Über die Lösbarkeit der Pellschen Gleichung – ein Ansatz per Theorie der Kettenbrüche

sowie der Satz von Euler-Muir und äquipalindromische Zahlen

Lukas Steenvoort

14. Juli 2025

1. Einleitung

In meiner Bachelorarbeit untersuche ich die Frage der Lösbarkeit der *Pellschen Gleichung* unter Verwendung der Theorie der Kettenbrüche und diskutiere den Satz von Euler-Muir.

1.1. Was ist die Pellsche Gleichung?

Die klassische Pellsche Gleichung (nach John Pell¹) ist gegeben als

$$x^2 - dy^2 = 1,$$

wobei d eine feste natürliche Zahl ist und die zugehörige Fragestellung lautet, ob ganzzahlige Lösungen (x, y) existieren – es handelt sich also um eine sogenannte diophantische Gleichung.

Hierbei existiert offenbar stets die triviale Lösung (x,y) = (1,0), die wir im Weiteren nicht beachten werden. Allgemein werden wir sehen, dass die klassische Pellsche Gleichung genau dann nichttrivial lösbar ist und unendlich viele Lösungen zulässt, wenn d keine Quadratzahl ist.

Die negative Pellsche Gleichung ist die verwandte diophantische Gleichung

$$x^2 - dy^2 = -1,$$

wobei d ebenfalls eine feste natürliche Zahl ist.

Diese Gleichung besitzt keine trivialen Lösungen außer im Fall d=1, wo (x,y)=(0,1) die Gleichung löst. Die allgemeine Frage nach der Lösbarkeit der negativen Pellschen Gleichung ist etwas zu komplex für die Einleitung und wird in Abschnitt 3.2 näher besprochen.

Ferner sei angemerkt, dass für eine gegebene Lösung (x,y) einer der obigen Gleichungen wegen $n^2 = (-n)^2$ stets auch (x, -y), (-x, y) und (-x, -y) Lösungen sind, weswegen wir im Folgenden der Einfachheit halber nur positive Werte für x, y zulassen werden.

1.2. Was ist ein Kettenbruch?

Ein Kettenbruch ist ein endlicher oder unendlicher Ausdruck der Form

$$[a_0, a_1, a_2, \ldots] := a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots}};$$

diesen nennen wir einfach, wenn alle Koeffizienten a_k ganzzahlig sind.

Jeder gemeine Bruch (jede rationale Zahl) lässt sich in einen endlichen einfachen Kettenbruch entwickeln und jede irrationale Zahl besitzt eine unendliche einfache Kettenbruchdarstellung, wie wir im Verlaufe der Arbeit sehen und errechnen werden – beispielsweise gilt

$$\frac{17}{3} = [5, 1, 2] = 5 + \frac{1}{1 + \frac{1}{2}} \quad \text{und} \quad \sqrt{11} = [3, \overline{3, 6}] = [3, 3, 6, 3, 6, \dots] = 3 + \frac{1}{3 + \frac{1}{6 + \dots}}.$$

¹fälschlicherweise, da sich Pell laut Wikipedia nie selbst mit der Lösbarkeit der Gleichung befasst hat, passender wäre die Bezeichnung Fermatsche Gleichung, da Fermat der erste Europäer war, der nach der Lösbarkeit dieser Gleichung gefragt hat, auch wenn diese Gleichung schon den indischen Mathematikern Brahmagupta im 7. und Bhaskara II. im 12. Jahrhundert bekannt war

1.3. Wie hängen die beiden Themen zusammen?

Wie wir sehen werden, hängt die Lösbarkeit der (klassischen oder negativen) Pellschen Gleichung

$$x^2 - dy^2 = \pm 1$$

mit der Kettenbruchentwicklung von \sqrt{d} zusammen, mit derer Hilfe nicht nur die allgemeine Frage nach der Lösbarkeit obiger Gleichungen geklärt werden kann, sondern sich sogar alle nichttrivialen Lösungen direkt berechnen lassen.

In der Tat ist, wie im weiteren Verlauf der Arbeit gezeigt, die unendliche Kettenbruchentwicklung von \sqrt{d} für ein nichtquadratisches d periodisch – im oben besprochenen Beispiel ist

$$\sqrt{11} = [3, \overline{3, 6}] = [3, 3, 6, 3, 6, \ldots] = 3 + \frac{1}{3 + \frac{1}{6 + \ldots}}$$

mit Periodenlänge 2 und die Lösungen von $x^2 - 11y^2 = 1$ ergeben sich zu

$$\frac{x_1}{y_1} = [3, 3] = \frac{10}{3},$$

$$10^2 - 11 \cdot 3^2 = 100 - 99 = 1;$$

$$\frac{x_2}{y_2} = [3, 3, 6, 3] = \frac{199}{60},$$

$$199^2 - 11 \cdot 60^2 = 39601 - 39600 = 1;$$

$$\frac{x_3}{y_3} = [3, 3, 6, 3, 6, 3] = \frac{3970}{1197},$$

$$3970^2 - 11 \cdot 1197^2 = 15760900 - 15760899 = 1$$

und so weiter. Hierbei ist anzumerken, dass für $\sqrt{d}=[a_0,\overline{a_1,\ldots,a_m}]$ mit Periodenlänge $m\geq 1$ nur die Näherungsbrüche $[a_0,a_1,\ldots,a_{km-1}]$ für $k\in\mathbb{N}$ Lösungen der verallgemeinerten Pellschen Gleichung $x^2-dy^2=(-1)^m$ liefern, beispielsweise ist [3,3,6]=63/19, aber

$$63^2 - 11 \cdot 19^2 = 3969 - 3971 = -2 \neq 1.$$

Insbesondere ist die negative Pellsche Gleichung $x^2-dy^2=-1$ nur dann lösbar, wenn die Periodenlänge der Kettenbruchentwicklung von \sqrt{d} ungerade ist – im Fall d=11 ist die Länge 2, also existieren für $x^2-11y^2=-1$ keine Lösungen. Andererseits gilt $\sqrt{13}=[3,\overline{1,1,1,1,6}]$ mit Periodenlänge 5 und die negative Pellsche Gleichung $x^2-13y^2=-1$ ist lösbar:

$$\frac{x_1}{y_1} = [3, 1, 1, 1, 1] = \frac{18}{5},$$
 $18^2 - 13 \cdot 5^2 = 324 - 325 = -1.$

1.4. Was ist der Satz von Euler-Muir?

Die Periode der Kettenbruchentwicklung $\sqrt{d} = [a_0, \overline{a_1, \dots, a_m}]$ bis auf ihren letzten Eintrag ist palindromisch – es gilt $a_k = a_{m-k}$ für $1 \le k \le m/2$, also ausgeschrieben

$$\sqrt{d} = [a_0, \overline{a_1, a_2, \dots, a_2, a_1, a_m}],$$

ferner gilt stets $a_m = 2a_0$. Der *Satz von Euler-Muir* liefert nun ein Werkzeug, um aus einem gegebenen Palindrom $(a_1, a_2, \ldots, a_2, a_1)$ die drei Koeffizienten eines quadratischen Polynoms

$$f(n) = An^2 + Bn + C$$

zu berechnen, so dass für alle natürlichen Zahlen n die Kettenbruchentwicklung von $\sqrt{f(n)}$ dieses Palindrom enthält und alle d, für welche die Kettenbruchentwicklung von \sqrt{d} dieses Palindrom enthält, von der Form f(n) für ein gegebenes n sind:

$$\sqrt{f(n)} = \left\lceil \lfloor \sqrt{f(n)} \rfloor, \overline{a_1, a_2, \dots, a_2, a_1, 2 \lfloor \sqrt{f(n)} \rfloor} \right\rceil.$$

So ist für das Palindrom (1,1,1) das zugehörige Euler-Muir-Polynom $f(n)=9n^2-2n$ und

$$\sqrt{f(1)} = \sqrt{7} = [2, \overline{1, 1, 1, 4}], \qquad \sqrt{f(2)} = \sqrt{32} = [5, \overline{1, 1, 1, 10}],$$

$$\sqrt{f(3)} = \sqrt{75} = [8, \overline{1, 1, 1, 16}], \qquad \sqrt{f(4)} = \sqrt{136} = [11, \overline{1, 1, 1, 22}] \text{ usw.}$$

2. Die Theorie der Kettenbrüche

Definition 1 (Kettenbruch). Für $a_0, \ldots, a_n \in \mathbb{R}$ mit $a_k > 0$ für $k \ge 1$ definieren wir induktiv:

(i)
$$[a_0] := a_0$$
,

(ii)
$$[a_0, \dots, a_n] := \left[a_0, \dots, a_{n-1} + \frac{1}{a_n} \right].$$

Gilt $a_k \in \mathbb{Z}$ für alle k, so nennen wir den Kettenbruch *einfach*.

Bemerkung 1.1. Es gilt

$$[a_0, \dots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{\dots + \frac{1}{a_n}}}$$

und somit insbesondere

$$[a_0, \dots, a_n] = a_0 + \frac{1}{[a_1, \dots, a_n]}.$$

Bemerkung 1.2. Für beliebige a_0, \ldots, a_n gilt

$$[a_0,\ldots,a_n] = [a_0,\ldots,a_n-1,1].$$

Beweis.

$$[a_0, \dots, a_n - 1, 1] = \left[a_0, \dots, a_n - 1 + \frac{1}{1}\right] = [a_0, \dots, a_n].$$

Definition 2 (Hilfsfolgen zur Berechnung von Kettenbrüchen, [2, Gleichung 7.6]). Es sei $(a_n)_{n\geq 0}$ eine Folge mit $a_n\geq 1$ für $n\geq 1$. Wir definieren $(h_n)_{n\geq -2}$ und $(k_n)_{n\geq -2}$ durch $h_n=a_nh_{n-1}+h_{n-2},\quad k_n=a_nk_{n-1}+k_{n-2}$ für $n\geq 0,\qquad h_{-1}=k_{-2}=1,\quad h_{-2}=k_{-1}=0,$ oder in Matrixschreibweise,

$$\begin{pmatrix} h_n & h_{n-1} \\ k_n & k_{n-1} \end{pmatrix} = \begin{pmatrix} h_{n-1} & h_{n-2} \\ k_{n-1} & k_{n-2} \end{pmatrix} \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \quad \text{für } n \ge 0, \qquad \begin{pmatrix} h_{-1} & h_{-2} \\ k_{-1} & k_{-2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Lemma 3. Es gilt $1 = k_0 \le k_1$ sowie $k_n < k_{n+1}$ für $n \ge 1$. Ferner gilt die Abschätzung $k_n \ge n$. Beweis. Die k_n sind rekursiv definiert per

$$k_n = a_n k_{n-1} + k_{n-2}$$

insbesondere sind

$$k_0 = a_0 k_{-1} + k_{-2} = k_{-2} = 1,$$
 $k_1 = a_1 k_0 + k_{-1} = a_1 \ge 1.$

Den Induktionanfang bildet

$$k_2 = a_2k_1 + k_0 > k_1 + k_0 > k_1$$

und mit $k_{n-1} > k_{n-2}$ im Induktionsschritt gilt $k_{n-1} > 0$, also folgt

$$\forall n \ge 1: \quad k_{n+1} = a_n k_n + k_{n-1} > a_n k_n \ge k_n$$

Die Abschätzung $k_n \ge n$ ist für $n \in \{0,1\}$ wahr und folgt für $n \ge 2$ induktiv per

$$k_n = a_n k_{n-1} + k_{n-2} \ge 1 \cdot (n-1) + k_0 = (n-1) + 1 = n.$$

Satz 4 ([2, Satz 7.3]). Für beliebige $x \in \mathbb{R}_+$ gilt

$$[a_0, \dots, a_{n-1}, x] = \frac{xh_{n-1} + h_{n-2}}{xk_{n-1} + k_{n-2}}.$$

Beweis (per Induktion). Für n = 0 gilt

$$\frac{xh_{-1} + h_{-2}}{xk_{-1} + k_{-2}} = \frac{x \cdot 1 + 0}{x \cdot 0 + 1} = x = [x].$$

Nehmen wir die Aussage des Satzes für ein festes n als Induktionsvoraussetzung, so folgt

$$[a_0, \dots, a_n, x] = \left[a_0, \dots, a_{n-1}, a_n + \frac{1}{x}\right] = \frac{\left(a_n + \frac{1}{x}\right)h_{n-1} + h_{n-2}}{\left(a_n + \frac{1}{x}\right)k_{n-1} + k_{n-2}} = \frac{a_n h_{n-1} + h_{n-2} + \frac{1}{x}h_{n-1}}{a_n k_{n-1} + k_{n-2} + \frac{1}{x}k_{n-1}}$$
$$= \frac{h_n + \frac{1}{x}h_{n-1}}{k_n + \frac{1}{x}k_{n-1}} = \frac{xh_n + h_{n-1}}{xk_n + k_{n-1}}.$$

Korollar 5 ([2, Satz 7.4]). Mit $r_n := [a_0, \ldots, a_n]$ für $n \ge 0$ folgt $r_n = h_n/k_n$.

Beweis.

$$r_n = [a_0, \dots, a_{n-1}, a_n] = \frac{a_n h_{n-1} + h_{n-2}}{a_n k_{n-1} + k_{n-2}} = \frac{h_n}{k_n}.$$

Lemma 6 (Berechnung eines Kettenbruchs mittels Matrixmultiplikation). Wir können den Kettenbruch $[a_0, \ldots, a_n]$ mittels Matrixmultiplikation errechnen: für

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} := \prod_{i=0}^{n} \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix} \quad gilt \quad [a_0, \dots, a_n] = \frac{A}{C}.$$

Beweis. Einerseits ergibt sich induktiv aus Definition 2, dass gilt:

$$\begin{pmatrix} h_n & h_{n-1} \\ k_n & k_{n-1} \end{pmatrix} = \begin{pmatrix} h_{n-1} & h_{n-2} \\ k_{n-1} & k_{n-2} \end{pmatrix} \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} h_{n-2} & h_{n-3} \\ k_{n-2} & k_{n-3} \end{pmatrix} \begin{pmatrix} a_{n-1} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix}$$

$$\vdots$$

$$= \begin{pmatrix} h_{-1} & h_{-2} \\ k_{-1} & k_{-2} \end{pmatrix} \prod_{i=0}^{n} \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \prod_{i=0}^{n} \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix}$$

$$= \prod_{i=0}^{n} \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

andererseits haben wir in Korollar 5 gezeigt, dass gilt:

$$[a_0, \dots, a_n] = \frac{h_n}{k_n} = \frac{A}{C}.$$

Lemma 7 (umgekehrte Kettenbrüche, [2, Aufg. 7.5]). Ist $a_0 \ge 1$, so gilt

$$\frac{h_n}{h_{n-1}} = [a_n, \dots, a_0] \quad \text{für } n \ge 0, \qquad \frac{k_n}{k_{n-1}} = [a_n, \dots, a_1] \quad \text{für } n \ge 1.$$

Beweis. Wir zeigen die Aussagen per Induktion. Den Induktionsanfang bilden die Gleichungen

$$\frac{h_0}{h_{-1}} = \frac{a_0}{1} = [a_0]$$
 und $\frac{k_1}{k_0} = \frac{a_1}{1} = [a_1],$

den Induktionsschritt bilden die Gleichungen

$$\frac{h_n}{h_{n-1}} = \frac{a_n h_{n-1} + h_{n-2}}{h_{n-1}} = a_n + \frac{1}{h_{n-1}/h_{n-2}} = a_n + \frac{1}{[a_{n-1}, \dots, a_0]} = [a_n, \dots, a_0]$$

und

$$\frac{k_n}{k_{n-1}} = \frac{a_n k_{n-1} + k_{n-2}}{k_{n-1}} = a_n + \frac{1}{k_{n-1}/k_{n-2}} = a_n + \frac{1}{[a_{n-1}, \dots, a_1]} = [a_n, \dots, a_1].$$

Satz 8 ([2, Satz 7.5]). Für $n \ge 0$ gelten

$$h_n k_{n-1} - h_{n-1} k_n = (-1)^{n-1}, \qquad h_n k_{n-2} - h_{n-2} k_n = (-1)^n a_n.$$

Beweis (per Induktion). Für n=0 sind die Gleichungen einfach nachzuprüfen:

$$h_0k_{-1} - h_{-1}k_0 = h_0 \cdot 0 - 1 \cdot k_0 = (-1) \cdot 1 = (-1)^{0-1},$$

 $h_0k_{-2} - h_{-2}k_0 = h_0 \cdot 1 - 0 \cdot k_0 = a_0 = (-1)^0 a_0.$

Mit der Gültigkeit der ersten Gleichung für ein festes n als Induktionsvoraussetzung folgt

$$h_{n+1}k_n - h_n k_{n+1} = (a_{n+1}h_n + h_{n-1})k_n - h_n (a_{n+1}k_n + k_{n-1})$$

$$= h_{n-1}k_n - h_n k_{n-1}$$

$$= (-1) \cdot (h_n k_{n-1} - h_{n-1}k_n)$$

$$= (-1) \cdot (-1)^{n-1} = (-1)^n,$$

$$h_{n+1}k_{n-1} - h_{n-1}k_{n+1} = (a_{n+1}h_n + h_{n-1})k_{n-1} - h_{n-1}(a_{n+1}k_n + k_{n-1})$$

$$= a_{n+1}(h_n k_{n-1} - h_{n-1}k_n)$$

$$= a_{n+1}(-1)^{n-1} = (-1)^{n+1}a_{n+1}.$$

Korollar 9 ([2, Satz 7.5]). Es gelten

$$r_n - r_{n-1} = \frac{(-1)^{n-1}}{k_n k_{n-1}}$$
 für $n \ge 1$, $r_n - r_{n-2} = \frac{(-1)^n a_n}{k_n k_{n-2}}$ für $n \ge 2$.

