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“Quantization is an art, not a functor.” – Folklore

Organization of the seminar

When: Thursdays at 2:00 pm sharp (First talk on 15.4.)

Where: Online

Language: English

Presentation: Participants will give a 90-minutes talk (including 10 minutes of time
for questions)

Online talk: Write on a tablet in real time (preferred option) or prepare slides using
Latex beamer - if you need help with this, ask us. We will also reserve a room in
the Mathematikon if the speaker wants to give the talk from there.

Evaluation: Give a presentation, write notes or slides of the talk that will be uploaded
to the homepage of the seminar, actively participate during the seminar talks.

Meet us: 1 or 2 weeks before your talk to discuss your plan and to clarify questions.

Please contact the respective organiser of the talk via mail.

E-mail adresses:
Davide : dlegacci@mathi.uni-heidelberg.de
Gabriele : gbenedetti@mathi.uni-heidelberg.de
Johanna : jbimmermann@mathi.uni-heidelberg.de
Steffen : Schmidt-Steffen@mail.de
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List of Topics

Topic 1: The Mathematical Model of Classical Mechanics (Davide)

We introduce symplectic manifolds (M,ω), the natural setting where classical Hamil-
tonian systems induced by a smooth function H : M → R can be defined. Beyond
symplectic vector spaces, the main examples we will consider are cotangent bundles
T ∗Q of a configuration manifold Q and Kähler manifolds such as S2 and, more in
general, CPn. The symplectic structure induces a Poisson bracket on the space of ob-
servables C∞(M) satisfying crucial algebraic properties and determining the dynamics
of Hamiltonian systems.

Guidelines:

• State Hamilton equations in R2n, write them via the standard symplectic form.
(Section 18.2 in [8], Section 0.4 in [5]).

• Define symplectic manifolds (M,ω) and Hamiltonian systems in general. Give
the example of cotangent bundles, Kähler manifolds (in particular S2 and CPn)
and state Darboux theorem. (Chapter 2 in [5], Chapter 3 in [26], Section 1.7 in
[31], Section 1.3 in [17]).

• Introduce the notion of symplectic and Kähler potentials. Observe that ωn yields
a volume form and that no symplectic potential exists if M is closed. [3]

• Give an introduction to linear symplectic spaces (V, ω): example of W ×W ∗, def-
inition of symplectic orthogonal, isotropic, coisotropic and Lagrangian subspaces,
existence of a symplectic basis. Definition of linear symplectic group Sp(2n;R).
(Chaper 1 in [5], Section 1.3 in [31], Section 1.1 in [17])

• Back to symplectic manifolds: definition of symplectomorphisms, Hamiltonian
maps are symplectomorphisms (proof using Cartan’s magic formula). Introduce
the Poisson bracket {·, ·} and the time evolution of an observable f : ḟ = {f,H}.
List the algebraic properties of the bracket. (Chapter 3 in [5], Chapter 1 and 18
in [8], Section 1.8 [31], Section 1.3 [17]).

Topic 2: Symmetries in Classical Mechanics (Davide)

Group actions on (M,ω) by symplectomorphisms describe symmetries of the phase
space. If the action comes from a so-called moment map and preserves the Hamiltonian,
then Noether’s theorem yields the existence of conserved quantities for the system.
Fixing the value of the conserved quantities and identifying points by the group action
yields a reduced symplectic manifold (M̄, ω̄) where the reduced Hamiltonian system is
easier to study.

Guidelines:
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• Introduce Lie-groups and their Lie-algebras. Examples of matrix groups. Briefly
infinite dimensional examples: diffeomorphisms and vector fields on a manifold.
(Chapters 7 and 8 in [24], Chapter 1 in [16], mention [32] for the infinite dimen-
sional case). Introduce the Lie-algebras of Symplectic and Hamiltonian vector
fields with Lie bracket, and of Hamiltonian functions with Poisson bracket. Lie-
algebras homomorphism from Hamiltonian functions to Hamiltonian vector fields.
(Chapter 3 in [5], Section III.5 in [26]).

• Introduce Lie-groups actions (Chapter 7 in [24]). Describe the coadjoint action
and the Lie-Poisson structure on the dual of the Lie-algebra g∗. (Section 2.5 in
[5], Chapters 21-22 in [8], Chapter 1 in [21]). Define Poisson manifolds and show
that they are foliated by symplectic manifolds. Observe that for g∗ the leaves are
the coadjoint orbits. (Chapter 1 in [10], Chapters 1, 2 and 7 in [42], Chapter III
in [26]).

