if | =1, we have

A B ap 1
(C D>:<11 o)’ B =12=1=a;-0— (1) = AD — (-1)},

in both cases we have B=C, A> B (A > B for | =0) and A > D. For

A B (a2 1 aj—1 1
C D) \1 0 1 0
we take B2 = AD — (—1)!72 and B = C as the induction hypothesis and conclude
A B\ (a1 1 A B\ (a1 1 - a%ﬁ—!—QalB—i—D a1 A+ B B_C
¢ ) \1 o)\B DJ\1 0) mA+ B A ) o
B% = (ajA+ B)? = a2A4% 4 201 AB + B> = (a3A + 20, B+ D)A — (—1)""2 = AD — (-1)".
We further obtain the estimates
B=aA+B<alA+2uB+D=A4, D=A<aA<alA+2a0,B+ D = A,
and those inequalities hold for [ > 2, as we have A > 0 and either B > 0 or D > 0. O

Theorem 23 (Euler-Muir). For ay,...,a; withl € Ny, ax = aj_p+1 YV k, we define A, B, D by
A B ! 1 ay 1 L ajy 1
B D) \1 0 1 0 1 0

m = (((=1)""Y(A+1)BD 4 maxa;) mod 2A’) — max ay, Al = {

and
A if 21 A,
AJ2 if2] A

If 1 =0 (empty product) the above matriz multiplication yields the identity matriz.
Then the numbers d in N*, the set of positive integers that are not perfect squares, with

Vd =[|Vdl,ai,...,a,2|Vd]]

where | is minimal, i.e. 2|v/d| > maxay’ (see corollary 21), are parametrised by

! - 2
{(A/)2n2—|— (ale—mA/) n—i—DiAmB-l— (%) 'n e N},

and there exist no such numbers if 24 BD. The polynomial from this set description is called
the Euler-Muir polynomial for the palindrome (ay,...,a;).

lwe have max @ = —o0, so this statement is true for [ = 0; for further calculation I will use 0 in place of —oo,
ie. a>max{0}U{ar:1 <k <!}, asa>0and ap > 1.
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Proof. The cont’d fraction representation of v/d with the palindrome (a1, ..., a;) takes the form

Vd = [|Vd],ai,... a,2|Vd]]
= L\/aj-f-\/g:[ZL\/aJ,al?...,al].

Let a € N and = = [a, a1, .-, ;] with a > a, for all k. Then

1

x=la,a1,...,4,x] =a+ ——.
la1,...,a;, ]

Using lemma 6, we evaluate the denominator using matrix multiplication:

(06 ) 6 0-(o)G - (2t )

so [a1,...,a;,x] = (Az + B)/(Bx + D) and we conclude

a;:a+Bx+D
Az + B
= (Az + B)x = (Az + B)a+ (Bx + D)
— Az? + Bx = Aax + Ba+ Bz + D
— Az? — Aax — (Ba+ D) =0
20 Aa++/(Aa)? +4A(Ba+ D) a A2a? +4A(Ba+ D
& v a4 )2A ( ):2+\/ 4A(2 )

Obviously, x = y + v/z holds for y, z € N if and only if the conditions

y:%EN — a € 2N <— a=0 (mod2) A a>0,
and A2a? + 4A(Ba + D) Ba+D
a“+4 a+ a\ 2 a+ a€2N
= = (= = Al (B D
z 142 (2) 4 N | (Ba+ D)

=1 (mod A), so the latter condition yields

are met. Per lemma 22, we have B2 = (—1)
Ba+D=0 (modA) YTE=CUTBED — (VBD (mod A),
o.t.0.h. we have B2 = AD +1 (mod 2),s0if 24 BD < B =D =1 (mod 2), we would have
1=A+1 (mod?2) = 2] A,

but 2 | a would imply 2 1 (Ba + D) and hence A { (Ba + D), so we must have 2 | BD.
If 24 A, the Chinese Remainder Theorem? yields the solution

a=(-1)(A+1)BD (mod 24) = a=(-1)(A+1)BD (mod 24").
If 2 | A, we see from 2 | BD that the second congruence implies the first, so we have
a=(-1)!BD (mod A) — a=(-1)Y(A4+1)BD (mod 24).

Furthermore, we must have y = a/2 = |/z], as (a/2)? < z is trivial and we have

QP (e 3 e
= (B-—Aja<A-D (*)

see [1]
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and by lemma 22 two cases can arise — we could have A = B which only happens if [ = 1 and
a1 = 1, in which case A — D =1 —0 = 1, reducing the above inequality to 0 < 1 which is true,
or we have A > B and (%) is equivalent to

A—-D

B-A’
~——

<0 since A>D

a >

and this is true as a € N, so indeed we have |/z| = a/2 = y.
Now we just need to parametrise these solutions — we want n € N to give us

2(n — A" +m/ =2nA" — 24"+ m/ = 2nA" — (24" — )
where m’ is the smallest solution a > max ay, of the above congruence. We have
maxay < m’ < 2A" 4+ maxay, — 0<24" —m +maxa, < 24’

and hence
24" —m’ + maxay = ((—=1)""1(A+1)BD + maxa;) mod 24’;

so, with m := (((=1)"**(A 4 1)BD 4 maxa;) mod 2A4’) — max ay, we get the parametrisation
a=2nA"—(2A" —m')=2nA" —m

and the possible values for z can be computed using

_(a\?  Ba+D , m\2 B@2nA" —m)+ D
iy = (5) + 2= = (e =)+ ;
ANZ2 m\2  2A' D —mB
= (A")*n mAn+<2> —i—fABn%—iA
L an2 2 24' . D—mB  /m\?2
= (A")*n +<AB mA n+7A +(2>.

Example 23.1. For (ai,...,qa;) = (1,1,1) we have (A, B, D) = (3,2,1) and hence A" = 3.
The smallest solution > 1 of

a=(-1)Y(A+1)BD (mod 24
is m’ = 4 and indeed our formula for m gives us
m=(((-1)"Y(A+1)BD + maxa;) mod 24") —maxay =3—1=2|=6—4=24"—m/,

yielding the Euler-Muir polynomial

2.3 1-2-2 2\ 2
f(n):32n2+<3-22-3)n+ 3 +<2) :9112*271;

indeed we have f(1) = 7 with /7 = [2,1,1,1,4]; f(2) = 32 with v/32 = [5,1,1,1,10]; f(3) =75
with /75 = [8,1,1, 1, 16] and so on. We call the numbers f(n) equipalindromic as the continued
fraction representations of their square roots contain the same palindrome (aq, ..., a;).