Gilt zudem $a_n \in \mathbb{Z}$ für alle $n \ge 0$, so gilt $ggT(h_n, k_n) = ggT(h_n, h_{n+1}) = ggT(k_n, k_{n+1}) = 1$.

Beweis. Die Gleichungen folgen durch Teilen der Gleichungen aus dem vorausgegangenen Satz durch $k_n k_{n-1}$ bzw. $k_n k_{n-2}$. Gilt $a_n \in \mathbb{Z}$ für alle $n \geq 0$, so folgt offenbar auch $h_n, k_n \in \mathbb{Z}$ für $n \geq 0$, und ist $d \in \mathbb{N}$ Teiler von $ggT(h_n, k_n)$, $ggT(h_n, h_{n+1})$ oder $ggT(k_n, k_{n+1})$, gilt nach Satz 8

$$d \mid (h_{n+1}k_n - h_nk_{n+1}) = (-1)^{n-1},$$

also ist d=1.

Satz 10 ([2, Satz 7.6]). Die Folge $(r_n)_{n\in\mathbb{N}}$ konvergiert gegen eine Zahl $\xi\in\mathbb{R}$ und es gilt

$$r_0 < r_2 < r_4 < \ldots < \xi < \ldots < r_5 < r_3 < r_1$$

Beweis. Per Lemma 3 gilt $k_n > 0$ für alle $n \ge 0$. Für $n \ge 2$ ist $a_n > 0$, also hat der Ausdruck für $r_n - r_{n-2}$ aus Korollar 9 dasselbe Vorzeichen wie $(-1)^n$. Somit gilt

$$r_{n-2} < r_n$$
 falls $2 \mid n$, $r_n < r_{n-2}$ falls $2 \nmid n$.

Ferner hat der Ausdruck für $r_n - r_{n-1}$ aus Korollar 9 dasselbe Vorzeichen wie $(-1)^{n-1}$, somit gilt $r_n < r_{n-1}$ für $2 \mid n$, und zusammenfassend folgt für $l \ge 1$ und $m \ge 0$:

$$r_{2m} < r_{2m+2l} < r_{2m+2l-1} \le r_{2l-1}$$
.

Die Teilfolge $(r_{2n})_{n\in\mathbb{N}}$ ist also monoton wachsend und durch r_1 nach oben beschränkt und somit konvergent. Analog ist die Teilfolge $(r_{2n+1})_{n\in\mathbb{N}}$ monoton fallend und durch r_0 nach unten beschränkt und somit konvergent. Nach der Abschätzung aus Lemma 3 definiert der Ausdruck für $r_n - r_{n-1}$ aus Korollar 9 eine Nullfolge, also konvergieren beide Teilfolgen und somit auch $(r_n)_{n\in\mathbb{N}}$ gegen denselben Grenzwert $\xi\in\mathbb{R}$. Wegen der strengen Monotonie der Teilfolgen wird dieser allerdings nie angenommen, da sonst ein n mit $r_n = r_{n+2}$ existieren müsste.

Definition 11 (unendlicher Kettenbruch, [2, Definition 7.1]).

Für $(a_n)_{n\in\mathbb{N}}$ mit $a_n\geq 1$ für $n\geq 1$ definieren wir den unendlichen Kettenbruch

$$[a_0, a_1, a_2, \ldots] := \lim_{n \to \infty} r_n$$

und nennen r_n die n-te Konvergente von $[a_0, a_1, a_2, \ldots]$. Existieren $l \geq 1$ und $N \geq 0$ mit

$$a_n = a_{n+1} \quad \forall n > N,$$

so sprechen wir von einem periodischen Kettenbruch und schreiben

$$[a_0, a_1, a_2, \ldots] =: [a_0, \ldots, a_{N-1}, \overline{a_N, \ldots, a_{N+l-1}}].$$

Wie im endlichen Fall nennen wir den Kettenbruch einfach, falls $a_n \in \mathbb{Z}$ für alle $n \geq 0$ gilt.

Lemma 12 ([2, Satz 7.15]). Ist x > 1 mit $x = [a_0, a_1, \ldots]$ und ist h_n/k_n die n-te Konvergente von x, so ist die (n + 1)-te Konvergente von $1/x = [0, a_0, a_1, \ldots]$ gerade der Kehrwert k_n/h_n .

Beweis. Berechnen der n-ten Konvergente von x per Matrixmultiplikation liefert eine Matrix

$$\begin{pmatrix} h_n & h_{n-1} \\ k_n & k_{n-1} \end{pmatrix} = \prod_{i=0}^n \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix}.$$

Berechnen der (n+1)-ten Konvergente von 1/x per Matrixmultiplikation liefert hingegen

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \left(\prod_{i=0}^{n} \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix} \right) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} h_n & h_{n-1} \\ k_n & k_{n-1} \end{pmatrix} = \begin{pmatrix} k_n & k_{n-1} \\ h_n & h_{n-1} \end{pmatrix},$$

also hat in der Tat die (n+1)-te Konvergente von 1/x den Wert k_n/h_n .

Im Folgenden gehen wir stets davon aus, dass $a_n \in \mathbb{Z}$ für $n \geq 0$ gelte.

Lemma 13 ([2, Satz 7.13]).

Gilt $|\xi b - a| < |\xi k_n - h_n|$ für $a \in \mathbb{Z}$, $b \in \mathbb{N}$ und ein $n \ge 0$, so ist $b \ge k_{n+1}$.

Beweis. Wir nehmen an, es gälte $b < k_{n+1}$ und betrachten das lineare Gleichungssystem

$$A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}, \qquad A = \begin{pmatrix} h_n & h_{n+1} \\ k_n & k_{n+1} \end{pmatrix}.$$

Die Determinante von A ist nach Satz 8 durch

$$h_n k_{n+1} - h_{n+1} k_n = (-1)^{n+1}$$

gegeben, also ergibt sich die Inverse von A zu

$$A^{-1} = (-1)^{n+1} \begin{pmatrix} k_{n+1} & -h_{n+1} \\ -k_n & h_n \end{pmatrix}.$$

Das Gleichungssystem hat somit die Lösung

$$x = (-1)^{n+1}(k_{n+1}a - h_{n+1}b), y = (-1)^{n+1}(h_nb - k_na),$$

wobei uns hier nur interessiert, dass $x,y\in\mathbb{Z}$ sind. Es kann nicht x=0 gelten, denn dann wäre

$$b = k_{n+1}y \stackrel{b,k_{n+1} \in \mathbb{N}}{\Longrightarrow} y \in \mathbb{N} \Longrightarrow b \ge k_{n+1},$$

im Widerspruch zur Annahme. Andererseits kann auch y=0 nicht gelten, denn dann wäre

$$(a,b) = (xh_n, xk_n) \qquad \Longrightarrow \qquad |\xi b - a| = |x| \cdot |\xi k_n - h_n| \ge |\xi k_n - h_n|.$$

Ist y < 0, so bedingt

$$0 < b = k_n x + k_{n+1} y,$$

dass x > 0 ist. Ist andererseits y > 0, so folgt aus unserer Annahme

$$b < k_{n+1} \le k_{n+1}y = b - k_nx \qquad \Longrightarrow \qquad x < 0.$$

In jedem Fall haben x und y also verschiedene Vorzeichen. Es gilt

$$\xi b - a = \xi(k_n x + k_{n+1} y) - (h_n x + h_{n+1} y) = x(\xi k_n - h_n) + y(\xi k_{n+1} - h_{n+1}),$$

und offenbar haben $\xi k_n - h_n$ und $\xi k_{n+1} - h_{n+1}$ genau dann verschiedene Vorzeichen, wenn $\xi - r_n$ und $\xi - r_{n+1}$ verschiedene Vorzeichen haben, was nach Satz 10 der Fall ist. Wir können somit folgern, dass $x(\xi k_n - h_n)$ und $y(\xi k_{n+1} - h_{n+1})$ dasselbe Vorzeichen haben, aber dann gilt

$$|\xi b - a| = |x(\xi k_n - h_n) + y(\xi k_{n+1} - h_{n+1})| = |x| \cdot |\xi k_n - h_n| + |y| \cdot |\xi k_{n+1} - h_{n+1}| \ge |\xi k_n - h_n|.$$

Dies steht im Widerspruch zur Voraussetzung, also muss in der Tat $b \ge k_{n+1}$ gelten.

Satz 14 ([2, Satz 7.14]).

Gilt
$$|\xi - a/b| < 1/2b^2$$
 für $a \in \mathbb{Z}$, $b \in \mathbb{N}$, so existiert ein $n \ge 1$ mit $a/b = r_n = h_n/k_n$.

Beweis. Da $(k_n)_{n\in\mathbb{N}}$ streng monoton steigend und unbeschränkt ist, existiert ein eindeutiges $n\in\mathbb{N}$ mit $k_n\leq b< k_{n+1}$. Nach Lemma 13 ist dann

$$|\xi k_n - h_n| \le |\xi b - a| < \frac{1}{2b}.$$

Wir nehmen nun an, $a/b \neq h_n/k_n$, also ist $|ak_n - bh_n| \geq 1$. Es folgt der Widerspruch

$$1 \leq |ak_n - bh_n| \leq |\xi bk_n - ak_n| + |\xi bk_n - bh_n| = k_n|\xi b - a| + b|\xi k_n - h_n| < \frac{k_n}{2b} + \frac{b}{2b} \leq \frac{1}{2} + \frac{1}{2} = 1.$$

L

Korollar 15. ξ ist irrational.

Beweis. Für $\xi=p/q$ mit $p\in\mathbb{Z}$ und $q\in\mathbb{N}$ wäre insbesondere $|\xi q-p|=0<1/2q^2$, also existierte nach dem vorausgegangenen Satz ein $n\in\mathbb{N}$ mit $r_n=p/q=\xi$, im Widerspruch zu Satz 10. \square

Lemma 16. Schreiben wir $\overline{x+y\sqrt{d}} := x-y\sqrt{d}$, so gilt $\overline{\alpha \cdot \beta} = \overline{\alpha} \cdot \overline{\beta}$ und $\overline{\alpha/\beta} = \overline{\alpha}/\overline{\beta}$.

Beweis. Es gilt

$$\overline{a+b\sqrt{d}} \cdot \overline{A+B\sqrt{d}} = (a-b\sqrt{d})(A-B\sqrt{d}) = (aA+bBd) - (aB+Ab)\sqrt{d}$$
$$= \overline{(aA+bBd) + (aB+Ab)\sqrt{d}}$$
$$= \overline{(a+b\sqrt{d})(A+B\sqrt{d})}$$

sowie

$$\overline{1/(a+b\sqrt{d})} = \overline{(a-b\sqrt{d})/(a^2-b^2d)} = (a+b\sqrt{d})/(a^2-b^2d) = 1/(a-b\sqrt{d}) = 1/\overline{(a+b\sqrt{d})}.$$

Satz 17 ([2, Satz 7.19]). Jeder einfache periodische Kettenbruch entspricht einer Zahl

$$[a_0, \dots, a_{N-1}, \overline{a_N, \dots, a_{N+l-1}}] = \xi = \frac{a + \sqrt{b}}{c}$$

mit $a, c \in \mathbb{Z}$, $b \in \mathbb{N}$ und $c \neq 0$, wobei b keine Quadratzahl ist. Umgekehrt lässt sich jede solche Zahl $(a + \sqrt{b})/c$ als einfacher periodischer Kettenbruch ausdrücken.

Beweis (\Rightarrow) . Schreiben wir $\theta := [\overline{a_N, \dots, a_{N+l-1}}]$, so gilt

$$\theta = [a_N, \dots, a_{N+l-1}, \overline{a_N, \dots, a_{N+l-1}}] = [a_N, \dots, a_{N+l-1}, \theta]$$

und nach Satz 4 existieren $H, H', K, K' \in \mathbb{Z}$ mit $K \geq 1$ und $K' \geq 0$, so dass

$$\theta = \frac{\theta H + H'}{\theta K + K'} \Longrightarrow K\theta^2 + K'\theta = H\theta + H' \Longrightarrow K\theta^2 + (K' - H)\theta - H' = 0.$$

Nach der Lösungsformel für quadratische Gleichungen folgt also

$$\theta \in \left\{ \frac{(H - K') + \sqrt{(K' - H)^2 + 4KH'}}{2K}, \frac{(H - K') - \sqrt{(K' - H)^2 + 4KH'}}{2K} \right\},$$

und in beiden Fällen können wir

$$\theta = \frac{A + \sqrt{B}}{C}$$

mit $A,C\in\mathbb{Z},\,B\in\mathbb{N}$ und $C\neq 0$ schreiben. Ebenfalls nach Satz 4 existieren $h,h',k,k'\in\mathbb{Z}$ mit

$$\xi = [a_0, \dots, a_{N-1}, \overline{a_N}, \dots, \overline{a_{N+l-1}}] = [a_0, \dots, a_{N-1}, \theta]$$

$$= \frac{\theta h + h'}{\theta k + k'}$$

$$= \frac{(A + \sqrt{B})h + Ch'}{(A + \sqrt{B})k + Ck'}$$

$$= \frac{(Ah + Ch') + \sqrt{B}h}{(Ak + Ck') + \sqrt{B}k}$$

$$= \frac{((Ah + Ch') + h\sqrt{B})((Ak + Ck') - k\sqrt{B})}{(Ak + Ck')^2 - Bk^2}$$

$$= \frac{((Ah + Ch')(Ak + Ck') - Bhk) + C(hk' - h'k)\sqrt{B}}{(Ak + Ck')^2 - Bk^2}$$

$$= \frac{((Ah + Ch')(Ak + Ck') - Bhk) + \sqrt{(C(hk' - h'k))^2 B}}{(Ak + Ck')^2 - Bk^2}$$

und offenbar können wir dies mit geeigneten $a, c \in \mathbb{Z}, b \in \mathbb{N}$ und $c \neq 0$ schreiben als

$$\xi = \frac{a + \sqrt{b}}{c},$$

wobe
ibkeine Quadratzahl sein kann, da ξ sonst im Widerspruch zu Korolla
r 15 rational wäre.

Beweis (\Leftarrow). Wir definieren $m_0 := a|c|, d = bc^2$ und $q_0 = c|c|$ und zeigen, dass die Vorschrift

$$a_n = \lfloor \xi_n \rfloor, \quad \xi_n = \frac{m_n + \sqrt{d}}{q_n}, \quad m_{n+1} = a_n q_n - m_n, \quad q_{n+1} = \frac{d - m_{n+1}^2}{q_n} \in \mathbb{Z} \setminus \{0\}$$

die Kettenbruchentwicklung von $(a + \sqrt{b})/c$ liefert, also dass für alle $n \ge 0$ gilt:

$$\frac{a+\sqrt{b}}{c} = [a_0, \dots, a_{n-1}, \xi_n].$$

Den Induktionsanfang n=0 erhalten wir durch Erweitern mit $|c|=\sqrt{c^2}$:

$$\frac{a+\sqrt{b}}{c} = \frac{a|c|+\sqrt{bc^2}}{c|c|} = \frac{m_0+\sqrt{d}}{q_0} = \xi_0 = [\xi_0].$$

Im Induktionsschritt erhalten wir

$$\xi_n - a_n = \frac{m_n + \sqrt{d} - a_n q_n}{q_n} = \frac{\sqrt{d} - m_{n+1}}{q_n} = \frac{d - m_{n+1}^2}{q_n(\sqrt{d} + m_{n+1})} = \frac{q_{n+1}}{m_{n+1} + \sqrt{d}} = \frac{1}{\xi_{n+1}},$$

also gilt unter Anwendung der Induktionsvoraussetzung in der Tat

$$\frac{a+\sqrt{b}}{c} = [a_0, \dots, a_{n-1}, \xi_n] = \left[a_0, \dots, a_{n-1}, a_n + \frac{1}{\xi_{n+1}}\right] = \left[a_0, \dots, a_{n-1}, a_n, \xi_{n+1}\right].$$

Noch zu zeigen wäre, dass in der Tat $q_n \in \mathbb{Z} \setminus \{0\}$ für alle $n \geq 0$ gilt. Wegen

$$q_{n+1} = \frac{d - m_{n+1}^2}{q_n} = \frac{d - (a_n q_n - m_n)^2}{q_n} = \frac{d - m_n^2}{q_n} + 2a_n m_n - a_n^2 q_n$$

ist für den Induktionsschluss also zu zeigen, dass $(d - m_n^2)/q_n$ für $n \ge 0$ ganzzahlig ist. Für n = 0 folgt dies ebenso wie der Induktionsanfang aus der Definition, denn

$$\frac{d-m_0^2}{q_0} = \frac{bc^2 - (a|c|)^2}{c|c|} = \frac{bc^2 - a^2c^2}{c|c|} = \frac{c}{|c|}(b-a^2),$$

für $n \ge 1$ folgt dies aus

$$\frac{d - m_n^2}{q_n} = \frac{d - m_n^2}{q_{n-1}} \cdot \frac{q_{n-1}}{q_n} = q_n \cdot \frac{q_{n-1}}{q_n} = q_{n-1} \in \mathbb{Z},$$

und es gilt stets $q_n \neq 0$, da sonst $d = m_n^2$ und folglich b eine Quadratzahl wäre. Nach Satz 4 gilt

$$\xi_0 = \frac{a + \sqrt{b}}{c} = [a_0, \dots, a_{n-1}, \xi_n] = \frac{\xi_n h_{n-1} + h_{n-2}}{\xi_n k_{n-1} + k_{n-2}}$$

und mit $\xi_n' := \overline{\xi_n} = (m_n - \sqrt{d})/q_n$ folgt nach Lemma 16 die Gleichung

$$\xi_0' = \frac{\xi_n' h_{n-1} + h_{n-2}}{\xi_n' k_{n-1} + k_{n-2}} \qquad \Longrightarrow \qquad \xi_n' (\xi_0' k_{n-1} - h_{n-1}) = h_{n-2} - \xi_0' k_{n-2}$$

$$\Longrightarrow \qquad \xi_n' = \frac{h_{n-2} - \xi_0' k_{n-2}}{\xi_0' k_{n-1} - h_{n-1}} = -\frac{k_{n-2}}{k_{n-1}} \left(\frac{\xi_0' - h_{n-2}/k_{n-2}}{\xi_0' - h_{n-1}/k_{n-1}} \right).$$