• Introduce symplectic and Hamiltonian actions, define the moment map. Ex-
amples: lift of the action from the base for cotangent bundles (e.g. linear and
angular momentum) and coadjoint action. Observe that the moment map is a
G-equivariant Poisson morphism. (Chapter 4 in [5], Chapter 22 in [8], Chapter
IV in [26], Chapter 4 in [34]).

• State Noether’s theorem. Sketch the Weinstein–Marsden symplectic reduction.
Examples: linear/angular momentum, complex projective spaces, and S1-actions
on cotangent bundles. (Chapter 23-24 in [8], Chapter 4 in [26], Chapter 6 in [34]).

Topic 3: The Mathematical Model of Quantum Mechanics (Gabriele)

Following Dirac and Schrödinger, observables in quantum mechanics are self-adjoint
operators on a Hilbert space of quantum states and their time evolution is given by
unitary one-parameter groups. A quantization procedure is then a recipe to associate
a quantum observable to a classical one. We identify a list of properties that this
recipe should follow, basically yielding an irreducible, self-adjoint representation of a
Lie-subalgebra of classical observables on the Hilbert space. Finally, we give some
examples of such representations and illustrate some difficulties of the program (no-go
theorems to be discussed in detail in Talk 10) which geometric quantization (introduced
in Talk 4) will try to solve.

Guidelines:

• Define Hilbert spaces and their projectivizations. Introduce unitary operators
(respectively transformations) as automorphisms of the Hilbert space (respec-
tively isomorphisms between Hilbert spaces). Describe strongly continuous, one-
parameter unitary groups by self-adjoint operators using Stone’s theorem. Give
a definition of self-adjointness without dwelving into details (Chapter 3 in [23],
Section 10.2 in [15], Sections 2.1-2.3 in [28]).
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• Examples: L2(X,µ) with multiplication operators (observe that every self-adjoint
operator is unitarily equivalent to a multiplication operator) and L2(Rn, dxn) with
the translation operator.

• Write Schrödinger’s equation and use it to motivate the definition of quantum
observables H as self-adjoint operators. Derive the time evolution of an observable
f : ḟ = [f,H] and make the parallelism to ḟ = {f,H} in classical mechanics
(Chapter 2 in [11], Sections 3.7-3.8 in [15]).

• State the Dirac ”axioms” for quantum mechanics and quantization as an irre-
ducible, selfadjoint representation of a Lie-subalgebra of observables. If the Lie-
subalgebra comes from a group of symmetries of the symplectic manifold, then
quantization reduces to the theory of irreducible unitary representations of Lie-
groups which will be studied in Talk 11. [11]

• Example: Heisenberg algebra, Heisenberg group and representation (Section 5.2
[5]).

• Example (time-permitting): oscillator algebra as extension of the Heisenberg al-
gebra. [40, page 217-218].

• No-go theorem of Groenewold. Problems: how to decide which observables can be
quantized? How can we quantize observable for general symplectic manifolds in a
coordinate-free way? Geometric quantization will try to answer these questions.
(Section 13.4 in [15]).

Topic 4 & 5: Prequantization & Hermitian Line Bundle (Johanna)
The task at hand is to associate a Hilbert space H to a given symplectic manifold
(M,ω) and find a map assigning to each f ∈ C∞(M,R) a self-adjoint operator Of of
H that satisfies Dirac’s wish list. The prequantum Hilbert space will be the space of
square integrable sections in a suitable Hermitian line bundle over M . We will therefore
look at the general theory of Hermitian line bundles. In the end we will notice that
the Hilbert space we constructed is too ’big’ in the sense that the representation of a
complete set of observables is not irreducible.

Guidelines:

• Look at the local situation, i.e. consider (M,ω) = (R2n, dp∧dq). Observe that the
prequantum operator is given by Of := i~∇Xf

+ f where ∇ denotes a Hermitian
connection of the trivial Hermitian line bundle C×R2n → R2n and dp∧ dq is the
associated curvature form. (chapter 22.2 in [15]).

• Introduce complex line bundles, define hermitian structures, connections and the
curvature form.
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• For a general symplectic manifold we therefore need to answer the question: Is ω
the curvature of some Hermitian line bundle? The answer is the Bohr-Sommerfeld
quantization condition

ω is a curvature form ⇐⇒ 1

2π~

∫
S

ω ∈ Z.

(chapter 8.3 [44]).

• We can see this by proving a canonical isomorphism between the Picard group
L(M) of complex line bundles overM and the second cohomology groupH2(M,Z).
(chapter 3.1 & 3.2 in [11]).