Remark 23.2. A table listing the polynomials for d € N*, d < 400 can be found in the appendix.
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Code 23.3 (Python). This code computes the Euler-Muir polynomial given a palindrome.

euler_muir(P): # P is the given palindrome, for example [1, 1, 1] -> (9, -2, 0)

A, B, C, D=1, 0, 0, 1
p = [a a P] # create a copy so P doesn’t change
(p) >0
a = p.pop()
A, B, C, D= a * A+ C, a *B + D, A, B
B *x D % 2 == 1: # unsolvable if B * D = 1 (mod 2)
_ = A A2 == 1 A/ 2
(fol + pP)

= ((-1) *x ( (P) + 1) » (A + 1) * B *x D + M) % (2 x A_) - M
Y, Z = A_ *xx 2, (2 x A_ // A) * B -m*A_, (D -B *xm) // A+ (m // 2) xx 2

Code 23.4 (Python). This code computes the palindrome (ay, ..., q;) of Vd, cf. proof of 17.

continued_fraction_sqrt_palindrome (d):

math
a_n, m_n, q.n, A = math.floor(math.sqrt(d)), 0, 1, []

a_n != 2 * math.floor (math.sqrt(d)):

A += [a_nl]

m_n = a_n * q_n - m_n

g.n = (d - m_n **x 2) // q_n

xi_n = (m_n + math.sqrt(d)) / q_n

a_.n = math.floor(xi_n)
Al1:]

Lemma 24. Ifl is even and (ay,...,a;) is a palindrome, i.e. ar = aj_g+1 ¥V k and

(G266

then we have A+BD =1 (mod 2). In particular, we have 24 A if Vd = [|Vd], a1, ..., a;,2|Vd]].

Proof. We prove the statement using induction over [/2. For [ = 0 (empty product) the matrix
product yields the identity matrix, i.e. A= D =1 and B = 0 and we have

A+BD=140-1=0 (mod 2).

(3 8)-( )0 )

let the induction hypothesis be A+ BD =1 (mod 2). We have

A B\ (a1 1 A B\ (a1 1 B a%fl—{—2a1§+l_7 a1 A+ B
B D) \1 0/\B D 1 0) a A+ B A ’

furthermore lemma 22 implies that B = AD + 1 (mod 2), so we have

For

A+BD=A+(AD+1)D=A(1+D)+D=(a1A+D)(1+A)+ A (mod 2).
If A=0 (mod 2), the induction hypothesis implies that D =1 (mod 2) and we conclude
A+BD=(0+1)(14+0)+0=1 (mod 2),
if A=1 (mod 2), we conclude

A+BD= (a1 +D)(1+1)+1=1 (mod 2).

Per theorem 23, if \/d = [|Vd], a1, ...,a;,2|Vd]] we have 2 | BD and hence 2 1 A. O
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Definition 25. For the minimal d containing a given palindrome in the continued fraction
representation of v/d, we denote the corresponding Euler-Muir polynomial by fg(n); we have

fa(1) =d.
Lemma 26. For a odd we have a® = a (mod 2a).
Proof. We have
a®=a (mod 2a) — 0=a®>—a=a(a®>—1) (mod 2a)

and this is true as a? — 1 is even and hence in 27Z, implying a(a® — 1) € 24Z. O

Theorem 27. For a > 1 odd, the E.-M. polynomial corresponding to the palindrome (a) is
fuaaln) = a®n? + 2n

and for a > 3 odd, the Euler-Muir polynomial corresponding to the palindrome (1,a —2,1) is
fu2_o(n) = a*n?® — 2n.

For a > 2 even, the Euler-Muir polynomial corresponding to the palindrome (a) is
2

Fazio(n) = (g)QnQ + (C; + 1> n+ (%)2 +1

and for a > 4 even, the Euler-Muir polynomial corresponding to the palindrome (1,a — 2,1) 1is
2

s = (3 o+ (5 -1) e 3 -
Proof. We first consider the odd case. For (ai,...,a;) = (a) we have
(A,B,D) = (a,1,0), A=A=a
and the formula for m yields
m=((-)""Ya+1)-1-04+a) mod2a)—a=(a mod2a)—a=a—a=0,
giving us the Euler-Muir polynomial

2 ~0-1 ?
f(n)—a2n2+<aa~1—0.a>n+0 ao +<(2)> =a’*n?®+2n

and we have f(1) = a® + 2. For (ay,...,q;) = (1,a — 2,1) we compute

(2 0)=( o) (07 0) (o) = (21 0s) a=a=s
and the formula for m yields

m=((-1)*"Ya+1) (a—1)-(a—2)+ (a—2)) mod 2a) — (a —2)
a>—1)(a—2)+ (a—2)) mod 2a) — (a —2)

) mod 2a) — (a—2)
= ((a® — 24®) mod 2a) — (a — 2)

)

giving us the Euler-Muir polynomial

f(n)=a2n2+<2;L'(a—1)—2-a>n+(a_Q)_Q'(a_l)+<2>2:a2n2—2n

a

and we have f(1) = a? — 2. =—aja=—1
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Now we consider the even case. For (aj,...,a;) = (a) we have

(A’B’D):(CL?LO)? Al:gzg

and the formula for m yields
m=((-1)""a+1)-1-0+a) moda)—a=(a moda)—a=0-a=—a,
giving us the Euler-Muir polynomial

fn) = (g)2n2+ <2(C;/2).1—(_a).‘2‘> n+0—(;a)‘1+ <—2a)2

2

(@) (o) @)

f(l):(g)2+<a22+1>+(g)2+1:a2+2.

For (a1,...,a;) = (1,a — 2,1) we compute, as above,

A B\ _ a a-—1 A,_é_g
B D) \a—-1 a-2)’ 22

and the formula for m yields

(~D**a+1)-(a=1)-(a—2)+(a—2)) moda)~—(a—2)
(((a® =1)(a—2) + (a—2)) moda)—(a—2)
((a*(a —2)) mod a) — (a —2)
0—
2 —

and we have

m

(a—2

giving us the Euler-Muir polynomial

f(n)Z(a>2n2+<2(c;/2>.(a—1)_(2_a).;>n+(a—2)—(2—a)~(a—1)+<2;a)2

2 a
a? (a—2)a a®>—4a+4
(a—l)—<a—2>)n+ + 1
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Theorem 28. Ford=a?+1 (a>1) we have | =0, ford =a®> —1 (a > 2) we have | = 1.

Proof. We first consider the Euler-Muir polynomial corresponding to the palindrome ().
We have
A=D=1, B =0, A=A=1

and the formula for m yields
m=(((-1)*"'(1+1)-0-140) mod2-0=0-0=0,

giving us the Euler-Muir polynomial

2.1 1-0- 2
f(n)=12n2+<1-00-1)n+ 0 0+<0) =n?+1,

1 2

and we have
fy=2,  fla)=a’+1,

so the numbers d = a® + 1 have the palindrome () in the cont’d fraction representation of v/d.
By theorem 27, the Euler-Muir polynomial corresponding to the palindrome (1) is

f(n)=n?+2n=(n+1)72-1,

and we have
f(l):3:22_17 f(al):(a/+1)2_17

so the numbers d = a® — 1 have the palindrome (1) in the continued fraction repr. of vd. [
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3. Pell’'s equation

We shall now discuss the existence of integer solutions of 22 — dy? = +1, where d € N.
As (—n)% = n? for all n € Z, we assume z,y > 0 from now on.