Für $n \to \infty$ laufen Zähler und Nenner des Bruchs in Klammern gegen $\xi'_0 - \xi_0 \neq 0$, also läuft der Bruch in Klammern gegen 1. Somit existiert ein $n_0 \in \mathbb{N}$, so dass für alle $n \geq n_0$ der Bruch in Klammern positiv und somit ξ'_n negativ ist. Andererseits gilt für alle $n \geq 0$

$$\xi_n - a_n = \frac{1}{\xi_{n+1}}$$
 \Longrightarrow $\xi_{n+1} = \frac{1}{\xi_n - a_n} = \frac{1}{\xi_n - \lfloor \xi_n \rfloor} > 1$

und somit für alle $n \geq n_0$:

$$0 < \xi_n - \xi_n' = \frac{m_n + \sqrt{d}}{q_n} - \frac{m_n - \sqrt{d}}{q_n} = \frac{2\sqrt{d}}{q_n} \Longrightarrow q_n > 0.$$

Aus der Definition der m_n und q_n können wir für $n \ge n_0$ nun folgern:

$$1 \le q_n \le q_n q_{n+1} = d - m_{n+1}^2 \le d, \qquad m_{n+1}^2 < m_{n+1}^2 + q_n q_{n+1} = d, \tag{2.1}$$

aber da d eine feste Zahl ist und $m_n, q_n \in \mathbb{Z}$ sind, können die Paare (m_n, q_n) nur eine endliche Anzahl von Werten annehmen, also $\exists N \in \mathbb{N}_0, l \in \mathbb{N}$ mit $(m_N, q_N) = (m_{N+l}, q_{N+l})$. Da nun

$$\xi_N = \frac{m_N + \sqrt{d}}{q_N} = \frac{m_{N+l} + \sqrt{d}}{q_{N+l}} = \xi_{N+l}$$

gilt und sich $(\xi_{n+1}, m_{n+1}, q_{n+1})$ alleine aus (ξ_n, m_n, q_n) ableitet, folgt induktiv wie behauptet

$$\forall n \ge N : a_n = \lfloor \xi_n \rfloor = \lfloor \xi_{n+l} \rfloor = a_{n+l} \qquad \Longrightarrow \qquad \frac{a + \sqrt{b}}{c} = [a_0, \dots, a_{N-1}, \overline{a_N, \dots, a_{N+l-1}}].$$

Satz 18 (Kettenbruchentwicklungen von Quadratwurzeln, [2, Satz 7.21]). Ist $d \in \mathbb{N}$ keine Quadratzahl, so hat die Kettenbruchentwicklung von \sqrt{d} die Form

$$\sqrt{d} = [\lfloor \sqrt{d} \rfloor, \overline{a_1, \dots, a_l, 2\lfloor \sqrt{d} \rfloor}]$$

und es gilt $(a_1, \ldots, a_l) = (a_l, \ldots, a_1)$ mit $l \in \mathbb{N}_0$, also $a_k = a_{l-k+1}$ für $1 \le k \le l$.

Beweis. Nach Satz 17 existiert eine Darstellung

$$\lfloor \sqrt{d} \rfloor + \sqrt{d} = [a_0, \dots, a_{N-1}, \overline{a_N, \dots, a_{N+l}}]$$

und mit der Notation aus diesem Satz ist $(a,b,c)=(\lfloor \sqrt{d}\rfloor,d,1).$ Insbesondere schreiben wir

$$\xi_n = \frac{m_n + \sqrt{d}}{q_n}, \qquad \xi'_n = \frac{m_n - \sqrt{d}}{q_n}$$

und nach Lemma 16 gilt

$$\frac{1}{\xi_{n+1}} = \xi_n - a_n \qquad \Longrightarrow \qquad \frac{1}{\xi'_{n+1}} = \xi'_n - a_n.$$

Wir zeigen nun, dass $-1 < \xi'_n < 0$ für alle $n \ge 0$ gilt. Für n = 0 ist dies wegen

$$\xi_0' = \lfloor \sqrt{d} \rfloor - \sqrt{d},$$

klar, und induktiv folgt es wegen $a_0 = \lfloor \lfloor \sqrt{d} \rfloor + \sqrt{d} \rfloor = 2 \lfloor \sqrt{d} \rfloor \geq 2$ und $a_n \geq 1$ für $n \geq 1$ per

$$\frac{1}{\xi'_{n+1}} = \xi'_n - a_n < 0 - 1 = -1 \qquad \Longrightarrow \qquad -1 < \xi'_{n+1} < 0.$$

Wir folgern nun für alle $n \geq 0$:

$$a_n = \xi_n' - \frac{1}{\xi_{n+1}'} \qquad \Longrightarrow \qquad -1 - \frac{1}{\xi_{n+1}'} < a_n < -\frac{1}{\xi_{n+1}'} \qquad \Longrightarrow \qquad a_n = \left\lfloor -\frac{1}{\xi_{n+1}'} \right\rfloor.$$

Existieren also Indizes j < k mit $\xi_j = \xi_k$, so folgt wegen $\xi'_j = \xi'_k$ insbesondere

$$a_{j-1} = \left[-\frac{1}{\xi'_j} \right] = \left[-\frac{1}{\xi'_k} \right] = a_{k-1} \implies \xi_{j-1} = a_{j-1} + \frac{1}{\xi_j} = a_{k-1} + \frac{1}{\xi_k} = \xi_{k-1},$$

und induktiv ergibt sich $a_n = a_{n+(k-j)}$ für alle $n \ge 0$. Da in der Tat $\xi_N = \xi_{N+l+1}$ ist, ist also

$$\lfloor \sqrt{d} \rfloor + \sqrt{d} = [\overline{2\lfloor \sqrt{d} \rfloor, a_1, \dots, a_l}] = [2\lfloor \sqrt{d} \rfloor, \overline{a_1, \dots, a_l, 2\lfloor \sqrt{d} \rfloor}]$$

und offenbar folgt

$$\sqrt{d} = (\lfloor \sqrt{d} \rfloor + \sqrt{d}) - \lfloor \sqrt{d} \rfloor = [\lfloor \sqrt{d} \rfloor, \overline{a_1, \dots, a_l, 2\lfloor \sqrt{d} \rfloor}].$$

Zunächst merken wir an, dass $\xi := \lfloor \sqrt{d} \rfloor + \sqrt{d}$ nach Satz 4 die quadratische Gleichung

$$\xi = [a_0, \dots, a_l, \xi] = \frac{\xi h_l + h_{l-1}}{\xi k_l + k_{l-1}} \iff k_l \xi^2 + (k_{l-1} - h_l)\xi - h_{l-1} = 0$$

erfüllt. Wir schreiben nun die *n*-ten Konvergenten von $\theta := [\overline{a_l, \dots, a_0}]$ als H_n/K_n , wobei diese Brüche vollständig gekürzt mit $K_n \in \mathbb{N}$ seien. Nach Lemma 7 gilt

$$\frac{H_l}{K_l} = [a_l, \dots, a_0] = \frac{h_l}{h_{l-1}}, \qquad \frac{H_{l-1}}{K_{l-1}} = [a_l, \dots, a_1] = \frac{k_l}{k_{l-1}},$$

und da die Brüche H_l/K_l , h_l/h_{l-1} , H_{l-1}/K_{l-1} und k_l/k_{l-1} nach Korollar 9 vollständig gekürzt sind und zudem positive Nenner haben, folgt die Gleichheit

$$H_l = h_l, K_l = h_{l-1}, H_{l-1} = k_l, K_{l-1} = k_{l-1}.$$

Nach Satz 4 gilt nun

$$\theta = [a_{l}, \dots, a_{0}, \theta] = \frac{\theta H_{l} + H_{l-1}}{\theta K_{l} + K_{l-1}} = \frac{\theta h_{l} + k_{l}}{\theta h_{l-1} + k_{l-1}}$$

$$\implies h_{l-1}\theta^{2} + (k_{l-1} - h_{l})\theta - k_{l} = 0$$

$$(-1), /\theta^{2} \qquad k_{l} \left(\frac{-1}{\theta}\right)^{2} + (k_{l-1} - h_{l})\left(\frac{-1}{\theta}\right) - h_{l-1} = 0,$$

also erfüllt $-1/\theta$ dieselbe quadratische Gleichung wie ξ . Da aber $-1/\theta < 0 < \xi = \lfloor \sqrt{d} \rfloor + \sqrt{d}$ ist und die zwei Lösungen einer quadratischen Gleichung stets die Form $(A \pm \sqrt{B})/C$ haben, folgt

$$\frac{-1}{\theta} = \lfloor \sqrt{d} \rfloor - \sqrt{d} \qquad \Longrightarrow \qquad [\overline{a_l, \dots, a_1, a_0}] = \theta = \frac{1}{\sqrt{d} - \lfloor \sqrt{d} \rfloor}.$$

Andererseits ist

$$\sqrt{d} - \lfloor \sqrt{d} \rfloor = (\lfloor \sqrt{d} \rfloor + \sqrt{d}) - 2\lfloor \sqrt{d} \rfloor = \xi - a_0 = [0, \overline{a_1, \dots, a_l, a_0}] = \frac{1}{[\overline{a_1, \dots, a_l, a_0}]}$$

und somit

$$\frac{1}{\sqrt{d}-|\sqrt{d}|}=[\overline{a_1,\ldots,a_l,a_0}].$$

Da die Kettenbruchentwicklung wie im Beweis von Satz 17 eindeutig bestimmt ist, folgt

$$(a_1, \ldots, a_l) = (a_l, \ldots, a_1).$$

Satz 19 ([2, Satz 7.22]). *Ist* $d \in \mathbb{N}$ *keine Quadratzahl*,

$$\sqrt{d} = [\lfloor \sqrt{d} \rfloor, \overline{a_1, \dots, a_l, 2\lfloor \sqrt{d} \rfloor}]$$

und l minimal gewählt, so gilt mit q_n wie in Satz 17

$$h_n^2 - dk_n^2 = (-1)^{n-1}q_{n+1}$$
 für $n \ge -1$,

wobei $q_{n+1} = 1$ genau dann gilt, wenn $(l+1) \mid (n+1)$ gilt und es gilt nie $q_{n+1} = -1$.

Beweis. Mit ξ_n , m_n und q_n wie in Satz 17 gilt

$$\begin{split} \sqrt{d} &= \frac{\xi_{n+1}h_n + h_{n+1}}{\xi_{n+1}k_n + k_{n+1}} \\ &= \frac{(m_{n+1} + \sqrt{d})h_n + q_{n+1}h_{n+1}}{(m_{n+1} + \sqrt{d})k_n + q_{n+1}k_{n+1}} \\ &= \frac{(m_{n+1}h_n + q_{n+1}h_{n+1}) + \sqrt{d}h_n}{(m_{n+1}k_n + q_{n+1}k_{n+1}) + \sqrt{d}k_n} \\ &= \frac{((m_{n+1}h_n + q_{n+1}h_{n+1}) + \sqrt{d}h_n)((m_{n+1}k_n + q_{n+1}k_{n+1}) - \sqrt{d}k_n)}{((m_{n+1}k_n + q_{n+1}h_{n+1}) + \sqrt{d}k_n)((m_{n+1}k_n + q_{n+1}k_{n+1}) - \sqrt{d}k_n)} \\ &= \frac{((m_{n+1}h_n + q_{n+1}h_{n+1})(m_{n+1}k_n + q_{n+1}k_{n+1}) - dh_nk_n) + q_{n+1}(h_{n+1}k_n - h_nk_{n+1})\sqrt{d}}{(m_{n+1}k_n + q_{n+1}k_{n+1})^2 - dk_n^2} \end{split}$$

Da dies eine Gleichung der Form $A+B\sqrt{d}=A'+B'\sqrt{d}$ mit $A,B,A',B'\in\mathbb{Q}$ ist, müssen insbesondere A=A' und B=B' sein. Der Koeffizientenvergleich liefert also zwei Gleichungen

$$(m_{n+1}h_n + q_{n+1}h_{n+1})(m_{n+1}k_n + q_{n+1}k_{n+1}) - dh_nk_n = 0, (I)$$

$$(m_{n+1}k_n + q_{n+1}k_{n+1})^2 - dk_n^2 = q_{n+1}(h_{n+1}k_n - h_nk_{n+1}).$$
(II)

Für n = -1 können wir die Behauptung einfach überprüfen, mit c wie in 17 gilt:

$$h_{-1}^2 - dk_{-1}^2 = 1^2 - d \cdot 0^2 = 1 = 1 \cdot 1 = 1 \cdot c|c| = (-1)^{-2}q_0.$$

Für $n \ge 0$ ist $h_n, k_n \ne 0$, und Multiplikation von (I) mit k_n/h_n liefert

$$0 = \left(m_{n+1}k_n + q_{n+1}\frac{h_{n+1}k_n}{h_n}\right)\left(m_{n+1}k_n + q_{n+1}k_{n+1}\right) - dk_n^2.$$

Für alle A, B, C gilt die Identität

$$(A+C)(A+B) = (A+B)^2 - (A+B)^2 + (A+C)(A+B) = (A+B)^2 + (A+B)(C-B)$$

und mithilfe dieser können wir (I) umschreiben als

$$0 = (m_{n+1}k_n + q_{n+1}k_{n+1})^2 - dk_n^2 + (m_{n+1}k_n + q_{n+1}k_{n+1})q_{n+1}\left(\frac{h_{n+1}k_n}{h_n} - k_{n+1}\right)$$
$$= (m_{n+1}k_n + q_{n+1}k_{n+1})^2 - dk_n^2 + \frac{m_{n+1}k_n + q_{n+1}k_{n+1}}{h_n}q_{n+1}(h_{n+1}k_n - h_nk_{n+1}).$$

Einsetzen von (II) und Kürzen von $q_{n+1}(h_{n+1}k_n - h_nk_{n+1})$ liefert

$$0 = 1 + \frac{m_{n+1}k_n + q_{n+1}k_{n+1}}{h_n} \Longrightarrow -h_n = m_{n+1}k_n + q_{n+1}k_{n+1}. \tag{*}$$

Setzen wir dieses Ergebnis nun in (II) ein und wenden Satz 8 an, erhalten wir

$$h_n^2 - dk_n^2 = (-h_n)^2 - dk_n^2$$

$$\stackrel{(*)}{=} (m_{n+1}k_n + q_{n+1}k_{n+1})^2 - dk_n^2$$

$$\stackrel{(\text{II})}{=} q_{n+1}(h_{n+1}k_n - h_nk_{n+1})$$

$$\stackrel{\$}{=} (-1)^n q_{n+1}$$

und es folgt die Behauptung.

Der Fall $q_{n+1} = -1$ kann niemals eintreten, denn dann wäre n+1 > 0 und somit

$$1 < \xi_{n+1} = -m_{n+1} - \sqrt{d},$$

andererseits wäre wie in Satz 18 $-1 < \xi'_{n+1} = -m_{n+1} + \sqrt{d} < 0$ und es folgt der Widerspruch

$$0 < \sqrt{d} < m_{n+1} < -1 - \sqrt{d} < 0.$$

Wenn $(l+1) \mid (n+1)$ gilt, muss wegen der Periodizität $q_{n+1} = q_0 = 1$ gelten. Umgekehrt folgt aus $q_{n+1} = 1$, dass $\xi_{n+1} = m_{n+1} + \sqrt{d}$ ist, und wegen $-1 < \xi'_{n+1} = m_{n+1} - \sqrt{d} < 0$ wäre $m_{n+1} = \lfloor \sqrt{d} \rfloor$ und somit $\xi_{n+1} = \lfloor \sqrt{d} \rfloor + \sqrt{d} = \xi_0$, und die Minimalität von l bedingt $(l+1) \mid (n+1)$.

Korollar 20. Es gilt $h_n^2 - dk_n^2 = \pm 1$ genau dann, wenn ein $r \in \mathbb{N}_0$ mit n = r(l+1) - 1 existiert. Insbesondere kann nur dann $h_n^2 - dk_n^2 = -1$ gelten, wenn $2 \mid l$ ist.

Beweis. Es gilt $h_n^2 - dk_n^2 = \pm 1$ genau dann, wenn $q_{n+1} = 1$ ist, also für $(l+1) \mid (n+1)$. Ist $2 \nmid l$, gilt

$$h_n^2 - dk_n^2 = (-1)^{n-1} = (-1)^{r(l+1)-2} = 1^{r((l+1)/2)-1} = 1.$$

Korollar 21. Für $\sqrt{d} = [\lfloor \sqrt{d} \rfloor, \overline{a_1, \dots, a_l, 2\lfloor \sqrt{d} \rfloor}]$ (l minimal) gilt $\lfloor \sqrt{d} \rfloor \geq a_k$ für $1 \leq k \leq l$.

Beweis. Mit N, n_0, a_k, m_k, q_k wie im Beweis von 17 gilt $N = 1, n_0 = 0$ und wie in (2.1) ist

$$m_n^2 < d \implies m_n < \sqrt{d} \stackrel{m_n \in \mathbb{Z}}{\Longrightarrow} m_n \le \lfloor \sqrt{d} \rfloor$$
 (2.2)

für $n \ge 1$. Andererseits gilt

$$m_n + m_{n+1} = m_n + (a_n q_n - m_n) = a_n q_n$$

und in (2.1) haben wir dargelegt, dass gilt:

$$1 \le q_n \le d,\tag{2.3}$$

womit mit (2.2) folgt:

$$a_n q_n \le 2\lfloor \sqrt{d} \rfloor \implies a_n \le \frac{2\lfloor \sqrt{d} \rfloor}{q_n}.$$

Zuletzt zeigen wir, dass $q_n \geq 2$ für $1 \leq n \leq l$ gilt, denn damit folgt die gesuchte Abschätzung

$$a_n \leq \lfloor \sqrt{d} \rfloor$$
.

Es besagt Satz 19, dass $q_n=1$ nur für $(l+1)\mid n$ eintritt, was mit (2.3) die Aussage beweist. $\ \square$

2.1. Der Satz von Euler-Muir und äquipalindromische Zahlen

Der folgende Abschnitt wurde von der Website [4] inspiriert, welche den Satz von Euler-Muir ohne Beweis erklärt. Für den Beweis dieses Satzes benötigen wir folgendes Lemma:

Lemma 22. Für a_1, \ldots, a_l mit $l \in \mathbb{N}_0$, $a_k \in \mathbb{N}$, $a_k = a_{l-k+1} \ \forall \ k \ seien \ A, B, C, D \ gegeben \ durch$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_2 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_l & 1 \\ 1 & 0 \end{pmatrix}.$$

Dann ist B = C und $B^2 = AD - (-1)^l$, ferner gilt $A \ge B$ (A > B für $l \ne 1)$ und $A \ge D$.

Beweis. Wir zeigen die Aussage per Induktion nach $\lfloor l/2 \rfloor$. Im Fall l=0 (leeres Produkt) ist

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad B^2 = 0^2 = 0 = 1 - 1 = AD - (-1)^0;$$

im Fall l = 1 ist

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix}, \qquad B^2 = 1^2 = 1 = a_1 \cdot 0 - (-1) = AD - (-1)^1,$$

in beiden Fällen gelten $B=C,\,A\geq B~(A>B$ für l=0) und $A\geq D.$ Für

$$\begin{pmatrix} \bar{A} & \bar{B} \\ \bar{C} & \bar{D} \end{pmatrix} = \begin{pmatrix} a_2 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_{l-1} & 1 \\ 1 & 0 \end{pmatrix}$$

gelte nun als Induktionsvoraussetzung $\bar{B}^2 = \bar{A}\bar{D} - (-1)^{l-2}$ und $\bar{B} = \bar{C}$. Es folgt

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \bar{A} & \bar{B} \\ \bar{B} & \bar{D} \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a_1^2 \bar{A} + 2a_1 \bar{B} + \bar{D} & a_1 \bar{A} + \bar{B} \\ a_1 \bar{A} + \bar{B} & \bar{A} \end{pmatrix}, \qquad B = C,$$

$$B^{2} = (a_{1}\bar{A} + \bar{B})^{2} = a_{1}^{2}\bar{A}^{2} + 2a_{1}\bar{A}\bar{B} + \bar{B}^{2} = (a_{1}^{2}\bar{A} + 2a_{1}\bar{B} + \bar{D})\bar{A} - (-1)^{l-2} = AD - (-1)^{l}.$$

Ferner ergeben sich die Abschätzungen

$$B = a_1 \bar{A} + \bar{B} < a_1^2 \bar{A} + 2a_1 \bar{B} + \bar{D} = A, \qquad D = \bar{A} \le a_1^2 \bar{A} < a_1^2 \bar{A} + 2a_1 \bar{B} + \bar{D} = A,$$

wobei diese Ungleichungen für $l \geq 2$ gelten, da $\bar{A} > 0$ sowie entweder $\bar{B} > 0$ oder $\bar{D} > 0$ ist. \square

Satz 23 (Euler-Muir). Für a_1, \ldots, a_l mit $l \in \mathbb{N}_0$, $a_k = a_{l-k+1} \ \forall \ k \ seien \ A, B, D \ gegeben \ durch$

$$\begin{pmatrix} A & B \\ B & D \end{pmatrix} = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_2 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_l & 1 \\ 1 & 0 \end{pmatrix}$$

und

$$m = (((-1)^{l+1}(A+1)BD + \max a_k) \mod 2A') - \max a_k, \qquad A' = \begin{cases} A & \textit{falls } 2 \nmid A, \\ A/2 & \textit{falls } 2 \mid A. \end{cases}$$

Im Fall l = 0 (leeres Produkt) ist das Ergebnis obiger Matrixmultiplikation die Einheitsmatrix. Dann sind die Zahlen d aus \mathbb{N}^* , der Menge aller Nicht-Quadratzahlen, mit

$$\sqrt{d} = [\lfloor \sqrt{d} \rfloor, \overline{a_1, \dots, a_l, 2\lfloor \sqrt{d} \rfloor}]$$

wobei l minimal sei, also $2|\sqrt{d}| > \max a_k$ gelte¹ (vgl. Korollar 21), gerade

$$\left\{ (A')^2 n^2 + \left(\frac{2A'}{A}B - mA'\right)n + \frac{D - mB}{A} + \left(\frac{m}{2}\right)^2 : n \in \mathbb{N} \right\},\,$$

wobei es genau dann keine solchen Zahlen gibt, wenn $2 \nmid BD$ gilt. Das Polynom aus der Mengenklammer nennen wir das Euler-Muir-Polynom zum Palindrom (a_1, \ldots, a_l) .

¹es gilt max $\emptyset = -\infty$, also ist die Aussage für l = 0 wahr; für die weitere Berechnung verwende ich der Einfachheit halber 0 statt $-\infty$, also $a > \max\{0\} \cup \{a_k : 1 \le k \le l\}$, da a > 0 und $a_k \ge 1$ gilt.

Beweis. Die Kettenbruchentwicklung von \sqrt{d} mit dem Palindrom (a_1, \ldots, a_l) hat die Form

$$\sqrt{d} = \left[\lfloor \sqrt{d} \rfloor, \overline{a_1, \dots, a_l, 2 \lfloor \sqrt{d} \rfloor} \right]$$

$$\iff \lfloor \sqrt{d} \rfloor + \sqrt{d} = \left[2 \lfloor \sqrt{d} \rfloor, a_1, \dots, a_l \right].$$

Es sei $a \in \mathbb{N}$ und $x = [\overline{a, a_1, \dots, a_l}]$ mit $a > a_k$ für alle k. Dann ist

$$x = [a, a_1, \dots, a_l, x] = a + \frac{1}{[a_1, \dots, a_l, x]}$$

Wie wir aus Lemma 6 wissen, können wir den Kettenbruch im Nenner per Matrix berechnen:

$$\left(\prod_{i=1}^{l} \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix}\right) \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} A & B \\ B & D \end{pmatrix} \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} Ax + B & A \\ Bx + D & B \end{pmatrix},$$

also ist $[a_1, \ldots, a_l, x] = (Ax + B)/(Bx + D)$ und es folgt

$$x = a + \frac{Bx + D}{Ax + B}$$

$$\Leftrightarrow \qquad (Ax + B)x = (Ax + B)a + (Bx + D)$$

$$\Leftrightarrow \qquad Ax^2 + Bx = Aax + Ba + Bx + D$$

$$\Leftrightarrow \qquad Ax^2 - Aax - (Ba + D) = 0$$

$$x = \frac{Aa + \sqrt{(Aa)^2 + 4A(Ba + D)}}{2A} = \frac{a}{2} + \sqrt{\frac{A^2a^2 + 4A(Ba + D)}{4A^2}}.$$

Nun ist $x=y+\sqrt{z}$ für $y,z\in\mathbb{N}$ offenbar genau dann gegeben, wenn sowohl

$$y = \frac{a}{2} \in \mathbb{N}$$
 \iff $a \in 2\mathbb{N}$ \iff $a \equiv 0 \pmod{2}$ \land $a > 0$,

als auch

$$z = \frac{A^2a^2 + 4A(Ba + D)}{4A^2} = \left(\frac{a}{2}\right)^2 + \frac{Ba + D}{A} \in \mathbb{N} \qquad \stackrel{a \in 2\mathbb{N}}{\Longleftrightarrow} \qquad A \mid (Ba + D)$$

erfüllt sind. Da per Lemma 22 $B^2 \equiv (-1)^{l-1} \pmod{A}$ ist, entspricht einerseits letztere Forderung der Kongruenz

$$Ba + D \equiv 0 \pmod{A} \xrightarrow{\cdot (-1)^{l-1}B, -(-1)^{l-1}BD} \quad a \equiv (-1)^{l}BD \pmod{A},$$

andererseits folgt $B^2 \equiv AD + 1 \pmod{2}$, im Fall $2 \nmid BD \iff B \equiv D \equiv 1 \pmod{2}$ wäre also

$$1 \equiv A + 1 \pmod{2} \implies 2 \mid A$$

aber wegen $2 \mid a$ gälte $2 \nmid (Ba + D)$ und folglich auch $A \nmid (Ba + D)$, also muss $2 \mid BD$ gelten. Im Fall $2 \nmid A$ ist die simultane Kongruenz per chinesischem Restsatz² stets lösbar mit Lösung

$$a \equiv (-1)^l (A+1)BD \pmod{2A}$$
 \iff $a \equiv (-1)^l (A+1)BD \pmod{2A'}$.

Im Fall $2 \mid A$ impliziert wegen $2 \mid BD$ die zweite Kongruenz die erste, also sind die Lösungen

$$a \equiv (-1)^l BD \pmod{A} \iff a \equiv (-1)^l (A+1)BD \pmod{2A'}.$$

siehe [1]

Ferner muss zwangsläufig $y = a/2 = \lfloor \sqrt{z} \rfloor$ gelten, denn $(a/2)^2 \le z$ ist trivial und es gilt

$$z = \left(\frac{a}{2}\right)^2 + \frac{Ba+D}{A} < \left(\frac{a}{2}+1\right)^2 = \left(\frac{a}{2}\right)^2 + a+1$$

$$\iff (B-A)a < A-D \tag{*}$$

und hier können per Lemma 22 nun zwei Fälle eintreten – einerseits kann A = B sein, dies passiert aber nur für l = 1 und $a_1 = 1$, dann ist A - D = 1 - 0 = 1 und die obige Ungleichung reduziert sich zu 0 < 1 und ist wahr, oder aber es gilt A > B und (*) ist äquivalent zu

$$a > \underbrace{\frac{A-D}{B-A}}_{<0 \text{ wegen } A>D}$$

womit die Ungleichung wegen $a \in \mathbb{N}$ wahr ist, also ist in der Tat $|\sqrt{z}| = a/2 = y$.

Wir möchten nun die Lösungen möglichst einfach so parametrisieren, dass n auf 2(n-1)A'+m' abgebildet wird, wobei m' die kleinste Lösung $> \max a_k$ der obigen Kongruenz sei. Offenbar ist

$$2(n-1)A' + m' = 2nA' - 2A' + m' = 2nA' - (2A' - m').$$

Es gilt

$$\max a_k < m' \le 2A' + \max a_k \qquad \Longleftrightarrow \qquad 0 \le 2A' - m' + \max a_k < 2A',$$

also ist

$$2A' - m' + \max a_k = ((-1)^{l+1}(A+1)BD + \max a_k) \mod 2A';$$

es ergibt sich für $m := (((-1)^{l+1}(A+1)BD + \max a_k) \mod 2A') - \max a_k$ die Parametrisierung

$$a = 2nA' - (2A' - m') = 2nA' - m$$

und die möglichen Werte für z ergeben sich zu

$$\begin{split} f(n) &= \left(\frac{a}{2}\right)^2 + \frac{Ba + D}{A} = \left(nA' - \frac{m}{2}\right)^2 + \frac{B(2nA' - m) + D}{A} \\ &= (A')^2 n^2 - mA'n + \left(\frac{m}{2}\right)^2 + \frac{2A'}{A}Bn + \frac{D - mB}{A} \\ &= (A')^2 n^2 + \left(\frac{2A'}{A}B - mA'\right)n + \frac{D - mB}{A} + \left(\frac{m}{2}\right)^2. \end{split}$$

Beispiel 23.1. Für $(a_1, \ldots, a_l) = (1, 1, 1)$ ist (A, B, D) = (3, 2, 1) und somit A' = 3. Die kleinste Lösung > 1 von

$$a \equiv (-1)^l (A+1)BD \pmod{2A'}$$

ist m'=4, und in der Tat liefert die Berechnungsvorschrift für m:

$$m = (((-1)^{l+1}(A+1)BD + \max a_k) \mod 2A') - \max a_k = 3 - 1 = \boxed{2} = 6 - 4 = 2A' - m'.$$

Somit erhalten wir das Euler-Muir-Polynom

$$f(n) = 3^2n^2 + \left(\frac{2\cdot 3}{3}\cdot 2 - 2\cdot 3\right)n + \frac{1-2\cdot 2}{3} + \left(\frac{2}{2}\right)^2 = 9n^2 - 2n;$$

in der Tat gilt f(1) = 7 mit $\sqrt{7} = [2, \overline{1, 1, 1, 4}]$; f(2) = 32 mit $\sqrt{32} = [5, \overline{1, 1, 1, 10}]$; f(3) = 75 mit $\sqrt{75} = [8, \overline{1, 1, 1, 16}]$ und so weiter. Die Zahlen f(n) nennen wir äquipalindromisch, da die Kettenbruchentwicklungen derer Quadratwurzeln das gleiche Palindrom (a_1, \ldots, a_l) enthalten.

Bemerkung 23.2. Eine Tabelle der Polynome für $d \in \mathbb{N}^*$, $d \leq 400$ findet sich im Anhang.

Code 23.3 (Python). Der Code berechnet für ein gegebenes Palindrom das Euler-Muir-Polynom.

```
def euler_muir(P): # P ist das gegebene Palindrom, bspw. [1, 1, 1] -> (9, -2, 0)
   A, B, C, D = 1, 0, 0, 1
   p = [a for a in P] # Kopie anlegen, damit P nicht verändert wird
   while len(p) > 0:
        a = p.pop()
        A, B, C, D = a * A + C, a * B + D, A, B
   if B * D % 2 == 1: # unlösbar im Fall B * D = 1 (mod 2)
        return
   A_ = A if A % 2 == 1 else A // 2
   M = max([0] + P)
   m = ((-1) ** (len(P) + 1) * (A + 1) * B * D + M) % (2 * A_) - M
   X, Y, Z = A_ ** 2, (2 * A_ // A) * B - m * A_, (D - B * m) // A + (m // 2) ** 2
   return X, Y, Z
```

Code 23.4 (Python). Der Code berechnet für d das Palindrom (a_1, \ldots, a_l) , vgl. Beweis von 17.

```
def continued_fraction_sqrt_palindrome(d):
    import math
    a_n, m_n, q_n, A = math.floor(math.sqrt(d)), 0, 1, []
    while a_n != 2 * math.floor(math.sqrt(d)):
        A += [a_n]
        m_n = a_n * q_n - m_n
        q_n = (d - m_n ** 2) // q_n
        xi_n = (m_n + math.sqrt(d)) / q_n
        a_n = math.floor(xi_n)
    return A[1:]
```

Lemma 24. Ist l gerade und (a_1, \ldots, a_l) ein Palindrom, also $a_k = a_{l-k+1} \ \forall \ k$ und

$$\begin{pmatrix} A & B \\ B & D \end{pmatrix} = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_2 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_l & 1 \\ 1 & 0 \end{pmatrix},$$

so ist $A + BD \equiv 1 \pmod{2}$. Insbesondere ist $2 \nmid A$, falls $\sqrt{d} = \lceil |\sqrt{d}|, \overline{a_1, \dots, a_l, 2|\sqrt{d}|} \rceil$.

Beweis. Wir beweisen die Aussage per Induktion nach l/2. Für l=0 (leeres Produkt) ist das Matrixprodukt die Einheitsmatrix, also A=D=1 und B=0 und es gilt

$$A+BD=1+0\cdot 1\equiv 0\pmod 2.$$

Für

$$\begin{pmatrix} \bar{A} & \bar{B} \\ \bar{B} & \bar{D} \end{pmatrix} = \begin{pmatrix} a_2 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_{l-1} & 1 \\ 1 & 0 \end{pmatrix}$$

gelte nun als Induktionsvoraussetzung $\bar{A} + \bar{B}\bar{D} \equiv 1 \pmod{2}$. Es gilt

$$\begin{pmatrix} A & B \\ B & D \end{pmatrix} = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \bar{A} & \bar{B} \\ \bar{B} & \bar{D} \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a_1^2 \bar{A} + 2a_1 \bar{B} + \bar{D} & a_1 \bar{A} + \bar{B} \\ a_1 \bar{A} + \bar{B} & \bar{A} \end{pmatrix},$$

zudem gilt $B \equiv AD + 1 \pmod{2}$ wegen Lemma 22, also ist

$$A + BD \equiv A + (AD + 1)D \equiv A(1 + D) + D \equiv (a_1\bar{A} + \bar{D})(1 + \bar{A}) + \bar{A} \pmod{2}.$$

Ist $\bar{A} \equiv 0 \pmod{2}$, muss per Induktionsvoraussetzung $\bar{D} \equiv 1 \pmod{2}$ gelten und es folgt

$$A + BD \equiv (0+1)(1+0) + 0 \equiv 1 \pmod{2}$$

ist $\bar{A} \equiv 1 \pmod{2}$, folgt

$$A + BD \equiv (a_1 + \bar{D})(1+1) + 1 \equiv 1 \pmod{2}.$$

Nach Satz 23 gilt für $\sqrt{d} = [\lfloor \sqrt{d} \rfloor, a_1, \dots, a_l, 2 \lfloor \sqrt{d} \rfloor]$ schließlich $2 \mid BD$ und somit $2 \nmid A$.