3.1. Solvability of 2> — dy? = £1
Theorem 29. If d is a perfect square, x> —dy? = £1 has no solutions other than (z,y) = (1,0),
except when d = 1, in which case (x,y) = (0,1) is a solution.
Proof. If d is a perfect square, there exists a k € N with k2 = d and we have
1=|x1] = 2% — k%% = |z + ky| - |z — Ky,
so we must have |z + ky| = |z — ky| = 1. From z,y, k > 0 it follows that
x<z+ky=|z+kyl =1,

so we must have x € {0,1}. If x = 0 we have |ky| = 1, and hence k = y = 1: in particular, we
conclude that d = k? = 1 and we have 22 — dy? = —1. If z = 1 we have

l=lz+kyl=z+ky=1+ky = ky =0 — y=0
and 22 — dy? = 1. O

Theorem 30. If d is not a perfect square, there are infinitely many solutions of x> — dy? = +1.
Furthermore: if 2 — dy? = £1, there exists an n with (z,y) = (hn, kn), where hy, k, are as in
theorem 1/ for € = Vd.

Proof. On the one hand, for d not a perfect square, v/d takes the form
H\/EJaalv s ,CLl,2L\/gJ]
and by corollary 20, for n = (Il + 1) — 1 where r > 1, we have
hy — dk; = (—=1)"!

1
2

and due to k, < kn11 for n > 1 this gives us infinitely many solutions.
In particular, an n such that h2 — dk2 = —1 can only exist if [ is even.

On the other hand, let’s assume that 22 — dy? = 1. We shall consider the positive case first:
we have

2 2
- - 1
T Nz r—yVd T —dy >0
Y Y y($ y\fd) y(ZL' yfd)

Furthermore, we have the estimate

x 1 \/& \/& 1

Vd = :
y e+ VA gVl Pyt VD) P/ oVd) + )
From z/y —vVd >0 < x/y >+d < x/(yVd) > 1 we can now conclude that

1 1
’\f_x _t g
Yy Y

1
< < —
y(e/Vd)+1)  w(+1) 20
and by theorem 14, there exists an n € N such that (z,y) = (hn, kn)-

Hemma 3
%for [ odd, I + 1 is even, whereby n is always odd
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In the negative case, we shall argue analogously. By rearranging, we obtain

xz—dyQ:—l /<;>d) yQ—%xQ:1
and we have
v y-sONA P yd
r  \d x a(y+x(1/Vd)  ax(y+z(1/Vd)
Furthermore, we have the estimate
y 1 _ 1/d _ 1/Vd _ 1/Vd _ 1
TV a(y+e(1/VA) xly+2(1/V)  e(y/e+ 1V 2((yVd) x4+ 1)
From y/z —1/v/d >0 < y/x >1/V/d < (yVd)/z > 1 we can now conclude that
Vd x| oz d o 22((yWd)/z+1)  2*(1+1) 222

By 14, there exists an n’ € N such that y/z is the n’*® convergent of 1/v/d. By lemma 12 we can
thus conclude that z/y is the (n’ — 1)%* convergent of v/d, so there indeed exists an n = n/ — 1
such that (z,y) = (hn, kn). O

Example 30.1. We consider the case d = 7. Using the algorithm from theorem 17, we obtain

V7T =121,1,1,4].

Here [ is odd, so only the positive Pell’s equation is solvable.
We now evaluate the third convergent of v/d:

1 1 3 2 8
2,1,1,1] = [2,1,1+1] =[2,1,2] = {2,1+2] = [2] —242=2

and indeed we have
82 —7-32=64—63 = 1.

Lemma 31 ([2, exercise 7.8.5]).
If 2 — dy? = 1 and X + YVd = (z + yV/d)", we have X? — dY? = (£1)".

Proof.
X2 —dY? = (X +YVd)(X - YVd) = (z +yVd)"(x — yVd)" = (2® — dy®)" = (£1)™.
O

Theorem 32. If d is not a perfect square, there exist infinitely many solutions of z> — dy® =1
with k |y for any k € Z.

Proof. D := dk? is not a perfect square, so there exist infinitely many solutions (X,Y") of
X?-DY?*=1.

For any of these solutions, (X, kY') solves 22 — dy? = 1 and we have k | kY. O
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3.2. Solvability of 22 — dy?> = —1
Theorem 33 ([2, exercise 7.8.3]). If d =3 (mod 4), then x> — dy? = —1 has no solutions.

Proof. Let’s assume that 2 — dy? = —1 is solvable. Taking the equation modulo 4, we get
—1=2%—-3y% =22+ 42
But as {a®> mod 4:a € Z} = {0,1}, we conclude that (2?4 3?) mod 4 € {0, 1, 2}. O

Theorem 34 ([2, exercise 7.8.11)). If d is divisible by a prime p with p = 3 (mod 4), then
22 — dy? = —1 has no solutions.

Proof. Let p > 2 be a prime factor of d. If 22 — dy? = —1 is solvable, we have 2 = —1 (mod p).
We now consider the product

P=1-2-...-(p=2)-(p—1)

modulo p. As p is prime, Z/pZ is a field, so any a € {2,...,p — 2} has an inverse a~! # a, and
we can group the factors 2-...- (p — 2) together as (p — 3)/2 pairs of elements whose product
is 1. Consequently, we have

P=1-1-...-1-(p—1)=-1 (mod p).

We first note that the equation ab = —1 has a unique solution b = —a~! for any a. If there exists
an z with 2 = —1 (mod p), on the one hand we have (—z)? = —1 (mod p), where x Z —x as
p is odd, on the other hand Z/pZ is a field and 22 +1 = 0 (mod p) only permits two solutions,
so {1,...,p—1} consists exactly of the elements +x as well as (p —3)/2 pairs of elements whose
product is —1. We have z - (—z) = —2% = 1 (mod p), consequently

—1=P=(-1)P32  (mod p).

Therefore, (p — 3)/2 must be odd, so there exists a k € Z with
p—3

T:2;13_1 — p=4k+1 — p=1 (mod4).

Consequently, if 22 — dy? = —1 is solvable, d cannot have a prime factor p = 3 (mod 4). O
Theorem 35 ([2, exercise 7.8.12]). Ifp =1 (mod 4) is a prime, then x?> —py? = —1 is solvable.

Proof. As p is not a perfect square, 2> — py? = 1 is solvable. Taking the equation modulo 4
yields

22 —y? =1,
and since squares modulo 4 are always € {0,1}, we must have 22 = 1 and y? = 0, so = is odd
and y even, thus we have 2 | gcd(z + 1,2 — 1). On the other hand we have

ged(z+ 1,z —1) | (z+1) — (x —1) =2,

yielding ged(x + 1,2 — 1) = 2. Let (0, 30) now be a solution of 22 — py? = 1 with yg > 0
minimal. We have
(o +1)(zo —1) =23 — 1 = pyi.

As p is prime, exactly one of the numbers xg 41 is divisible by p. As ged(x + 1,2 — 1) = 2, the
factors on the left-hand side are coprime integers:

zo£1 130:F1_(y0>2
2p 2 \2
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and as their product is a perfect square, those numbers must be perfect squares as well:

+1 1
o =u? & zo+1=2pu’ To¥ - _ v?
2p 2

& x0:F1:2v2, u,v > 0.

If 29 — 1 = 2pu? and z¢ + 1 = 202, we would have

(wo+1) = (w0 —1) _ 20* =2pu® _ , 2
5 = 5 = v° — pu”,

1=

but u? < (y0/2)? < y2 implies that 0 < u < yo contradicts the minimality of yo. Therefore,
zo + 1 = 2pu? and z¢ — 1 = 202, It follows that
(g —1)— (zo+1) 20 —2pu? 9 9

—1: 2 = 2 = —pu’

so (z,y) = (v,u) solves 2% — py? = —1. 0

Theorem 36 ([3, p. 171]). If d is not a perfect square, ai,...,a; with ay = aj_ ¥ k and |
minimal, such that

\/g: [L\/gJ,a17"'aal72L\/gJ]7

A B\ (a1 1 azg 1\ (a1

B D) \1 0 1 0 1 0)°
then x? — dy? = —1 is solvable if and only if (i) 41d, (ii) d has no prime factors = 3 (mod 4),
and (iii) A is odd.

and A, B, D defined by

lth

Proof. Let P and () be the numerator and denominator of the convergent of v/d:

P 1 B |Vd]A+B
7_L\/gJ+[a1,...,al]_L\/gJ+A_ A ’

By corollary 9 this fraction is in lowest terms as A and B are coprime, in particular, @ = A.
If 22 — dy? = —1 is solvable, then theorem 19 implies that

P? —d@* = —1.

On the one hand d then has no prime factors = 3 (mod 4) by theorem 34, on the other hand
we must have 41 d and A= Q =1 (mod 2), for otherwise we would have P2 = —1 (mod 4).
Conversely, let A be odd, 4t d, and d have no prime factors = 3 (mod 4). On the one hand,
theorem 19 gives us
P? —dQ? € {+1}.

On the other hand, @ = A is odd and d mod 4 has to be either 1 or 2, so
1=P?—dR*=P?*—d (mod 4)

is not satisfiable, hence we must have P? — dQ? = —1. O

Theorem 37. For d > 2 of the form d = a®> £2 for a € N, 22 — dy?> = —1 has no solutions.

Proof. This follows from corollary 20 and theorem 27 as [ € {1, 3} is odd. O

Theorem 38. For numbers d > 1 of the form d = a®> +1 for a € N, x? — dy? = —1 is solvable.
For numbers d > 2 of the form d = a®> — 1 for a € N, x? — dy?> = —1 has no solutions.

Proof. This follows from 20 and 28 as [ is even in the first and odd in the second case. O

25



3.3. Applications
Theorem 39 ([2, exercise 7.8.5]).
A number is both a triangular number and a perfect square, i.e.

m

n2:§ 1,

i=1

if and only if ( m+41, \/%H) solves 22 —2y*> =1 or (\/rTL, ﬁ) solves x2 — 2y = —1.

Proof. From the formula for the arithmetic series, we obtain

2~ m(m+1) 2
n :lef = 2n* =m(m+1).
i=1

Either m or m+1 is even, so there exist A, B with {m,m+1} = {24, B} and m(m+1) = 2AB.
As m and m+ 1 are coprime, so are A and B. On the other hand, as n?> = AB, we can conclude
that A and B are perfect squares. If m = 2A, then m + 1 = B is a perfect square and for

k :=+/m+ 1 we have

om? =m(m+1)= (k- 1DE> 2(%)2:1{2—1 = k2—2(ﬁ)2:1,

if m+ 1 =2A, then m = B is a perfect square and for k := \/m we have

om? =m(m+1) = k2K +1) 2(%)2:#“ = k2—2(%)2:—1.

Conversely, any solution of z? — 2y? = 41 describes a number which is both a triangular
number and a perfect square since

2 — 2% = +1 — 22 =22F1

o 22@?T1) XUV ifa? -2 =1,
A (.’Ey) = = 2 . . 2 2
2 Yoiqi ifat—2y* = -1
0

Theorem 40 ([2, exercise 7.8.6]). A perfect square m? is the sum of two consecutive perfect
squares n? + (n + 1)? if and only if (2n 4+ 1,m) solves 2 — 2> = —1.

Proof. We have

om? =2(n*+ (n+1)?) =4n’ +4n +2=2n+1)* + 1 — (2n 4+ 1)? — 2m? = —1.

Conversely, any solution of 22 — 2y? = —1 describes a perfect square which is the sum of two
consecutive perfect squares as 2 must be odd, so z is odd as well, i.e. there exists an n such
that © = 2n + 1. O
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3¢

A. Euler-Muir polynomials

These are the Euler-Muir polynomials f;(n) for primitive d < 400, i.e. for d minimal such that the cont’d fraction representation of V/d contains
this palindrome. For generating the content of a IATEX table we can use the following Python code referencing the functions from 23.3 and 23.4:

primitives = {}
d (2, 401):
palindrome = continued_fraction_sqrt_palindrome(d)
palindrome [P D, P primitives.items ()]:
primitives [d] = palindrome

# fails for perfect squares

euler_muir_poly = {}

d primitives:
palindrome = primitives[d]
euler_muir_poly[d] = (palindrome, euler_muir (palindrome))
table_latex =
d euler_muir_poly:
palindrome, coeff = euler_muir_poly[d]
spaced_coeff = [ . (w).replace( , ) W coeff] # separate thousands

poly_latex = f
coeff[1] > O:
poly_latex += f
coeff [1] <
poly_latex += f
coeff [2] > O:
poly_latex += f
table_latex += f
table_latex = table_latex.rstrip( )
with ( , ) as f:
(table_latex, =f)

o



6¢

d palindrome of v/d fa(n)

2 0 n? 4+ 1

3 (1) n? 4+ 2n

6 (2) n? +3n+2

7 (1,1,1) 9n? — 2n

11 (3) on? + 2n

13 (1,1,1,1) 25n2 — 14n + 2

14 (1,2,1) an? +Tn +3

18 (4) an? +9n+5

19 (2,1,3,1,2) 1521n2 — 2702n + 1200

21 (1,1,2,1,1) 36n2 — 17n + 2

22 (1,2,4,2,1) 441n? — 685n + 266

23 (1,3,1) 25n2 — 2n

27 (5) 25n2 + 2n

28 (3,2,3) 144n? — 161n + 45

29 (2,1,1,2) 169n2 — 198n + 58

31 (1,1,3,5,3,1,1) 74529n2 — 146 018n + 71 520

34 (1,4,1) on? 4+ 17n + 8

38 (6) 9n? + 19n + 10

41 (2,2) 25n2 + 14n + 2

43 (1,1,3,1,5,1,3,1,1) 281961n2 — 556 958n + 275 040
44 (1,1,1,2,1,1,1) 22502 — 251n 4 70