Definition 25. Für das kleinste d, welches ein gegebenes Palindrom in der Kettenbruchentwicklung von \sqrt{d} enthält, notieren wir das zugehörige Euler-Muir-Polynom als $f_d(n)$; es gilt

$$f_d(1) = d.$$

Lemma 26. Für a ungerade gilt $a^3 \equiv a \pmod{2a}$.

Beweis. Es gilt

$$a^3 \equiv a \pmod{2a}$$
 \iff $0 \equiv a^3 - a \equiv a(a^2 - 1) \pmod{2a}$

und dies ist offenbar wahr, da a^2-1 gerade und somit in $2\mathbb{Z}$ ist, womit $a(a^2-1)\in 2a\mathbb{Z}$ folgt. \square

Satz 27. Für $a \ge 1$ ungerade ist das zum Palindrom (a) gehörende Euler-Muir-Polynom gerade

$$f_{a^2+2}(n) = a^2n^2 + 2n$$

und für $a \ge 3$ ungerade ist das zum Palindrom (1, a-2, 1) gehörende Euler-Muir-Polynom

$$f_{a^2-2}(n) = a^2n^2 - 2n.$$

Für $a \ge 2$ gerade ist das zum Palindrom (a) gehörende Euler-Muir-Polynom hingegen

$$f_{a^2+2}(n) = \left(\frac{a}{2}\right)^2 n^2 + \left(\frac{a^2}{2} + 1\right) n + \left(\frac{a}{2}\right)^2 + 1$$

und für $a \ge 4$ gerade ist das zum Palindrom (1, a - 2, 1) gehörende Euler-Muir-Polynom

$$f_{a^2-2}(n) = \left(\frac{a}{2}\right)^2 n^2 + \left(\frac{a^2}{2} - 1\right) n + \left(\frac{a}{2}\right)^2 - 1.$$

Beweis. Wir betrachten zunächst den ungeraden Fall. Für $(a_1, \ldots, a_l) = (a)$ ist

$$(A, B, D) = (a, 1, 0), A' = A = a$$

und die Formel für m liefert uns den Wert

$$m = (((-1)^{1+1}(a+1) \cdot 1 \cdot 0 + a) \mod 2a) - a = (a \mod 2a) - a = a - a = 0,$$

womit wir folgendes Euler-Muir-Polynom erhalten:

$$f(n) = a^{2}n^{2} + \left(\frac{2a}{a} \cdot 1 - 0 \cdot a\right)n + \frac{0 - 0 \cdot 1}{a} + \left(\frac{0}{2}\right)^{2} = a^{2}n^{2} + 2n$$

und es gilt $f(1) = a^2 + 2$. Für $(a_1, \ldots, a_l) = (1, a - 2, 1)$ errechnen wir

$$\begin{pmatrix} A & B \\ B & D \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a-2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a & a-1 \\ a-1 & a-2 \end{pmatrix}, \quad A' = A = a$$

und die Formel für m liefert uns den Wert

$$\begin{split} m &= (((-1)^{3+1}(a+1)\cdot(a-1)\cdot(a-2) + (a-2)) \mod 2a) - (a-2) \\ &= (((a^2-1)(a-2) + (a-2)) \mod 2a) - (a-2) \\ &= ((a^2(a-2) \mod 2a) - (a-2) \\ &= ((a^3-2a^2) \mod 2a) - (a-2) \\ &\stackrel{\textbf{26}}{=} a - (a-2) \\ &= 2, \end{split}$$

womit wir folgendes Euler-Muir-Polynom erhalten:

$$f(n) = a^2 n^2 + \left(\frac{2a}{a} \cdot (a-1) - 2 \cdot a\right) n + \underbrace{\frac{(a-2) - 2 \cdot (a-1)}{a}}_{=-a/a=-1} + \left(\frac{2}{2}\right)^2 = a^2 n^2 - 2n$$
 und es gilt $f(1) = a^2 - 2$.

Nun betrachten wir den geraden Fall. Für $(a_1, \ldots, a_l) = (a)$ ist

$$(A, B, D) = (a, 1, 0),$$
 $A' = \frac{A}{2} = \frac{a}{2}$

und die Formel für m liefert uns den Wert

$$m = (((-1)^{1+1}(a+1) \cdot 1 \cdot 0 + a) \mod a) - a = (a \mod a) - a = 0 - a = -a,$$

womit wir folgendes Euler-Muir-Polynom erhalten:

$$f(n) = \left(\frac{a}{2}\right)^2 n^2 + \left(\frac{2(a/2)}{a} \cdot 1 - (-a) \cdot \frac{a}{2}\right) n + \frac{0 - (-a) \cdot 1}{a} + \left(\frac{-a}{2}\right)^2$$
$$= \left(\frac{a}{2}\right)^2 n^2 + \left(\frac{a^2}{2} + 1\right) n + \left(\frac{a}{2}\right)^2 + 1$$

und es gilt

$$f(1) = \left(\frac{a}{2}\right)^2 + \left(\frac{a^2}{2} + 1\right) + \left(\frac{a}{2}\right)^2 + 1 = a^2 + 2.$$

Für $(a_1, \ldots, a_l) = (1, a - 2, 1)$ errechnen wir wie oben

$$\begin{pmatrix} A & B \\ B & D \end{pmatrix} = \begin{pmatrix} a & a-1 \\ a-1 & a-2 \end{pmatrix}, \quad A' = \frac{A}{2} = \frac{a}{2}$$

und die Formel für m liefert uns den Wert

$$m = (((-1)^{3+1}(a+1) \cdot (a-1) \cdot (a-2) + (a-2)) \mod a) - (a-2)$$

$$= (((a^2-1)(a-2) + (a-2)) \mod a) - (a-2)$$

$$= ((a^2(a-2)) \mod a) - (a-2)$$

$$= 0 - (a-2)$$

$$= 2 - a,$$

womit wir folgendes Euler-Muir-Polynom erhalten:

$$f(n) = \left(\frac{a}{2}\right)^2 n^2 + \left(\frac{2(a/2)}{a} \cdot (a-1) - (2-a) \cdot \frac{a}{2}\right) n + \frac{(a-2) - (2-a) \cdot (a-1)}{a} + \left(\frac{2-a}{2}\right)^2$$

$$= \left(\frac{a}{2}\right)^2 n^2 + \left((a-1) - \left(a - \frac{a^2}{2}\right)\right) n + \frac{(a-2)a}{a} + \frac{a^2 - 4a + 4}{4}$$

$$= \left(\frac{a}{2}\right)^2 n^2 + \left(\frac{a^2}{2} - 1\right) n + (a-2) + \left(\frac{a}{2}\right)^2 - a + 1$$

$$= \left(\frac{a}{2}\right)^2 n^2 + \left(\frac{a^2}{2} - 1\right) n + \left(\frac{a}{2}\right)^2 - 1$$

und es gilt

$$f(1) = \left(\frac{a}{2}\right)^2 + \left(\frac{a^2}{2} - 1\right) + \left(\frac{a}{2}\right)^2 - 1 = a^2 - 2.$$

Satz 28. Für $d = a^2 + 1$ mit $a \ge 1$ ist l = 0, für $d = a^2 - 1$ mit $a \ge 2$ ist l = 1.

Beweis. Wir betrachten das zum Palindrom () gehörende Euler-Muir-Polynom. Hier ist

$$A = D = 1,$$
 $B = 0,$ $A' = A = 1$

und die Formel für m liefert uns

$$m = (((-1)^{0+1}(1+1) \cdot 0 \cdot 1 + 0) \mod 2 - 0 = 0 - 0 = 0$$

und wir erhalten das Euler-Muir-Polynom

$$f(n) = 1^{2}n^{2} + \left(\frac{2\cdot 1}{1}\cdot 0 - 0\cdot 1\right)n + \frac{1-0\cdot 0}{1} + \left(\frac{0}{2}\right)^{2} = n^{2} + 1,$$

folglich gilt

$$f(1) = 2,$$
 $f(a) = a^2 + 1,$

also haben die Zahlen $d=a^2+1$ das Palindrom () in der Kettenbruchentwicklung von \sqrt{d} . Das zum Palindrom (1) gehörende Euler-Muir-Polynom ist nach Satz 27 gerade

$$f(n) = n^2 + 2n = (n+1)^2 - 1,$$

folglich gilt

$$f(1) = 3 = 2^2 - 1,$$
 $f(a') = (a' + 1)^2 - 1,$

also haben die Zahlen $d=a^2-1$ das Palindrom (1) in der Kettenbruchentwicklung von \sqrt{d} . \square

3. Die Pellsche Gleichung

Im Folgenden untersuchen wir die Existenz ganzzahliger Lösungen der Gleichung $x^2 - dy^2 = \pm 1$, wobei $d \in \mathbb{N}$ sei. Da $(-n)^2 = n^2$ für alle $n \in \mathbb{Z}$ gilt, nehmen wir im Folgenden $x, y \geq 0$ an.

3.1. Lösbarkeit von $x^2 - dy^2 = \pm 1$

Satz 29. Ist d eine Quadratzahl, so hat $x^2 - dy^2 = \pm 1$ keine Lösungen außer (x, y) = (1, 0), außer im Fall d = 1, der die weitere Lösung (x, y) = (0, 1) zulässt.

Beweis. Ist d eine Quadratzahl, so existiert ein $k \in \mathbb{N}$ mit $k^2 = d$ und es folgt

$$1 = |\pm 1| = |x^2 - k^2 y^2| = |x + ky| \cdot |x - ky|,$$

also muss |x+ky|=|x-ky|=1gelten. Wegen $x,y,k\geq 0$ folgt

$$x \le x + ky = |x + ky| = 1,$$

somit ist $x \in \{0,1\}$. Im Fall x = 0 gilt |ky| = 1, und folglich k = y = 1 – in diesem Fall muss also insbesondere $d = k^2 = 1$ sein und es gilt $x^2 - dy^2 = -1$. Im Fall x = 1 gilt

$$1 = |x + ky| = x + ky = 1 + ky$$
 \Longrightarrow $ky = 0$ \Longrightarrow $y = 0$

und es gilt $x^2 - dy^2 = 1$.

Satz 30. Ist d keine Quadratzahl, so existieren unendlich viele Lösungen von $x^2 - dy^2 = \pm 1$. Ferner: wenn $x^2 - dy^2 = \pm 1$ gilt, dann \exists n mit $(x, y) = (h_n, k_n)$, wo h_n, k_n wie in 14 für $\xi = \sqrt{d}$.

Beweis. Einerseits hat \sqrt{d} für ein nichtquadratisches d die Form

$$[|\sqrt{d}|, \overline{a_1, \ldots, a_l, 2|\sqrt{d}|}]$$

und nach Korollar 20 gilt für n = r(l+1) - 1 mit $r \ge 1$:

$$h_n^2 - dk_n^2 = (-1)^{n-1}$$

und dies liefert wegen $k_n < k_{n+1}$ für $n \ge 1$ un
endlich viele Lösungen. Insbesondere kann nur für l gerade ein n existieren, so dass $h_n^2 - dk_n^2 = -1$ gilt. Nehmen wir andererseits $x^2 - dy^2 = \pm 1$ an und betrachten den positiven Fall zuerst. Es gilt

$$\frac{x}{y} - \sqrt{d} = \frac{x - y\sqrt{d}}{y} = \frac{x^2 - dy^2}{y(x + y\sqrt{d})} = \frac{1}{y(x + y\sqrt{d})} > 0.$$

Ferner gilt die Abschätzung

$$\frac{x}{y} - \sqrt{d} = \frac{1}{y(x + y\sqrt{d})} < \frac{\sqrt{d}}{y(x + y\sqrt{d})} = \frac{\sqrt{d}}{y^2(x/y + \sqrt{d})} = \frac{1}{y^2(x/(y\sqrt{d}) + 1)}.$$

Wegen $x/y - \sqrt{d} > 0 \Leftrightarrow x/y > \sqrt{d} \Leftrightarrow x/(y\sqrt{d}) > 1$ können wir nun folgern, dass

$$\left| \sqrt{d} - \frac{x}{y} \right| = \frac{x}{y} - \sqrt{d} < \frac{1}{y^2(x/(y\sqrt{d}) + 1)} < \frac{1}{y^2(1+1)} = \frac{1}{2y^2}$$

und nach Satz 14 existiert ein $n \in \mathbb{N}$ mit $(x, y) = (h_n, k_n)$.

²für l ungerade ist l+1 gerade und damit n immer ungerade

Im negativen Fall verfahren wir analog. Durch Umformen erhalten wir

$$x^{2} - dy^{2} = -1$$
 $\stackrel{/(-d)}{\iff}$ $y^{2} - \frac{1}{d}x^{2} = \frac{1}{d}$

und es gilt

$$\frac{y}{x} - \frac{1}{\sqrt{d}} = \frac{y - x(1/\sqrt{d})}{x} = \frac{y^2 - (1/d)x^2}{x(y + x(1/\sqrt{d}))} = \frac{1/d}{x(y + x(1/\sqrt{d}))} > 0.$$

Ferner gilt die Abschätzung

$$\frac{y}{x} - \frac{1}{\sqrt{d}} = \frac{1/d}{x(y + x(1/\sqrt{d}))} < \frac{1/\sqrt{d}}{x(y + x(1/\sqrt{d}))} = \frac{1/\sqrt{d}}{x^2(y/x + 1/\sqrt{d})} = \frac{1}{x^2((y/\sqrt{d})/x + 1)}.$$

Wegen $y/x - 1/\sqrt{d} > 0 \Leftrightarrow y/x > 1/\sqrt{d} \Leftrightarrow (y\sqrt{d})/x > 1$ folgt nun, dass

$$\left| \frac{1}{\sqrt{d}} - \frac{y}{x} \right| = \frac{y}{x} - \frac{1}{\sqrt{d}} < \frac{1}{x^2((y\sqrt{d})/x + 1)} < \frac{1}{x^2(1+1)} = \frac{1}{2x^2}.$$

Folglich existiert nach Satz 14 ein $n' \in \mathbb{N}$, so dass y/x die n'-te Konvergente von $1/\sqrt{d}$ ist. Nach Lemma 12 ist dann aber x/y die (n'-1)-te Konvergente von \sqrt{d} , also existiert in der Tat ein n = n' - 1 mit $(x, y) = (h_n, k_n)$...

Beispiel 30.1. Wir betrachten den Fall d=7. Die Rechenvorschrift aus Satz 17 liefert uns

$$\sqrt{7} = [2, \overline{1, 1, 1, 4}].$$

Hier ist l ungerade, also ist nur die positive Pellsche Gleichung lösbar.

Wir berechnen nun die dritte Konvergente von \sqrt{d} :

$$[2,1,1,1] = \left[2,1,1+\frac{1}{1}\right] = \left[2,1,2\right] = \left[2,1+\frac{1}{2}\right] = \left[2,\frac{3}{2}\right] = 2 + \frac{2}{3} = \frac{8}{3}$$

und in der Tat gilt

$$8^2 - 7 \cdot 3^2 = 64 - 63 = 1$$

Lemma 31 ([2, Aufg. 7.8.5]). Ist
$$x^2 - dy^2 = \pm 1$$
 und $X + Y\sqrt{d} = (x + y\sqrt{d})^n$, so ist $X^2 - dY^2 = (\pm 1)^n$.

Beweis.

$$X^{2} - dY^{2} = (X + Y\sqrt{d})(X - Y\sqrt{d}) = (x + y\sqrt{d})^{n}(x - y\sqrt{d})^{n} = (x^{2} - dy^{2})^{n} = (\pm 1)^{n}.$$

Satz 32. Ist d keine Quadratzahl, so existieren für jedes $k \in \mathbb{Z}$ unendlich viele Lösungen von $x^2 - dy^2 = 1 \text{ mit } k \mid y.$

Beweis. $D := dk^2$ ist keine Quadratzahl und es gibt unendlich viele Lösungen (X, Y) von

$$X^2 - DY^2 = 1.$$

Für jede dieser Lösungen ist (X, kY) Lösung von $x^2 - dy^2 = 1$ und offenbar gilt $k \mid kY$.

3.2. Lösbarkeit von $x^2 - dy^2 = -1$

Satz 33 ([2, Aufg. 7.8.3]). Ist $d \equiv 3 \pmod{4}$, hat $x^2 - dy^2 = -1$ keine Lösung.

Beweis. Angenommen, $x^2 - dy^2 = -1$ sei lösbar. Betrachten der Gleichung modulo 4 liefert

$$-1 \equiv x^2 - 3y^2 \equiv x^2 + y^2$$
.

Da aber $\{a^2 \mod 4: a \in \mathbb{Z}\} = \{0,1\}$ ist, kann $(x^2 + y^2) \mod 4$ nur die Werte 0,1,2 annehmen.

Satz 34 ([2, Aufg. 7.8.11]). Ist d durch eine Primzahl p mit $p \equiv 3 \pmod{4}$ teilbar, hat $x^2 - dy^2 = -1$ keine Lösung.

Beweis. Sei p>2 ein Primfaktor von d. Ist $x^2-dy^2=-1$ lösbar, so gilt $x^2\equiv -1\pmod p$. Wir betrachten nun das Produkt

$$P = 1 \cdot 2 \cdot \ldots \cdot (p-2) \cdot (p-1)$$

modulo p. Da p prim ist, ist $\mathbb{Z}/p\mathbb{Z}$ ein Körper, also besitzt jedes $a \in \{2, \ldots, p-2\}$ ein Inverses $a^{-1} \not\equiv a$, und wir können die Faktoren $2 \cdot \ldots \cdot (p-2)$ zusammenfassen als (p-3)/2 Paare von Elementen, deren Produkt jeweils 1 ist. Folglich ist

$$P \equiv 1 \cdot 1 \cdot \ldots \cdot 1 \cdot (p-1) \equiv -1 \pmod{p}$$
.

Wir bemerken zunächst, dass die Gleichung $ab \equiv -1$ für jedes a eine eindeutige Lösung $b \equiv -a^{-1}$ besitzt. Existiert nun ein x mit $x^2 \equiv -1 \pmod p$, so ist einerseits $(-x)^2 \equiv -1 \pmod p$, wobei $x \not\equiv -x$ gilt, da p ungerade ist, andererseits ist $\mathbb{Z}/p\mathbb{Z}$ ein Körper und $x^2 + 1 \equiv 0 \pmod p$ lässt nur zwei Lösungen zu, also besteht $\{1, \ldots, p-1\}$ genau aus den Elementen $\pm x$ sowie (p-3)/2 Paaren von Elementen, deren Produkt -1 ist. Es gilt $x \cdot (-x) \equiv -x^2 \equiv 1 \pmod p$, also ist

$$-1 \equiv P \equiv (-1)^{(p-3)/2} \pmod{p}.$$

Folglich muss (p-3)/2 ungerade sein, also existiert ein $k \in \mathbb{Z}$ mit

$$\frac{p-3}{2} = 2k-1 \implies p = 4k+1 \implies p \equiv 1 \pmod{4}.$$

Somit kann d im Fall der Lösbarkeit von $x^2-dy^2=-1$ keinen Primfaktor $p\equiv 3\pmod 4$ besitzen.

Satz 35 ([2, Aufg. 7.8.12]). Ist $p \equiv 1 \pmod{4}$ eine Primzahl, hat $x^2 - py^2 = -1$ eine Lösung.

Beweis. Da p keine Quadratzahl ist, ist $x^2 - py^2 = 1$ lösbar. Betrachten der Gleichung modulo 4 liefert

$$x^2 - y^2 \equiv 1,$$

und da Quadrate modulo 4 stets $\in \{0,1\}$ sind, muss $x^2 \equiv 1$ und $y^2 \equiv 0$ sein, also ist x ungerade und y gerade, somit gilt $2 \mid ggT(x+1,x-1)$. Andererseits gilt

$$ggT(x+1, x-1) \mid (x+1) - (x-1) = 2,$$

also ist ggT(x+1,x-1)=2. Es sei nun (x_0,y_0) Lösung von $x^2-py^2=1$ mit $y_0>0$ minimal. Es gilt

$$(x_0+1)(x_0-1) = x_0^2 - 1 = py_0^2$$

Da p prim ist, teilt p genau eine der Zahlen $x_0 \pm 1$. Da ggT(x+1,x-1) = 2 ist, sind die Faktoren auf der linken Seite teilerfremde Ganzzahlen:

$$\frac{x_0\pm 1}{2p}\cdot \frac{x_0\mp 1}{2}=\left(\frac{y_0}{2}\right)^2,$$

und da deren Produkt ein Quadrat ist, müssen diese Zahlen Quadrate sein:

$$\frac{x_0 \pm 1}{2p} = u^2 \quad \Leftrightarrow \quad x_0 \pm 1 = 2pu^2, \qquad \frac{x_0 \mp 1}{2} = v^2 \quad \Leftrightarrow \quad x_0 \mp 1 = 2v^2, \qquad u, v > 0.$$

Wäre $x_0 - 1 = 2pu^2$ und $x_0 + 1 = 2v^2$, so gälte

$$1 = \frac{(x_0 + 1) - (x_0 - 1)}{2} = \frac{2v^2 - 2pu^2}{2} = v^2 - pu^2,$$

aber wegen $u^2 \le (y_0/2)^2 < y_0^2$ stände $0 < u < y_0$ im Widerspruch zu Minimalität von y_0 . Somit ist $x_0+1=2pu^2$ und $x_0-1=2v^2$. Es folgt

$$-1 = \frac{(x_0 - 1) - (x_0 + 1)}{2} = \frac{2v^2 - 2pu^2}{2} = v^2 - pu^2,$$

also ist (x, y) = (v, u) Lösung von $x^2 - py^2 = -1$.

Satz 36 ([3, S. 171]). Ist d keine Quadratzahl, a_1, \ldots, a_l mit $a_k = a_{l-k} \ \forall \ k$ und l minimal, so dass

$$\sqrt{d} = [\lfloor \sqrt{d} \rfloor, \overline{a_1, \dots, a_l, 2\lfloor \sqrt{d} \rfloor}],$$

und A, B, D gegeben durch

$$\begin{pmatrix} A & B \\ B & D \end{pmatrix} = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_2 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_l & 1 \\ 1 & 0 \end{pmatrix},$$

so ist $x^2 - dy^2 = -1$ genau dann lösbar, wenn $4 \nmid d$ gilt, d keine Primfaktoren $\equiv 3 \pmod 4$ besitzt und A ungerade ist.

Beweis. Es seien P und Q gegeben als Zähler und Nenner der l-ten Konvergente von \sqrt{d} :

$$\frac{P}{Q} = \lfloor \sqrt{d} \rfloor + \frac{1}{[a_1, \dots, a_l]} = \lfloor \sqrt{d} \rfloor + \frac{B}{A} = \frac{\lfloor \sqrt{d} \rfloor A + B}{A}.$$

Dieser Bruch ist nach Kor. 9 vollständig gekürzt, da A und B teilerfremd sind, also gilt Q = A. Ist $x^2 - dy^2 = -1$ lösbar, so ist nach Satz 19

$$P^2 - dQ^2 = -1.$$

Einerseits besitzt d dann nach Satz 34 keine Primfaktoren $\equiv 3 \pmod{4}$, andererseits müssen $4 \nmid d$ und $A \equiv Q \equiv 1 \pmod{2}$ gelten, da sonst $P^2 \equiv -1 \pmod{4}$ wäre.

Sei nun andererseits A ungerade, $4 \nmid d$, und d besitze keine Primfaktoren $\equiv 3 \pmod 4$. Einerseits gilt nach Satz 19

$$P^2 - dQ^2 \in \{\pm 1\}.$$

Andererseits ist Q = A ungerade und $d \mod 4$ muss 1 oder 2 sein, also ist

$$1 \equiv P^2 - dQ^2 \equiv P^2 - d \pmod{4}$$

nicht erfüllbar, und folglich muss $P^2 - dQ^2 = -1$ sein.

Satz 37. Für Zahlen d > 2 der Form $d = a^2 \pm 2$ hat $x^2 - dy^2 = -1$ keine Lösung.

Beweis. Dies folgt aus Korollar 20 und Satz 27, da $l \in \{1,3\}$ ungerade ist.

Satz 38. Für Zahlen d > 1 der Form $d = a^2 + 1$ hat $x^2 - dy^2 = -1$ stets eine Lösung. Für Zahlen d > 2 der Form $d = a^2 - 1$ hat $x^2 - dy^2 = -1$ keine Lösung.

Beweis. Folgt aus 20 und 28, da l im ersten Fall gerade und im zweiten Fall ungerade ist. \square

3.3. Anwendungen

Satz 39 ([2, Aufg. 7.8.5]).

Eine Zahl ist genau dann sowohl Dreieckszahl als auch als Quadratzahl, also

$$n^2 = \sum_{i=1}^{m} i,$$

wenn $\left(\sqrt{m+1}, \frac{n}{\sqrt{m+1}}\right)$ Lösung von $x^2 - 2y^2 = 1$ oder $\left(\sqrt{m}, \frac{n}{\sqrt{m}}\right)$ Lsg. von $x^2 - 2y^2 = -1$ ist.

Beweis. Nach der Gauß'schen Summenformel ist

$$n^2 = \sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$
 \iff $2n^2 = m(m+1).$

Genau eine der Zahlen m und m+1 ist gerade, also existieren A,B mit $\{m,m+1\}=\{2A,B\}$ und m(m+1)=2AB. Da m und m+1 teilerfremd sind, gilt dies auch für A und B. Da andererseits $n^2=AB$ ist, müssen A und B Quadratzahlen sein. Im Fall m=2A ist also m+1=B eine Quadratzahl und für $k:=\sqrt{m+1}$ gilt

$$2n^2 = m(m+1) = (k^2 - 1)k^2$$
 \iff $2\left(\frac{n}{k}\right)^2 = k^2 - 1$ \iff $k^2 - 2\left(\frac{n}{k}\right)^2 = 1$,

im Fall m+1=2A ist also m=B eine Quadratzahl und für $k:=\sqrt{m}$ gilt

$$2n^2 = m(m+1) = k^2(k^2+1)$$
 \iff $2\left(\frac{n}{k}\right)^2 = k^2+1$ \iff $k^2 - 2\left(\frac{n}{k}\right)^2 = -1.$

Andererseits beschreibt jede Lösung von $x^2-2y^2=\pm 1$ eine Zahl, die gleichzeitig Quadratzahl und Dreieckszahl ist, denn

$$x^{2} - 2y^{2} = \pm 1 \qquad \iff \qquad 2y^{2} = x^{2} \mp 1$$

$$\iff \qquad (xy)^{2} = \frac{x^{2}(x^{2} \mp 1)}{2} = \begin{cases} \sum_{i=1}^{x^{2} - 1} i & \text{falls } x^{2} - 2y^{2} = 1, \\ \sum_{i=1}^{x^{2}} i & \text{falls } x^{2} - 2y^{2} = -1. \end{cases}$$

Satz 40 ([2, Aufg. 7.8.6]). Eine Quadratzahl m^2 ist genau dann Summe zweier aufeinanderfolgender Quadratzahlen $n^2 + (n+1)^2$, wenn (2n+1,m) Lösung von $x^2 - 2y^2 = -1$ ist.

Beweis. Es gilt

$$2m^{2} = 2(n^{2} + (n+1)^{2}) = 4n^{2} + 4n + 2 = (2n+1)^{2} + 1 \qquad \Longleftrightarrow \qquad (2n+1)^{2} - 2m^{2} = -1.$$

Andererseits beschreibt jede Lösung von $x^2 - 2y^2 = -1$ eine Zahl, die Summe zweier aufeinanderfolgender Quadratzahlen ist, denn offenbar muss x^2 und somit auch x ungerade sein, lässt sich also als 2n + 1 ausdrücken.

Literatur

- [1] Brilliant. Chinese Remainder Theorem. URL: https://brilliant.org/wiki/chinese-remainder-theorem/.
- [2] Herbert S. Zuckerman Ivan Niven und Hugh L. Montgomery. An introduction to the theory of numbers. 5th ed. Wiley, 1991. ISBN: 9780471625469.
- [3] Philip Rippon und Harold Taylor. "Even and odd periods in continued fractions of square roots". In: *Fibonacci Quarterly* 42.2 (Mai 2004), S. 170–180. URL: https://www.fq.math.ca/Papers1/42-2/quartrippon02_2004.pdf.
- [4] Leonard M. Smiley. The Square Roots of 1-100. 2000. URL: http://www.math.uaa.alaska.edu/~smiley/cf100palin.html.

A. Euler-Muir-Polynome

Anbei die Euler-Muir-Polynome $f_d(n)$ für $d \le 400$ primitiv, also für das kleinste d mit diesem Palindrom in der Kettenbruchentwicklung von \sqrt{d} . Zum Generieren des Inhalts einer LATEX-Tabelle lässt sich der folgende Python-Code verwenden, der die Funktionen aus 23.3 und 23.4 verwendet:

```
primitives = {}
for d in range(2, 401):
    palindrome = continued_fraction_sqrt_palindrome(d)
   if palindrome not in [P for D, P in primitives.items()]:
      primitives[d] = palindrome
  except: # schlägt für Quadratzahlen fehl
    pass
euler_muir_poly = {}
for d in primitives:
  palindrome = primitives[d]
  euler_muir_poly[d] = (palindrome, euler_muir(palindrome))
table_latex =
for d in euler_muir_poly:
  palindrome, coeff = euler_muir_polv[d]
  spaced_coeff = ['{:,}'.format(w).replace(',', '\\,') for w in coeff] # Tausender abtrennen
  poly_latex = f'{spaced_coeff[0] if coeff[0] != 1 else ""}n^2'
  if coeff[1] > 0:
    poly_latex += f'+{spaced_coeff[1] if coeff[1] != 1 else ""}n'
 elif coeff[1] < 0:</pre>
    poly_latex += f'{spaced_coeff[1] if coeff[1] != 1 else ""}n'
 if coeff[2] > 0:
    poly_latex += f'+{spaced_coeff[2]}'
  table_latex += f'${d}$ & ${str(palindrome).replace("[", "(").replace("]", ")"}$ & ${poly_latex}$ \\\\n'
table_latex = table_latex.rstrip(' \\\\n')
with open('em_primitive.tex', 'w') as f:
  print(table_latex, file=f)
```

$ \begin{array}{ c c c c c c }\hline d & & & & & & & & & & & & & \\\hline 2 & & & & & & & & & & & \\\hline 2 & & & & & & & & & \\\hline 3 & & & & & & & & \\\hline 3 & & & & & & & \\\hline 6 & & & & & & & & \\\hline 6 & & & & & & & \\\hline 7 & & & & & & & \\\hline 7 & & & & & & & \\\hline 11 & & & & & & & \\\hline 13 & & & & & & & \\\hline 13 & & & & & & & \\\hline \end{array} $			
$ \begin{vmatrix} 3 & & & & & & & & & & & & & & & & & &$			
$ \begin{vmatrix} 6 & & & & & & & & & & & & & & & & & &$			
$\begin{bmatrix} 7 \\ 11 \\ 13 \end{bmatrix} (1,1,1) \\ (3) \\ (1,1,1,1) \\ (1,1,1,1) \\ 9n^2 - 2n \\ 9n^2 + 2n \\ 25n^2 - 14n + 2 \\ (1,1,1,1) \\ (25n^2 - 14n + 2) \\ (1,1,1,1) \\ (1,1,1,1) \\ (25n^2 - 14n + 2) \\ (3) \\ (3) \\ (4,1,1,1) \\ (4,1,1,1) \\ (5,1,1) \\ (5,1,1) \\ (5,1,1) \\ (6,1,1) \\ (7,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1,1) \\ (7,1) \\ (7,1) \\ (7,1) \\ (7,1) \\ (7,1) \\ (7,1) \\ (7,1) \\ (7,1) \\ (7,1$	$ \begin{array}{c} n + 2n \\ n^2 + 3n + 2 \end{array} $		
$\begin{bmatrix} 11 \\ 13 \end{bmatrix} \qquad (3) \qquad \qquad 9n^2 + 2n \\ (1,1,1,1) \qquad \qquad 25n^2 - 14n + 2$	$n + 3n + 2$ $qn^2 - 2n$		
$\begin{vmatrix} 13 \end{vmatrix}$ (1, 1, 1, 1) $25n^2 - 14n + 2$	$9n^2 + 2n$ $9n^2 + 2n$		
(1,1,1,1)			
$\begin{vmatrix} 14 \end{vmatrix}$ $(1,2,1)$ $4n^2 + 7n + 3$	$ \begin{array}{r} 25n^2 - 14n + 2 \\ 4n^2 + 7n + 3 \end{array} $		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4n^2 + 7n + 3$ $4n^2 + 9n + 5$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{bmatrix} 15 \\ 21 \end{bmatrix}$ $(5,1,5,1,2)$ $(6,1,2,1,1)$ $(6,1,2,1,1)$ $(6,1,2,1,1)$			
$ \begin{vmatrix} 21 \\ 22 \end{vmatrix} $			
$\begin{bmatrix} 22 \\ 23 \end{bmatrix} = (1,3,1) \\ $			
$\begin{vmatrix} 25 \\ 27 \end{vmatrix}$ (5) $\begin{vmatrix} (1,3,1) \\ 25n^2 + 2n \end{vmatrix}$			
$\begin{bmatrix} 27 & 25n + 2n \\ 28 & (3,2,3) & 144n^2 - 161n + 45 \end{bmatrix}$			
	$169n^2 - 198n + 58$		
	$74529n^2 - 146018n + 71520$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$25n^2 + 14n + 2$		
	$281961n^2 - 556958n + 275040$		
	4.148		
$ \begin{vmatrix} 46 \\ 1,3,1,1,2,6,2,1,1,3,1 \end{vmatrix} $ 3218 436n ² - 6412 537n + 3190	4 147		
47 $(1,5,1)$ $49n^2 - 2n$			
$\begin{vmatrix} 51 \\ 49n^2 + 2n \end{vmatrix}$			
$\begin{bmatrix} 52 \\ \end{bmatrix} \qquad (4,1,2,1,4) \qquad \qquad 2025n^2 - 3401n + 1428$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$14478025n^2 - \frac{2}{2}8896614n + 14418650$		
	$16n_{2}^{2} + 31n + 15$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{vmatrix} 67 \\ (5,2,1,1,7,1,1,2,5) \end{vmatrix} $ 35 605 089 $n^2 - 71112494n + 355$	507 472		
	$219024n^2 - 430273n + 211318$		
	$225n^2 - 199n + 44$		
	$170569n^2 - 334178n + 163680$		
	$15625n^2 - 29114n + 13562$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	931 502		
83 (9) $81n^2 + 2n$			
$\begin{array}{c} 85 \\ \end{array} \qquad (4,1,1,4) \\ \end{array} $			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.02		
88			
89			
	$27225n^2_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
92			
	$396900n^2 - 781649n + 384842$		
$ \begin{vmatrix} 94 \\ (1,2,3,1,1,5,1,8,1,5,1,1,3,2,1) \end{vmatrix} $	$12217323024n^2 - 24432502753n + 12215179823$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$323761n^2 - 636314n + 312650$		
$\begin{vmatrix} 98 \end{vmatrix} \qquad (1,8,1) \qquad 25n^2 + 49n + 24$	$25n^2 + 49n + 24$		
$\begin{vmatrix} 102 \end{vmatrix} \qquad (10) \qquad 25n^2 + 51n + 26$			
$ \begin{array}{c c} 103 & (6,1,2,1,1,9,1,1,2,1,6) \\ \end{array} $	2 156 608		