45 (1,2,2,2,1) 144n? — 127n + 28

46 (1,3,1,1,2,6,2,1,1,3,1) 321843612 — 64125370 + 3194 147
a7 (1,5,1) 49n? — 2n

51 (7) 49n? 4 2n

52 (4,1,2,1,4) 2025n2 — 3401n + 1428

53 (3,1,1,3) 62512 — 886n + 314

54 (2,1,6,1,2) 1089n? — 1693n + 658

55 (2,2,2) 36n2 + 17n + 2

57 (1,1,4,1,1) 100n? — 49n + 6

58 (1,1,1,1,1,1) 169n2 — 140n + 29

59 1,2,7,2,1) 4761n> — 8462n + 3760

61 (1,4,3,1,2,2,1,3,4,1) 1447802512 — 28896 614n + 14 418 650
62 (1,6,1) 16n2 + 31n + 15

66 (8) 16n2 + 33n + 17

67 (5,2,1,1,7,1,1,2,5) 35605089n2 — 71 112 494n + 35 507 472
69 (3,3,1,4,1,3,3) 219024n2 — 430273n + 211 318
70 (2,1,2,1,2) 225n2 — 199n + 44

71 (2,2,1,7,1,2,2) 170 569n2 — 334178n + 163 680
73 (1,1,5,5,1,1) 1562502 — 29 114n + 13 562

76 (1,2,1,1,5,4,5,1,1,2,1) 1098922512 — 21 920 651n + 10 931 502
7 (1,3,2,3,1) 400m2 — 449n + 126

79 (1,7,1) 81n2 — 2n

83 (9) 81n? + 2n

85 (4,1,1,4) 1681n2 — 2606n + 1010

86 (3,1,1,1,8,1,1,1,3) 314721n? — 619 037n + 304 402
88 (2,1,1,1,2) 441n2 — 488n + 135

89 (2,3,3,2) 2809n2 — 4618n + 1898

91 (1,1,5,1,5,1,1) 27225n2 — 51302n + 24 168

92 (1,1,2,4,2,1,1) 3600n2 — 6049n + 2541

93 (1,1,1,4,6,4,1,1,1) 396 900n? — 781 649n + 384 842
94 1,2,3,1,1,5,1,8,1,5,1,1,3,2,1) 12217323 024n? — 24432502 753n + 12215179 823
97 (1,5,1,1,1,1,1,1,5,1) 323761n2 — 636 314n + 312650
98 (1,8,1) 25n2 + 49n + 24

102 (10) 25n2 + 51n + 26

103 (6,1,2,1,1,9,1,1,2,1,6) 502611 561n2 — 1004 768 066n + 502 156 608




0¢

d palindrome of v/d fa(n)

106 (3,2,1,1,1,1,2,3) 151321n° — 294 632n + 143417

107 (2,1,9,1,2) 8649n2 — 15374n + 6832

108 (2,1,1,4,1,1,2) 422502 — 7099n + 2982

109 (2,3,1,2,4,1,6,6,1,4,2,1,3,2) 725 094 825 62502 — 1450 171 870 8867 + 725 077 045 370
111 (1,1,6,1,1) 196n2 — 97n + 12

113 (1,1,1,2,2,1,1,1) 5329n2 — 9106n + 3890

114 (1,2,10,2,1) 2304n2 — 3583n + 1393

115 (1,2,1,1,1,1,1,2,1) 11025n2 — 19 798n + 8888

116 (1,3,2,1,4,1,2,3,1) 207 025n2 — 404 249n + 197 340

117 (1,4,2,4,1) 900n? — 1151n + 368

118 (1,6,3,2,10,2,3,6, 1) 199572 129n2 — 398 837 341n + 199 265 330

119 (1,9,1) 121n2 — 2n

123 (11) 121n2 4 2n

124 (7,2,1,1,1,3,1,4,1,3,1,1,1,2,7) 43047950 400n2 — 86 091 280 001n + 43 043 329 725
125 (5,1,1,5) 3721n2% — 6078n + 2482

126 (4,2,4) 400n2 — 351n + 77

127 (3,1,2,2,7,11,7,2,2,1,3) 176211050 625n2 — 352412 640 002n + 176 201 589 504
128 (3,5,3) 2601n2 — 4048n + 1575

129 (2,1,3,1,6,1,3,1,2) 550564n2 — 1084 273n + 533838

131 (2,4,11,4,2) 859329n2 — 1697 438n + 838 240

133 (1,1,7,5,1,1,1,2,1,1,1,5,7,1,1) 12595 572900n2 — 25 188 557 201n + 12 592 984 434
134 (1,1,2,1,3,1,10,1,3,1,2,1,1) 39727809n2 — 79309 693n + 39 582018

135 (1,1,1,1,1,1,1) 441n? — 394n + 88

137 (1,2,2,1,1,2,2,1) 22201n2 — 40 914n + 18 850

139 (1,3,1,3,7,1,1,2,11,2,1,1,7,3,1,3,1) 43280991 011241n2 — 86561 826 895 982n + 43 280 835 884 880
142 (1,10,1) 36n2 + 71n + 35

146 (12) 36n2 4 73n + 37

149 (4,1,5,3,3,5,1,4) 86583 025n2 — 172 938 886n + 86 356 010

151 (3,2,7,1,3,4,1,1,1,11,1,1,1,4,3,1,7,2,3) 19778 116 875 204 249n2 — 39 556 230 294 112 418n + 19 778 113 418 908 320
153 (2,1,2,2,2,1,2) 7744n> — 13311n + 5720

154 (2,2,3,1,2,1,3,2,2) 736 164n? — 1451 033n 4 715023

155 (2,4,2) 100n2 + 49n + 6

157 (1,1,7,1,5,2,1,1,1,1,2,5,1,7,1,1) 148 722 066 025n2 — 297 434 467 814n + 148 712401 946
158 (1,1,3,12,3,1,1) 94 864n2 — 181 985n + 87 279

159 (1,1,1,1,3,1,1,1,1) 1102502 — 19402n + 8 536

160 (1,1,1,5,1,1,1) 3249n2 — 5056n + 1967

161 (1,2,4,1,2,1,4,2,1) 215296n° — 418 817n + 203 682

162 (1,2,1,2,12,2,1,2,1) 592900n2 — 1166 199n + 573 461

163 (1,3,3,2,1,1,7,1,11,1,7,1,1,2,3,3,1) 25191 716 148 225n2 — 50 383 304 136 398n + 25 191 587 988 336
164 (1,4,6,4,1) 6400n2 — 10 751n + 4515

165 1,5,2,5,1) 1764n? — 2449n + 850

166 (1,7,1,1,1,2,4,1,3,2,12,2,3,1,4,2,1,1,1,7,1) 4357032433168 041n2 — 8 714063 165 433 517n + 4 357 030 732 265 642
167 (1,11, 1) 169n2 — 2n

171 (13) 169n2 + 2n

172 (8,1,2,2,1,1,3,6,3,1,1,2,2,1, 8) 854646 629 841n2 — 1709269 011 035n + 854 622 381 366
173 (6,1,1,6) 7225n2 — 12214n + 5162

174 (5,4,5) 302512 — 4599n + 1748

175 (4,2,1,2,4) 23409n2 — 427700 + 19536

176 (3,1,3) 225n2 — 52n + 3

177 (3,3,2,8,2,3,3) 5503 716n2 — 10945 009n + 5441 470

178 (2,1,12,1,2) 3600n2 — 5599n + 2177

179 (2,1,1,1,3,5,13,5,3,1,1, 1, 2) 98 088 602 481n> — 196 168 824 542n + 98 080 222 240
181 (2,4,1,8,6,1,1,1,1,2,2,1,1,1,1,6,8,1,4, 2) 6822224927691 121n2 — 13 644 447 632 930 702n + 6 822 222 705 239 762
183 (1,1,8,1,1) 324n? — 161n + 20

184 (1,1,3,2,1,2,1,2,3,1,1) 804 609n2 — 1584 883n + 780 458

186 (1,1,1,3,4,3,1,1,1) 75625n2 — 143 749n + 68 310




1€

d palindrome of v/d fa(n)

187 (1,2,13,2,1) 15 129n2 — 26 894n + 11 952

188 (1,2,2,6,2,2,1) 28224n2 — 51841n + 23805

190 (1,3,1,1,1,2,2,2,1,1,1,3,1) 356076912 — 7069 517n + 3 508 938

191 (1,4,1,1,3,2,2,13,2,2,3,1,1,4,1) 423518 513 089n? — 847019 038 178n + 423 500 525 280

193 (1,8,3,2,1,3,3,1,2,3,8,1) 16 125 190 225n2 — 32246 852 186n + 16 121 662 154

194 (1,12, 1) 49n? 4+ 97n + 48

198 (14) 49n2 + 99n + 50

199 9,2,1,2,2,5,4,1,1,13,1,1,4,5,2,2,1,2,9) 1329593714709 849 801n? — 2659 187 396 887 306 562n + 1329 593 682 177 456 960
201 (5,1,1,1,2,1,8,1,2,1,1,1,5) 330003 556n2 — 659492 017n + 329 488 662

202 (4,1,2,2,1,4) 48841n2 — 91 400n + 42 761

204 (3,1,1,6,1,1,3) 3062512 — 56 251n + 25830

205 (3,6,1,4,1,6,3) 1920996n? — 3802303n + 1881512

206 (2,1,5,14,5,1,2) 4301476n° — 8543417n + 4242147

207 (2,1,1,2,1,1,2) 1600n> — 2049n + 656

208 (2,2,1,2,2) 202502 — 2752n 4 935

209 (2,5,3,2,3,5,2) 2592100n2 — 5137 649n + 2 545 758

211 (1,1,9,5,1,2,2,1,1,4,3,1,13,1,3,4,1,1,2,2,1,5,9,1, 1) 367 209 276 445 894 854 60912 — 734 418 552 335 080 961 918n + 367 209 275 889 186 107 520
212 (1,1,3,1,1,1,6,1,1,1,3,1,1) 5175625n2 — 10285 001n + 5 109 588

213 (1,1,2,6,1,8,1,6,2,1,1) 44355600n2 — 88516 801n + 44161414

214 (1,1,1,2,3,1,4,9,1,1,5,3,14,3,5,1,1,9,4,1,3,2,1,1, 1) 564 864 956 791 065 679 329n2 — 1129 729 912 886 772 168 733n + 564 864 956 095 706 489 618
216 (1,2,3,2,1) 1089n2 — 1208n + 335

217 (1,2,1,2,1,1,9,4,9,1,1,2,1,2,1) 17023 986 576n? — 34 044 129 089n + 17 020 142 730

218 (1,3,3,1) 289n2 — 76n + 5

221 (1,6,2,6,1) 3136n2 — 4607n + 1692

223 (1,13, 1) 225n2 — 2n

227 (15) 22512 + 2n

229 (7,1,1,7) 12769n2 — 22118n + 9578

232 (4,3,7,3,4) 1656 369n2 — 3273 532n + 1617395

233 (3,1,3,1,1,1,1,3,1,3) 2301289n2 — 4556 266n + 2255210

234 (3,2,1,2,1,2,3) 2890012 — 52599n + 23 933

236 (2,1,3,5,1,6,1,5,3,1,2) 33434122512 — 668 120 651n + 333 779 662

237 (2,1,1,7,10,7,1,1,2) 54908 100n? — 109 588 049n + 54 680 186

238 (2,2,1,14,1,2,2) 142884n? — 274 105n + 131459

239 (2,5,1,2,4,15,4,2,1,5,2) 160583 731 441n? — 321 155072 642n + 160 571 341 440

241 (1,1,9,1,5,3,3,1,1,3,3,5,1,9,1,1) 20923534 350 62512 — 41 846 926 679 114n + 20 923 392 328 730
242 (1,1,3,1,14,1,3,1,1) 396 900n? — 774 199n + 377 541

243 (1,1,2,3,15,3,2,1,1) 2029502502 — 40 449 598n + 20 154816

244 (1,1,1,1,1,2,1,5,1,1,9,1,6,1,9,1,1,5,1,2,1,1,1,1, 1) 3196 601 416 865 02512 — 6393201067 411 001n + 3 196 599 650 546 220
245 (1,1,1,7,6,7,1,1,1) 2742336n> — 5432831n + 2690 740

246 (1,2,5,1,14,1,5,2,1) 8014 561n2 — 15940 317n + 7 926 002

247 (1,2,1,1,9,1,9,1,1,2,1) 29452 329n2 — 58 734 074n + 29 281 992

249 (1,3,1,1,5,1,3,10,3,1,5,1,1,3,1) 73461597 444n? — 146 914 641 073n + 73 453 043 878

250 (1,4,3,3,4,1) 78 961n> — 149 036n + 70 325

251 (1,5,2,1,2,2,15,2,2,1,2,5, 1) 53804 049 849n? — 107 600 749 918n + 53 796 700 320

253 (1,9,1,1,1,2,1,7,4,2,2,2,4,7,1,2,1,1,1,9,1) 10262 117490 452 100n? — 20 524 231 758 286 801n + 10262 114 267 834 954
254 (1,14, 1) 64n> + 127n 4 63

258 (16) 64n2 + 129n + 65

259 (10,1,2,3,4,3,2,1,10) 692847 684n2 — 1384848 143n + 692 000 718

261 (6,2,3,7,1,3,1,2,1,3,1,7,3,2,6) 35354 202 483 600n2 — 70 708 212 847 999n + 35 354 010 364 660
262 (5,2,1,2,1,10,16,10,1,2, 1,2, 5) 10516 134 493 881n2 — 21032 164 007 245n + 10 516 029 513 626
263 (4,1,1,1,1,15,1,1,1,1, 4) 73599 241n? — 146 920 226n + 73 321 248