d	Palindrom von \sqrt{d} $f_d(n)$			
106	(3, 2, 1, 1, 1, 1, 2, 3)	$151321n^2 - 294632n + 143417$		
107	(2,1,9,1,2)	$8649n^2-15374n+6832$		
108	(2,1,1,4,1,1,2)	$4225n^2 - 7099n + 2982$		
109	(2,3,1,2,4,1,6,6,1,4,2,1,3,2)	$725094825625n^2 - 1450171870886n + 725077045370$		
111	(1,1,6,1,1)	$196n^2 - 97n + 12$		
113	(1,1,1,2,2,1,1,1)	$5329n^2 - 9106n + 3890$		
114	(1, 2, 10, 2, 1)	$2304n^2 - 3583n + 1393$		
115	(1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	$\frac{2504n - 5383n + 1595}{11025n^2 - 19798n + 8888}$		
116	(1,3,2,1,4,1,2,3,1)	$\frac{107025n^2 - 404249n + 197340}{207025n^2 - 404249n + 197340}$		
117	(1, 4, 2, 4, 1)	$900n^2 - 1151n + 368$		
118	(1, 4, 2, 4, 1) (1, 6, 3, 2, 10, 2, 3, 6, 1)	$199572129n^2 - 398837341n + 199265330$		
119	(1,0,3,2,10,2,3,0,1) (1,9,1)	199 5(2 129) - 596 55(3 141) + 199 205 350		
123		$121n^2 - 2n$ $121n^2 + 2n$		
123	(11)			
	(7, 2, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 2, 7)	$43047950400n^2 - 86091280001n + 43043329725$		
125	(5, 1, 1, 5)	$3721n^2 - 6078n + 2482$		
126	(4,2,4)	$\frac{400n^2 - 351n + 77}{2}$		
127	(3, 1, 2, 2, 7, 11, 7, 2, 2, 1, 3)	$176211050625n^2 - 352412640002n + 176201589504$		
128	(3, 5, 3)	$2601n^2 - 4048n + 1575$		
129	(2,1,3,1,6,1,3,1,2)	$550564n^2 - 1084273n + 533838$		
131	(2,4,11,4,2)	$859329n^2 - 1697438n + 838240$		
133	(1, 1, 7, 5, 1, 1, 1, 2, 1, 1, 1, 5, 7, 1, 1)	$12595572900n^2 - 25188557201n + 12592984434$		
134	(1, 1, 2, 1, 3, 1, 10, 1, 3, 1, 2, 1, 1)	$39727809n^2 - 79309693n + 39582018$		
135	(1,1,1,1,1,1)	$441n^2 - 394n + 88$		
137	(1, 2, 2, 1, 1, 2, 2, 1)	$22_{2}201n^{2} - 40_{14}n + 18_{50}$		
139	(1,3,1,3,7,1,1,2,11,2,1,1,7,3,1,3,1)	$43280991011241n^2 - 86561826895982n + 43280835884880$		
142	(1, 10, 1)	$36n^2 + 71n + 35$		
146	(12)	$36n^2 + 73n + 37$		
149	(4, 1, 5, 3, 3, 5, 1, 4)	$86583025n^2 - 172938886n + 86356010$		
151	(3, 2, 7, 1, 3, 4, 1, 1, 1, 11, 1, 1, 1, 1, 4, 3, 1, 7, 2, 3)	$19778116875204249n^2 - 39556230294112418n + 19778113418908320$		
153	(2, 1, 2, 2, 2, 1, 2)	$7744n^2 - 13311n + 5720$		
154	(2, 2, 3, 1, 2, 1, 3, 2, 2)	$736164n^2 - 1451033n + 715023$		
155	(2, 4, 2)	$100n^2 + 49n + 6$		
157	(1, 1, 7, 1, 5, 2, 1, 1, 1, 1, 2, 5, 1, 7, 1, 1)	$148722066025n^2 - 297434467814n + 148712401946$		
158	(1, 1, 3, 12, 3, 1, 1)	$94864n^2 - 181985n + 87279$		
159	(1, 1, 1, 1, 3, 1, 1, 1, 1)	$11025n^2 - 19402n + 8536$		
160	(1, 1, 1, 5, 1, 1, 1)	$3249n^2 - 5056n + 1967$		
161	(1, 2, 4, 1, 2, 1, 4, 2, 1)	$215\ 296n^2 - 418\ 817n + 203\ 682$		
162	(1, 2, 1, 2, 12, 2, 1, 2, 1)	$592900n^2 - 1166199n + 573461$		
163	(1,3,3,2,1,1,7,1,11,1,7,1,1,2,3,3,1)	$25191716148225n^2 - 50383304136398n + 25191587988336$		
164	(1,4,6,4,1)	$6400n^2 - 10751n + 4515$		
165	(1, 5, 2, 5, 1)	$1.764n^2 - 2.449n + 850$		
166	(1,7,1,1,1,2,4,1,3,2,12,2,3,1,4,2,1,1,1,7,1)	$4357032433168041n^2 - 8714063165433517n + 4357030732265642$		
167	(1, 11, 1)	$169n^2-2n$		
171	(13)	$169n^2 + 2n$		
172	(8, 1, 2, 2, 1, 1, 3, 6, 3, 1, 1, 2, 2, 1, 8)	$854646629841n^2-1709269011035n+854622381366$		
173	(6, 1, 1, 6)	$7225n^2-12214n+5162$		
174	(5, 4, 5)	$3025n^2 - 4599n + 1748$		
175	(4, 2, 1, 2, 4)	$23409n^2 - 42770n + 19536$		
176	(3,1,3)	$225n^2 - 52n + 3$		
177	(3,3,2,8,2,3,3)	$5503716n^2 - 10945009n + 5441470$		
178	(2, 1, 12, 1, 2)	3505100 - 109450091 + 3441470 36002 - 55991 + 2177		
179	(2, 1, 12, 1, 2) (2, 1, 1, 1, 3, 5, 13, 5, 3, 1, 1, 1, 2)	-3000 - 3399 + 2177 $98.088.602.481n^2 - 196.168.824.542n + 98.080.222.240$		
181	(2,4,1,8,6,1,1,1,1,2,2,1,1,1,1,6,8,1,4,2)	$98088002481n^{2} - 196108824342n + 98080222240$ $6822224927691121n^{2} - 13644447632930702n + 6822222705239762$		
183	(2,4,1,0,0,1,1,1,1,2,2,1,1,1,1,0,0,1,4,2) (1,1,8,1,1)	$\frac{6822224927691121n^{2} - 13644447632930702n + 68222222705239762}{324n^{2} - 161n + 20}$		
184	(1,1,3,2,1,2,3,1,1)	$804609n^2 - 1584883n + 780458$		
186	(1,1,3,2,1,2,3,1,1) (1,1,1,3,4,3,1,1,1)	604009M - 1364663M + 160436 $75625m^2 - 143749m + 68310$		
100	(1, 1, 1, 0, 4, 0, 1, 1, 1)	15 025 1 - 143 145 1 + 00 310		

```
Palindrom von \sqrt{d}
                                                                                                                                                                      f_d(n)
                                                                                                                                                        15\,129n^2 - 26\,894n + 11\,952
187
                                           (1, 2, 13, 2, 1)
                                                                                                                                                        28\ 224n^2 - 51\ 841n + 23\ 805
188
                                         (1, 2, 2, 6, 2, 2, 1)
190
                                                                                                                                                   3560769n^2 - 7069517n + 3508938
                                 (1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 3, 1)
                                                                                                                                         423\,518\,513\,089n^2 - 847\,019\,038\,178n + 423\,500\,525\,280
191
                              (1, 4, 1, 1, 3, 2, 2, 13, 2, 2, 3, 1, 1, 4, 1)
                                                                                                                                           16\ 125\ 190\ 225n^2 - 32\ 246\ 852\ 186n + 16\ 121\ 662\ 154
193
                                  (1, 8, 3, 2, 1, 3, 3, 1, 2, 3, 8, 1)
                                                                                                                                                              49n^2 + 97n + 48
194
                                             (1, 12, 1)
                                                                                                                                                              49n^2 + 99n + 50
198
                                               (14)
199
                        (9, 2, 1, 2, 2, 5, 4, 1, 1, 13, 1, 1, 4, 5, 2, 2, 1, 2, 9)
                                                                                                                         1329593714709849801n^2 - 2659187396887306562n + 1329593682177456960
201
                                 (5, 1, 1, 1, 2, 1, 8, 1, 2, 1, 1, 1, 5)
                                                                                                                                               330\,003\,556n^2 - 659\,492\,017n + 329\,488\,662
                                                                                                                                                        48841n^2 - 91400n + 42761
202
                                          (4, 1, 2, 2, 1, 4)
204
                                         (3, 1, 1, 6, 1, 1, 3)
                                                                                                                                                        30625n^2 - 56251n + 25830
                                                                                                                                                   1920996n^2 - 3802303n + 1881512
205
                                         (3, 6, 1, 4, 1, 6, 3)
                                                                                                                                                   4\,301\,476n^2 - 8\,543\,417n + 4\,242\,147
206
                                        (2, 1, 5, 14, 5, 1, 2)
                                                                                                                                                           1600n^2 - 2049n + 656
207
                                         (2, 1, 1, 2, 1, 1, 2)
208
                                                                                                                                                          2025n^2 - 2752n + 935
                                           (2, 2, 1, 2, 2)
                                                                                                                                                   2592100n^2 - 5137649n + 2545758
209
                                         (2, 5, 3, 2, 3, 5, 2)
211
                (1, 1, 9, 5, 1, 2, 2, 1, 1, 4, 3, 1, 13, 1, 3, 4, 1, 1, 2, 2, 1, 5, 9, 1, 1)
                                                                                                                     367\ 209\ 276\ 445\ 894\ 854\ 609n^2 - 734\ 418\ 552\ 335\ 080\ 961\ 918n + 367\ 209\ 275\ 889\ 186\ 107\ 520
                                                                                                                                                  5\,175\,625n^2 - 10\,285\,001n + 5\,109\,588
212
                                 (1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 3, 1, 1)
                                                                                                                                                  44\,355\,600n^2 - 88\,516\,801n + 44\,161\,414
213
                                   (1, 1, 2, 6, 1, 8, 1, 6, 2, 1, 1)
214
                 (1, 1, 1, 2, 3, 1, 4, 9, 1, 1, 5, 3, 14, 3, 5, 1, 1, 9, 4, 1, 3, 2, 1, 1, 1)
                                                                                                                    564\,864\,956\,791\,065\,679\,329n^2 - 1\,129\,729\,912\,886\,772\,168\,733n + 564\,864\,956\,095\,706\,489\,618
216
                                                                                                                                                           1089n^2 - 1208n + 335
                                           (1, 2, 3, 2, 1)
                                                                                                                                           17\,023\,986\,576n^2 - 34\,044\,129\,089n + 17\,020\,142\,730
217
                              (1, 2, 1, 2, 1, 1, 9, 4, 9, 1, 1, 2, 1, 2, 1)
                                                                                                                                                              289n^2 - 76n + 5
218
                                            (1, 3, 3, 1)
221
                                                                                                                                                          3136n^2 - 4607n + 1692
                                           (1, 6, 2, 6, 1)
                                                                                                                                                                 225n^2 - 2n
223
                                             (1, 13, 1)
                                                                                                                                                                  225n^2 + 2n
227
                                               (15)
                                                                                                                                                         12\,769n^2 - 22\,118n + 9\,578
229
                                             (7, 1, 1, 7)
                                                                                                                                                   1656369n^2 - 3273532n + 1617395
232
                                           (4, 3, 7, 3, 4)

\begin{array}{r}
1030303n - 521032n + 131132\\
2301289n^2 - 4556266n + 2255210\\
28900n^2 - 52599n + 23933
\end{array}

                                     (3, 1, 3, 1, 1, 1, 1, 3, 1, 3)
233
234
                                         (3, 2, 1, 2, 1, 2, 3)
                                                                                                                                               334\,341\,225n^2 - 668\,120\,651n + 333\,779\,662
236
                                    (2, 1, 3, 5, 1, 6, 1, 5, 3, 1, 2)
                                                                                                                                                54\,908\,100n^2 - 109\,588\,049n + 54\,680\,186
237
                                     (2, 1, 1, 7, 10, 7, 1, 1, 2)
238
                                                                                                                                                      142\,884n^2 - 274\,105n + 131\,459
                                        (2, 2, 1, 14, 1, 2, 2)
239
                                                                                                                                         160\,583\,731\,441n^2 - 321\,155\,072\,642n + 160\,571\,341\,440
                                   (2, 5, 1, 2, 4, 15, 4, 2, 1, 5, 2)
                                                                                                                                    20\,923\,534\,350\,625n^2 - 41\,846\,926\,679\,114n + 20\,923\,392\,328\,730
241
                             (1, 1, 9, 1, 5, 3, 3, 1, 1, 3, 3, 5, 1, 9, 1, 1)
242
                                     (1, 1, 3, 1, 14, 1, 3, 1, 1)
                                                                                                                                                      396\,900n^2 - 774\,199n + 377\,541
                                                                                                                                                  20\,295\,025n^2 - 40\,449\,598n + 20\,154\,816
243
                                      (1, 1, 2, 3, 15, 3, 2, 1, 1)
244
                 (1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 9, 1, 6, 1, 9, 1, 1, 5, 1, 2, 1, 1, 1, 1, 1)
                                                                                                                               3\,196\,601\,416\,865\,025n^2 - 6\,393\,201\,067\,411\,001n + 3\,196\,599\,650\,546\,220
                                                                                                                                                   2742336n^2 - 5432831n + 2690740
245
                                      (1, 1, 1, 7, 6, 7, 1, 1, 1)
                                                                                                                                                  8014561n^2 - 15940317n + 7926002
246
                                     (1, 2, 5, 1, 14, 1, 5, 2, 1)
                                                                                                                                                  29\,452\,329n^2 - 58\,734\,074n + 29\,281\,992
247
                                    (1, 2, 1, 1, 9, 1, 9, 1, 1, 2, 1)
                                                                                                                                          73\,461\,597\,444n^2 - 146\,914\,641\,073n + 73\,453\,043\,878
249
                              (1, 3, 1, 1, 5, 1, 3, 10, 3, 1, 5, 1, 1, 3, 1)
250
                                          (1, 4, 3, 3, 4, 1)
                                                                                                                                                       78\,961n^2 - 149\,036n + 70\,325
251
                                (1, 5, 2, 1, 2, 2, 15, 2, 2, 1, 2, 5, 1)
                                                                                                                                          53\,804\,049\,849n^2 - 107\,600\,749\,918n + 53\,796\,700\,320
253
                                                                                                                              10\,262\,117\,490\,452\,100n^2 - 20\,524\,231\,758\,286\,801n + 10\,262\,114\,267\,834\,954
                       (1, 9, 1, 1, 1, 2, 1, 7, 4, 2, 2, 2, 4, 7, 1, 2, 1, 1, 1, 9, 1)
254
                                                                                                                                                              64n^2 + 127n + 63
                                             (1, 14, 1)
                                                                                                                                                              64n^2 + 129n + 65
258
                                               (16)
259
                                     (10, 1, 2, 3, 4, 3, 2, 1, 10)
                                                                                                                                              692847684n^2 - 1384848143n + 692000718
                                                                                                                                    35\,354\,202\,483\,600n^2 - 70\,708\,212\,847\,999n + 35\,354\,010\,364\,660
261
                              (6, 2, 3, 7, 1, 3, 1, 2, 1, 3, 1, 7, 3, 2, 6)
262
                               (5, 2, 1, 2, 1, 10, 16, 10, 1, 2, 1, 2, 5)
                                                                                                                                    10\,516\,134\,493\,881n^2 - 21\,032\,164\,007\,245n + 10\,516\,029\,513\,626
263
                                   (4, 1, 1, 1, 1, 15, 1, 1, 1, 1, 4)
                                                                                                                                                 73\,599\,241n^2 - 146\,920\,226n + 73\,321\,248
                                                                                                                                                      139\,129n^2 - 266\,114n + 127\,250
265
                                       (3, 1, 1, 2, 2, 1, 1, 3)
                                                                                                                                                             441n^2 - 197n + 22
266
                                              (3, 4, 3)
                                                                                                                                                        21\,609n^2 - 38\,414n + 17\,072
267
                                           (2, 1, 15, 1, 2)
                                                                                                                              21\ 234\ 349\ 584\ 091\ 449n^2 - 42\ 468\ 694\ 397\ 100\ 971n + 21\ 234\ 344\ 813\ 009\ 790
268
                        (2, 1, 2, 3, 3, 1, 3, 1, 10, 8, 10, 1, 3, 1, 3, 3, 2, 1, 2)
270
                                           (2, 3, 6, 3, 2)
                                                                                                                                                        25921n^2 - 46551n + 20900
```