265 (3,1,1,2,2,1,1,3) 139129n2 — 266 114n + 127 250

266 (3,4,3) 441n? —197n + 22

267 (2,1,15,1,2) 2160912 — 38414n + 17072

268 (2,1,2,3,3,1,3,1,10,8,10,1,3,1,3,3,2,1,2) 21234 349 584 091 449n? — 42 468 694 397 100 971n + 21 234 344 813 009 790
270 (2,3,6,3,2) 25921n2 — 46 551n + 20 900
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d palindrome of v/d fa(n)

271 (2,6,10,1,4,1,1,2,1,2,1,15,1,2,1,2,1, 1,4, 1, 10, 6, 2) 49 631 722 586 790 660 369n° — 99 263 444 941 631 353 538n + 49 631 722 354 840 693 440
273 (1,1,10,1,1) 484n? — 241n + 30

274 (1,1,4,4,1,1) 722512 — 11636n + 4685

276 (1,1,1,1,2,2,2,1,1,1, 1) 54756n2 — 101 737n + 47 257

277 (1,1,1,4,10,1,7,2,2,3,3,2,2,7,1,10,4,1,1,1) 287274 501 442 203 02502 — 574 548 985 043 437 814n + 287 274 483 601 235 066
278 (1,2,16,2,1) 5625n2 — 8 749n + 3402

279 (1,2,2,1,2,2,1) 8281n2 — 13522n + 5520

280 (1,2,1,2,1) 225n2 + 52n + 3

281 (1,3,4,1,1,6,6,1,1,4,3,1) 4025268 025n2 — 8048 408 986 + 4 023 141 242

282 (1,3,1,4,1,3,1) 4900n2 — 7449n + 2831

283 (1,4,1,1,1,3,10,1,15,1,10,3,1,1,1,4, 1) 67 560 854 250 681n> — 135 121431 953 198n + 67 560 577 702 800

284 (1,5,1,3,2,1,4,8,4,1,2,3,1,5,1) 516414 704 400n> — 1032805 188 001n + 516 390 483 885

285 1,7,2,7,1) 5184n2 — 7937n 4 3038

286 (1,10,3,3,2,3,3,10,1) 275925 321n2 — 551 288 807n + 275 363 772

287 (1,15,1) 289n2 — 2n

291 (17) 289n2 + 2n

292 (11,2,1,3,8,3,1,2,11) 4455562 500n2 — 8908 843 751n + 4453 281 543

293 (8,1,1,8) 2102512 — 37086n + 16 354

294 (6,1,4,1,6) 19 600n> — 34399n + 15093

295 (5,1,2,3,2,6,2,3,2,1,5) 3475102500n2 — 6948 180 001n + 3473 077 796

296 (4,1,7,1,4) 46 225n2 — 85 052n + 39 123

297 (4,3,1,1,2,1,1,3,4) 1988100n? — 3927 601n + 1939 798

298 (3,1,4,5,1,1,5,4,1,3) 56287562512 — 1124932 136n + 562 056 809

300 (3,8,3) 1521n2 — 1691n + 470

301 (2,1,6,3,1,2,2,1,1,8,11,2,4,2,11,8,1,1,2,2,1,3,6,1,2) 28 749 425 043 692 036 541 456n2 — 57 498 850 081 500 680 545 217n + 28 749 425 037 808 644 004 062
302 (2,1,1,1,4,2,1,16,1,2,4,1,1,1,2) 15140318 116n2 — 30 276 359 609n + 15 136 041 795

303 (2,2,5,2,2) 2102512 — 37002n + 16 280

304 (2,3,2,1,1,1,1,1,2,3,2) 10989 22512 — 21862 852n + 10873 931

305 (2,6,2) 196n2 + 97n 4 12

307 (1,1,11,5,1,3,17,3,1,5,11,1, 1) 25529 100 232 689n> — 51 058 023 406 814n + 25 528 923 174 432

309 (1,1,2,1,2,4,1,1,1,8,6,1,10,1,6,8,1,1,1,4,2,1,2,1, 1) 3334943334131 329 284n> — 6 669 886 604 059 933 073n + 3 334 943 269 928 604 098
310 (1,1,1,1,5,3,1,2,1,3,5,1,1,1,1) 580 906 404n> — 1160 964 089n + 580 057 995

311 (1,1,1,2,1,6,3,17,3,6,1,2,1,1,1) 916 609 01560902 — 1833 184 263 458n + 916 575 248 160

313 (1,2,4,11,1,1,3,2,2,3,1,1,11,4,2,1) 51418723369 225n2 — 102837 193013 714n + 51 418 469 644 802

314 (1,2,1,1,2,1) 625n2 — 364n + 53

316 (1,3,2,8,2,3,1) 129 600n2 — 246 401n + 117117

317 (1,4,8,1,2,2,1,8,4,1) 39223802512 — 783770 814n + 391 533 106

319 (1,6,5,1,4,3,1,3,4,1,5,6,1) 521805414 321n2 — 1043 585 025 082n + 521 779 611 080

322 (1,16, 1) 81n2 + 161n + 80

326 18) 81n2 4 163n + 82

329 (7,4,2,1,1,4,1,1,2,4,7) 4291298 064n? — 8580219 713n + 4288 921 978
331|(5,5,1,6,2,3,1,1,2,1,2,1,11,2,1,1,17,1,1,2,11,1,2,1,2,1,1,3,2,6,1,5,5) | 23442630 035977 813 320 534892 329n2 — 46 885260 071 950 055 461 466 896 718n + 23 442 630 035 972 242 140 932 004 720
332 (4,1,1,8,1,1,4) 136 161n2 — 258 875n + 123 046

334 (3,1,1,1,2,5,1,2,2,11,1,3,7,18,7,3,1,11,2,2,1,5,2,1,1,1, 3) 3047 154270 780 318 840 142 884n2 — 6 094 308 541 496 833 306 566 073n + 3 047 154 270 716 514 466 423 523
335 (3,3,3) 1089n2 — 970n + 216

337 (2,1,3,1,11,2,4,1,3,3,1,4,2,11,1,3,1,2) 3062033 164 880 881n2 — 6 124 064 298 107 090n + 3 062 031 133 226 546
339 (2,2,2,1,17,1,2,2,2) 28313041n? — 56 430 142n + 28 117 440

340 (2,3,1,1,1,1,8,1,1,1,1,3,2) 60047 001n? — 119 808 233n + 59 761 572

341 (2,6,1,8,2,1,2,1,2,8,1,6,2) 82788 552900n2 — 165566 479 249n + 82 777 926 690

343 (1,1,11,1,5,3,1,17,1,3,5,1,11,1, 1) 49708972110 681n2 — 99 417 683 068 706n + 49 708 710 958 368