d	Palindrom von \sqrt{d}	$f_{1}(p)$		
271	(2, 6, 10, 1, 4, 1, 1, 2, 1, 2, 1, 15, 1, 2, 1, 2, 1, 1, 4, 1, 10, 6, 2)	$f_d(n) \\ 49631722586790660369n^2 - 99263444941631353538n + 49631722354840693440$		
273	(2, 6, 10, 1, 4, 1, 1, 2, 1, 2, 1, 15, 1, 2, 1, 2, 1, 1, 4, 1, 10, 6, 2) $(1, 1, 10, 1, 1)$	$49031(22380(90000309n-99205444941031333338n+49031(22354840093440484n^2-241n+30$		
274	(1,1,4,4,1,1)	$7225n^2 - 11636n + 4685$		
276	(1,1,1,1,2,2,2,1,1,1,1)	$54756n^2 - 101737n + 47257$		
277	(1, 1, 1, 4, 10, 1, 7, 2, 2, 3, 3, 2, 2, 7, 1, 10, 4, 1, 1, 1)	$287\ 274\ 501\ 442\ 203\ 025n^2 - 574\ 548\ 985\ 043\ 437\ 814n + 287\ 274\ 483\ 601\ 235\ 066$		
278	(1, 2, 16, 2, 1)	$5625n^2-8749n+3402$		
279	(1, 2, 2, 1, 2, 2, 1)	$8281n^2 - 13522n + 5520$		
280	(1, 2, 1, 2, 1)	$225n^2 + 52n + 3$		
281	(1, 3, 4, 1, 1, 6, 6, 1, 1, 4, 3, 1)	$4025268025n^2 - 8048408986n + 4023141242$		
282	(1,3,1,4,1,3,1)	$4900n^2 - 7449n + 2831$		
283	(1,4,1,1,1,3,10,1,15,1,10,3,1,1,1,4,1)	$67560854250681n^2-135121431953198n+67560577702800$		
284	(1,5,1,3,2,1,4,8,4,1,2,3,1,5,1)	$516414704400n^2 - 1032805188001n + 516390483885$		
285	(1,7,2,7,1)	$5184n^2 - 7937n + 3038$		
286	(1, 10, 3, 3, 2, 3, 3, 10, 1)	$\frac{5184n^{2} - 7937n + 3038}{275925321n^{2} - 551288807n + 275363772}$		
287	(1, 15, 5, 6, 2, 5, 5, 15, 1)	$289n^2-2n$		
291	(17)	$\frac{289n^2 + 2n}{289n^2 + 2n}$		
291	(11, 2, 1, 3, 8, 3, 1, 2, 11)	$289n + 2n$ $4455562500n^2 - 8908843751n + 4453281543$		
292		$4453502500n - 8908843751n + 4453281543$ $21025n^2 - 37086n + 16354$		
	(8,1,1,8)			
294	(6,1,4,1,6)	$19600n^2 - 34399n + 15093$		
295	(5, 1, 2, 3, 2, 6, 2, 3, 2, 1, 5)	$3475102500n^2 - 6948180001n + 3473077796$		
296	(4, 1, 7, 1, 4)	$46225n^2 - 85052n + 39123$		
297	(4,3,1,1,2,1,1,3,4)	$1988100n^2 - 3927601n + 1939798$		
298	(3, 1, 4, 5, 1, 1, 5, 4, 1, 3)	$562875625n^2 - 1124932136n + 562056809$		
300	(3, 8, 3)	$1521n^2 - 1691n + 470$		
301	(2, 1, 6, 3, 1, 2, 2, 1, 1, 8, 11, 2, 4, 2, 11, 8, 1, 1, 2, 2, 1, 3, 6, 1, 2)	$28749425043692036541456n^2 - 57498850081500680545217n + 28749425037808644004062$		
302	(2, 1, 1, 1, 4, 2, 1, 16, 1, 2, 4, 1, 1, 1, 2)	$15140318116n^2 - 30276359609n + 15136041795$		
303	(2, 2, 5, 2, 2)	$21025n^2 - 37002n + 16280$		
304	(2,3,2,1,1,1,1,2,3,2)	$10989225n^2-21862852n+10873931$		
305	(2, 6, 2)	$196n^2 + 97n + 12$		
307	(1, 1, 11, 5, 1, 3, 17, 3, 1, 5, 11, 1, 1)	$25529100232689n^2 - 51058023406814n + 25528923174432$		
309	(1, 1, 2, 1, 2, 4, 1, 1, 1, 8, 6, 1, 10, 1, 6, 8, 1, 1, 1, 4, 2, 1, 2, 1, 1)	$3334943334131329284n^2 - 6669886604059933073n + 3334943269928604098$		
310	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	$580906404n^2 - 1160964089n + 580057995$		
311	(1, 1, 1, 2, 1, 6, 3, 17, 3, 6, 1, 2, 1, 1, 1)	$916609015609n^2 - 1833184263458n + 916575248160$		
313	(1, 2, 4, 11, 1, 1, 3, 2, 2, 3, 1, 1, 11, 4, 2, 1)	$51418723369225n^2 - 102837193013714n + 51418469644802$		
314	(1, 2, 4, 11, 1, 1, 0, 2, 2, 0, 1, 1, 11, 4, 2, 1) (1, 2, 1, 1, 2, 1)	$\frac{-1253032256}{625n^2 - 364n + 53}$		
316		$\frac{620n - 364n + 33}{129600n^2 - 246401n + 117117}$		
317	(1,3,2,8,2,3,1)			
	(1,4,8,1,2,2,1,8,4,1)	$392238025n^2 - 783770814n + 391533106$		
319	(1,6,5,1,4,3,1,3,4,1,5,6,1)	$521805414321n^2 - 1043585025082n + 521779611080$		
322	(1, 16, 1)	$81n^2 + 161n + 80$		
326	(18)	$81n^2 + 163n + 82$		
329	(7,4,2,1,1,4,1,1,2,4,7)	$4291298064n^2 - 8580219713n + 4288921978$		
	(5,5,1,6,2,3,1,1,2,1,2,1,11,2,1,1,17,1,1,2,11,1,2,1,1,1,3,2,6,1,5,5)	$23442630035977813320534892329n^2-46885260071950055461466896718n+23442630035972242140932004720$		
332	(4,1,1,8,1,1,4)	$136161n^2 - 258875n + 123046$		
334	(3,1,1,1,2,5,1,2,2,11,1,3,7,18,7,3,1,11,2,2,1,5,2,1,1,1,3)	$3047154270780318840142884{n}^{2}-6094308541496833306566073n+3047154270716514466423523$		
335	(3, 3, 3)	$1089n^2 - 970n + 216$		
337	(2, 1, 3, 1, 11, 2, 4, 1, 3, 3, 1, 4, 2, 11, 1, 3, 1, 2)	$3062033164880881n^2 - 6124064298107090n + 3062031133226546$		
339	(2, 2, 2, 1, 17, 1, 2, 2, 2)	$28313041n^2 - 56430142n + 28117440$		
340	(2,3,1,1,1,1,8,1,1,1,3,2)	$60047001n^2 - 119808233n + 59761572$		
341	(2, 6, 1, 8, 2, 1, 2, 1, 2, 8, 1, 6, 2)	$82788552900n^2 - 165566479249n + 82777926690$		
343	(1, 1, 11, 1, 5, 3, 1, 17, 1, 3, 5, 1, 11, 1, 1)	$49708972110681n^2 - 99417683068706n + 49708710958368$		
344	(1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	$314721n^2 - 608632n + 294255$		
345	(1, 1, 2, 1, 6, 1, 2, 1, 1) (1, 1, 2, 1, 6, 1, 2, 1, 1)	$33124n^2 - 59487n + 26708$		
347	(1, 1, 2, 1, 0, 1, 2, 1, 1) (1, 1, 1, 2, 4, 1, 17, 1, 4, 2, 1, 1, 1)	$1186320249n^2 - 2371357294n + 1185037392$		
348	(1, 1, 1, 2, 4, 1, 17, 1, 4, 2, 1, 1, 1) (1, 1, 1, 8, 1, 1, 1)	$1764n^2 - 1961n + 545$		
349		$ \begin{array}{r} 1 \ 64n - 1961n + 545 \\ 243 \ 049n^2 - 467 \ 678n + 224 \ 978 \end{array} $		
	(1,2,7,7,2,1)	$243049n^{2} - 467678n + 224978$ $2775556n^{2} - 5488687n + 2713482$		
351	(1,2,1,3,2,2,2,3,1,2,1)	$2775556n^{2} - 5488687n + 2713482$		

```
Palindrom von \sqrt{d}
                                                                                                                                                  17\,114\,769n^2 - 34\,074\,304n + 16\,959\,887
352
                                         (1, 3, 5, 9, 5, 3, 1)
                                                                                                                                                 14\,386\,849n^2 - 28\,631\,170n + 14\,244\,674
353
                                (1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1)
                                                                                                                                                 47\,032\,164n^2 - 93\,806\,263n + 46\,774\,453
354
                                     (1, 4, 2, 2, 18, 2, 2, 4, 1)
                                                                                                                                               642\,014\,244n^2 - 1\,283\,073\,679n + 641\,059\,790
355
                                    (1, 5, 3, 3, 1, 6, 1, 3, 3, 5, 1)
356
                                                                                                                                               175\,562\,500n^2 - 350\,624\,999n + 175\,062\,855
                                 (1, 6, 1, 1, 2, 1, 8, 1, 2, 1, 1, 6, 1)
                                                                                                                                                         8\,100n^2 - 12\,799n + 5\,056
357
                                           (1, 8, 2, 8, 1)
                                                                                                                       21\,774\,041\,770\,465\,247\,769n^2 - 43\,548\,083\,364\,350\,689\,741n + 21\,774\,041\,593\,885\,442\,330
358
               (1, 11, 1, 1, 1, 3, 1, 1, 4, 1, 5, 2, 18, 2, 5, 1, 4, 1, 1, 3, 1, 1, 1, 11, 1)
359
                                             (1, 17, 1)
                                                                                                                                                                  361n^2 - 2n
363
                                                                                                                                                                  361n^2 + 2n
                                               (19)
                                                                                                                                           16\,862\,321\,025n^2 - 33\,719\,687\,099n + 16\,857\,366\,438
364
                                  (12, 1, 2, 3, 1, 8, 1, 3, 2, 1, 12)
365
                                                                                                                                                        32761n^2 - 58606n + 26210
                                            (9, 1, 1, 9)
                                                                                                                                              563\,065\,441n^2 - 1\,125\,222\,957n + 562\,157\,882
366
                                   (7, 1, 1, 1, 2, 12, 2, 1, 1, 1, 7)
                                                                                                                           985\,722\,701\,380\,761\,969n^2 - 1\,971\,445\,364\,721\,532\,802n + 985\,722\,663\,340\,771\,200
367
                       (6, 2, 1, 3, 1, 1, 2, 1, 12, 19, 12, 1, 2, 1, 1, 3, 1, 2, 6)
368
                                                                                                                                                             900n^2 - 649n + 117
                                              (5, 2, 5)
                                                                                                                                           47768473600n^2 - 95528550399n + 47760077168
369
                                    (4, 1, 3, 2, 7, 4, 7, 2, 3, 1, 4)
                                                                                                                                                              289n^2 + 76n + 5
370
                                               (4, 4)
371
                                                                                                                                                           1936n^2 - 2177n + 612
                                           (3, 1, 4, 1, 3)
                                                                                                                                                       99\,225n^2 - 186\,299n + 87\,446
372
                                           (3, 2, 12, 2, 3)
373
                                            (3, 5, 5, 3)
                                                                                                                                                       70\ 225n^2 - 130\ 214n + 60\ 362
374
                                           (2, 1, 18, 1, 2)
                                                                                                                                                         7569n^2 - 11773n + 4578
375
                                       (2, 1, 2, 1, 5, 1, 2, 1, 2)
                                                                                                                                                     609\,961n^2 - 1\,189\,674n + 580\,088
                                                                                                                                             3\,054\,330\,756n^2 - 6\,106\,518\,217n + 3\,052\,187\,837
376
                              (2, 1, 1, 3, 1, 2, 2, 4, 2, 2, 1, 3, 1, 1, 2)
378
                                         (2, 3, 1, 4, 1, 3, 2)
                                                                                                                                                        50625n^2 - 92501n + 42254
379
                                                                                                  441\,885\,449\,870\,527\,916\,227\,060\,542\,681\,{n}^{2}-883\,770\,899\,741\,029\,950\,059\,680\,003\,982\,n+441\,885\,449\,870\,502\,033\,832\,619\,461\,680
          (2,7,3,2,2,6,12,1,4,1,1,1,3,4,19,4,3,1,1,1,4,1,12,6,2,2,3,7,2)
                                                                                                                                                             676n^2 - 337n + 42
381
                                           (1, 1, 12, 1, 1)
382
                  (1, 1, 5, 12, 1, 5, 1, 1, 2, 3, 1, 18, 1, 3, 2, 1, 1, 5, 1, 12, 5, 1, 1)
                                                                                                                       17817071467345290000n^2 - 35634142769692140001n + 17817071302346850383
                                                                                                                                                     919681n^2 - 1801826n + 88252860025n^2 - 110448n + 50807
383
                                        (1, 1, 3, 19, 3, 1, 1)
384
                                         (1, 1, 2, 9, 2, 1, 1)
                                                                                                                                                   5963364n^2 - 11830897n + 5867918
385
                               (1, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 1, 1, 1)
                                                                                                                                                  8059921n^2 - 16008287n + 794875231329n^2 - 55694n + 24752
386
                                   (1, 1, 1, 4, 1, 18, 1, 4, 1, 1, 1)
387
                                           (1, 2, 19, 2, 1)
388
                               (1, 2, 3, 4, 12, 1, 8, 1, 12, 4, 3, 2, 1)
                                                                                                                                      2\,541\,913\,658\,244n^2 - 5\,083\,764\,506\,855n + 2\,541\,850\,848\,999
389
                                                                                                                                                          4225n^2 - 5886n + 2050
                                        (1, 2, 1, 1, 1, 1, 2, 1)
391
                                                                                                                                         137739703689n^2 - 275464730018n + 137725026720
                              (1, 3, 2, 2, 1, 1, 2, 19, 2, 1, 1, 2, 2, 3, 1)
                                                                                                                                      1\,371\,760\,973\,284n^2 - 2\,743\,475\,509\,425n + 1\,371\,714\,536\,534
393
                        (1, 4, 1, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 2, 1, 4, 1)
394
                                                                                                                                  396\,048\,726\,346\,729n^2 - 792\,096\,662\,647\,388n + 396\,047\,936\,301\,053
                        (1, 5, 1, 1, 1, 3, 1, 3, 5, 2, 2, 5, 3, 1, 3, 1, 1, 1, 5, 1)
                                                                                                                         1\,056\,324\,667\,563\,199\,225n^2 - 2\,112\,649\,294\,169\,792\,486n + 1\,056\,324\,626\,606\,593\,658
397
                       (1, 12, 3, 4, 9, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 9, 4, 3, 12, 1)
                                             (1, 18, 1)
                                                                                                                                                             100n^2 + 199n + 99
```

Zuletzt listen wir noch die nicht-primitiven $d \leq 400$ und ihre Darstellung als $f_D(n)$ mit D primitiv.

$ 5 f_2(2) 30 f_6(4) $	4) $ 50 f_2(7) 78 f_{24}(2)$	$ 101 f_2(10) 136 f_7(4) $	$ 152 f_{11}(4) 195 f_{2}(13) $	$ 224 f_3(14) 255 f_3(15) 299 $	$f_{29}(2) 325 f_{2}(18) $	$ 350 f_{45}(2) 399 f_{2}(19)$
				$\begin{vmatrix} 226 & f_2(15) & 257 & f_2(16) & 306 \end{vmatrix}$		
				$ 228 f_{102}(2) 260 f_{66}(3) 308 $		
				$ 230 f_{38}(4) 264 f_{18}(7) 312 $		
				$ 231 f_{27}(3) 269 f_{41}(3) 315$		
				$ 235 f_{11}(5) 272 f_{6}(15) 318$		
				$ 240 f_6(14) 275 f_{21}(3) 320$		
$ 24 f_3(4) 42 f_6(4) $	5) $ 74 f_{13}(2) 96 f_{23}(2)$	$ 130 f_{41}(2) 148 f_{38}(3) $	$ 189 f_{14}(6) 220 f_{34}(4) $	$ 248 f_{14}(7) 288 f_{3}(16) 321$	$ f_{142}(2) 342 f_6(17) $	$ 395 f_{62}(4) $
$ 26 f_2(5) 48 f_3(6)$	6) $ 75 f_7(3) 99 f_3(9)$	$ 132 f_6(10) 150 f_{18}(5) $	$ 192 f_{47}(2) 222 f_{98}(2) $	$ 252 f_{62}(3) 290 f_{2}(17) 323$	$ f_3(17) 346 f_{13}(4) $	$ 396 f_{98}(3) $

Der Python-Code, der hierfür die LATEX-Tabelle erstellt, ist aufgrund der Darstellung in Spalten etwas komplexer:

```
non_primitives = {}
for d in euler_muir_poly:
  def f_d(n):
   _, coeff = euler_muir_poly[d]
   return coeff[0] * n ** 2 + coeff[1] * n + coeff[2]
  n = 2
  while f d(n) \le 400:
   non_primitives[f_d(n)] = (d, n)
non_primitives = dict(sorted(non_primitives.items(), key=lambda x: x[0])) # sortieren
import math
np_item_list = list(non_primitives.items())
N = len(np_item_list)
cols = 14
rows = math.ceil(N / cols)
table_latex = f'\\\begin{\{tabular\}}{\{*\{\{cols\}\}\}\{\{|c|c|\}\}\}\}\\\n\\\hline\\\n'
for r in range(0, rows):
 for c in range(0, cols):
   i = r + rows * c
   if i < N:
     np_item = np_item_list[i]
     d, D, n = np_item[0], np_item[1][0], np_item[1][1]
     table_latex += f'${d}$ & $f_{{D}}}({n})$'
     if c < cols - 1 and r + rows * (c + 1) < N:
       table_latex += ' & '
  table latex += ' \\\\n'
  if r == rows - 1:
   if rows * cols == N:
     table_latex += '\\hline\n'
   else:
     table_latex += f' \leq \{1-\{2 * cols - 2\}\} 
  if i == N - 1 and rows * cols != N:
   table_latex += '\\end{tabular}'
with open('em_other.tex', 'w') as f:
  print(table_latex, file=f)
```