344 (1,1,4,1,3,1,4,1,1) 314 721n? — 608 632n + 294 255

345 (1,1,2,1,6,1,2,1,1) 33124n2 — 59487n + 26 708

347 (1,1,1,2,4,1,17,1,4,2,1,1,1) 1186320 249n2 — 2371357 294n + 1 185 037 392

348 (1,1,1,8,1,1,1) 1764n? — 1961n + 545

349 (1,2,7,7,2,1) 243 049n? — 467 678n + 224 978

351 (1,2,1,3,2,2,2,3,1,2,1) 2775556m2 — 5488 687n + 2713 482
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(1,3,1,2,1,1,1,1,1,1,2,1,3,1)
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(12,1,2,3,1,8,1,3,2,1,12)
(9,1,1,9)
(7,1,1,1,2,12,2,1,1,1,7)
(6,2,1,3,1,1,2,1,12,19,12,1,2,1,1,3,1,2,6)
(5,2,5)
(4,1,3,2,7,4,7,2,3,1,4)

(4,4)

(3,1,4,1,3)

(3,2,12,2,3)

(3,5,5,3)

w
=

01,1,4,1,12,6,2,2,3,7,2)
1

,3,2,1,1,5,1,12,5,1,1)
1,1

s

1,1,1,1)
(1,1,1,4,1,18,1,4,1,1,1)
(1,2,19,2,1)
(1,2,3,4,12,1,8,1,12,4,3,2,1)
(1,2,1,1,1,1,2,1)

17114 769n° — 34074 304n + 16 959 887
14386 849n2 — 28 631 170n + 14 244 674
47032164n> — 93 806 263n + 46 774 453
642014 244n2 — 1283073 679n + 641 059 790
175 562 500n2 — 350 624 999n + 175 062 855
8100n2 — 12799n + 5056
21 774041 770 465 247 769n? — 43 548 083 364 350 689 741n + 21 774 041 593 885 442 330
361n° — 2n
361n2 + 2n
16 862 321025102 — 33 719 687 099n + 16 857 366 438
32761n2 — 58 606n + 26 210
563065 441n2 — 1125222 957n + 562 157 882
985 722 701 380 761 969n> — 1971 445 364 721 532 802n + 985 722 663 340 771 200
900n2 — 649n + 117
47768 473 600n? — 95 528 550 399n + 47 760 077 168
289n2 + 76n + 5
1936n2 — 2177n + 612
9922512 — 186 299n + 87 446
7022512 — 130 214n + 60 362
7569n% — 11773n + 4578
609961n2 — 1189 674n + 580 088
3054330 756n2 — 6106 518 217n + 3052 187 837
5062512 — 92501n + 42 254
441 885 449 870 527 916 227 060 542 681n2 — 883 770 899 741 029 950 059 680 003 982n + 441 885 449 870 502 033 832 619 461 680
676n> — 337Tn + 42
17817071 467 345 290 000n? — 35 634 142 769 692 140 001n + 17 817 071 302 346 850 383
919 681n2 — 1801 826n + 882 528
6002502 — 110 448n + 50 807
5963 364n2 — 11 830897n + 5867 918
8059921n2 — 16 008 287n + 7 948 752
31329n2 — 55694n + 24 752
2541913658 244n? — 5083 764 506 8550 + 2 541 850 848 999
4225n2 — 5886 + 2050
137739703 689n? — 275464 730 018n + 137 725 026 720
1371760973 284n> — 2743475509 425n + 1371 714 536 534
396 048 726 346 729n? — 792 096 662 647 388n -+ 396 047 936 301 053
1056324 667 563 199 225n2 — 2 112 649 294 169 792 486n + 1 056 324 626 606 593 658
100n2? + 1997 + 99

Finally, we list the non-primitive d < 400 and their representation fp(n) where D is primitive.

10
12
15
17
20
24
26

f2(2)
f3(2)
f2(3)
f6(2)
f3(3)
f2(4)
f6(3)
f3(4)

f2(5)

30
32
33
35
37
39
40
42
48

fe(4) [|50| f2(7) || 78| f34(2)||101] f2(10)||136| f7(4)
f7(2) ||56] f6(6) ||80]| f3(8) ||104|f27(2)||138] f14(5)
f14(2) /60| f14(3) ||82| f2(9) || 105 | f15(4)||140| f34(3)
f3(5) ||63| f3(7) ||84|f3s(2)[|110| f6(9) ||141| f62(2)
J2(6) ||65] f2(8) ||87 | f11(3)||112] f21(2)||143] f3(11)
f18(2) /68| f18(3) ||90| f6(8) ||120| f3(10)||145| f2(12)
JF11(2)||72| fe(7) ||95] f14(4) || 122 f2(11) || 147 | fee(2)
f6(5) || 74| f13(2)]|96| f23(2)|[130] f41(2) || 148] f38(3)
f3(6) 1|75 f7(3) [[99] f3(9) ||132] f6(10)||150] f15(5)

152[ 711 (4) 1195 f3(13) 1224] f5(14) [[255] 5 (15)][299] fas(2) [[325] f2(18) [[350] f15(2) 1399 f3(19)
156 | fo(11) || 197 f2(14) ||226| f2(15) ||257 | f2(16)||306| f6(16) ||327| f146(2) || 360 f5(18)

168 f3(12)|/200| f51(2) || 228| f102(2) || 260 | fe6(3) || 308 | f57(2) ||328| fs3(2) ||362| f2(19)
170| f2(13) || 203 f1s(6) || 230| fas(4) ||264| f1s(7)||312| f7(6) ||330| f3s(5) ||377| f55(3)
180 | f55(2) (| 210| f6(13) || 231| f27(3) ||269 | fa1(3)||315| f14(8) ||333] f15(8) ||380] f6(18)
182 f6(12)||215| f7(5) ||235] f11(5) ||272| f6(15)||318] f34(5) ||336| f11(6) ||390] f14(9)
185 f13(3) || 219 f23(3) || 240| f5(14) ||275] f21(3)||320| fr9(2) ||338| f29(2) ||392| f23(4)
189 f14(6) || 220 | f34(4) || 248 f14g7g ;

3

192| f47(2) || 222] fos(2) ||252] fe2

288 f3(16) ||321 | f142(2) ||342| fe(17) ||395] fo2(4)
290 | f2(17) |[323| f3(17) ||346| f13(4) ||396 fos(3)
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The Python code generating this IATEX table is a bit more complex due to the column layout:

non_primitives = {}
d euler_muir_poly:
f_d(n):
_, coeff = euler_muir_poly[d]
coeff [0] * n **x 2 + coeff[1] * n + coeff [2]
n = 2
f_d(n) <= 400:
non_primitives[f_d(n)] = (d, n)
n += 1
non_primitives = ( (non_primitives.items (), key= x: x[0])) # sort
math
np_item_list = (non_primitives.items ())
N = (np_item_list)
cols = 14
rows = math.ceil(N / cols)
table_latex = f
r (0, rows):
c (0, cols):
i =r + rows * c
i < N:
np_item = np_item_list[i]

d, D, n = np_item[0], np_item[1][0], np_item[1][1]
table_latex += f
c < cols - 1 r + rows * (c + 1) < N:
table_latex +=
table_latex +=
r == rows - 1:
rows * cols == N:
table_latex +=

table_latex += f
i=0N-1 rows * cols != N:
table_latex += f
table_latex +=
with ( s ) as f:
(table_latex, =f)
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