• The isomorphism tells us how to canonically associate a complex line bundle
to a quantizable symplectic manifold, but in order to define the prequantum
operators we need to choose a Hermitian structure and connection. This choice
can be parametrized (up to equivalence) by H1(M,S1) (chapter 3.6 in [11]), i.e.
a circle-valued one-form.

• Define the pre-quantum Hilbert space as the space of square-integrable sections in
the Hermitian line bundle and give an expression for the pre-quantum operators.
Show that the operators are indeed self-adjoint and that the commutation relation
is satisfied. (chapter 23.3 [15]).

• As an example for pre-quantization look at the harmonic oscillator. Observe that
our quantization procedure fails, as it produces the wrong spectrum in this case.
(chapter 22.3 [15])

• Explore the problems with the prequantization further (chapter 22.3 [15]) and see
in the example that the representation is not irreducible. (Prop. 22.13 in [15]).

Topic 6: Lagrangian Distributions and Polarizations (Johanna)
The prequantum Hilbert space is considered to be too ’big’. We therefore need to reduce
the number of variables the states depend on from 2n to n by choosing a polarization.
That is an integrable Lagrangian distribution of TMC and we define the polarized
prequantum Hilbert space to consist of sections of L that are covariantly constant along
the polarization. When choosing a polarization we also restrict the set of quantizable
classical observables as they need to preserve the polarization. Different choices of
polarization therefore might lead to different representations.

Guidelines:

• Recall why we need polarization and why this means choosing a certain type of
distribution (chapter 5.1 in [11]).
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• Introduce complex, Lagrangian, integrable distributions and state Frobenius the-
orem. Continue explaining two important classes of polarizations: Kähler and
real polarizations (chapter 5.2 in [11]).

• Introduce polarized sections of the Hermitian line bundle and argue that these are
in general not square integrable and that this can not be solved by just integrating
over the space of integral manifolds as we don’t have a measure there (chapter
5.3.1 in [11]).

• If time permits show that these problems do not occur for Kähler polarizations
(chapter 5.3.2 in [11]). As an example one could discuss the harmonic oscillator
(Prop. 22.14 in [15]).

• Explain why the choice of a polarization also restricts the set of quantizable
classical observables and therefore determines the representation (chapter 5.4 in
[11]).

• Look at examples of polarizations (chapter 5.5 in [11]).

Topic 7: Half-form correction for real polarizations (Gabriele)

If P is a real polarization with non-compact leaves, polarized sections will not be square-
integrable with respect to the Liouville measure and the quantum Hilbert space is
trivial. The way out is to integrate the sections on the quotient Ξ := M/P instead
that on M . To do that we twist the hermitian line bundle L by the square root of
the complexified canonical bundle of the polarization δCP (sections of δCP are so-called
half-forms, namely square roots of complex-valued n-forms on Q) and consider the
quantizable observables acting on the polarized sections of L⊗ δCP which has a natural
structure of Hilbert space.

Guidelines:

• Define the square root of a line bundle L as a pair (K, i) where K is a line bundle
and i : K2 → L is an isomorphism [36]. Recall that the first Chern class yields
an isomorphism between the Picard group and H2(M ;Z) [15, 23.6.3] and [44,
Appendix A]. Use this to discuss the existence and uniqueness of square roots. A
Hermitian line bundle (L,∇, h) induces a Hermitian structure and connection on
its square root [15, Proposition 23.41].

• Define the complexified canonical bundle of a real polarization when Ξ is an
orientable manifold and its square root δCP [15, 23.6.1-3].

• Define the quantum Hilbert space of square-integrable polarized sections of L⊗δCP
[15, 23.6.4].

• Define the quantizable observables and show that they yield symmetric operators
of the quantum Hilbert space [15, 23.6.5].
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• Compute the action of the quantum observables explicitly in the case of cotangent
bundles [15, Example 23.45, 23.48]. For R2n compare it with the action for the
quantization without half-forms [15, Formula (22.15)].

Topic 8: Half-form correction for Kähler polarizations and metalinear struc-
tures (Gabriele)

We carry out the half-form correction for Kähler polarizations using the square root
of the canonical bundle K. As an application we compute the correct spectrum of the
harmonic oscillator. The existence of the square root is related to metalinear structures
on the Kähler manifold which arise from the metalinear group Ml(n,C).

Guidelines:

• Define the canonical bundle KP of a complex polarization P . If time permits give
the example of CPn with computation of the Chern class [30, Theorem 14.10].

• Define the metalinear/metaplectic group and metalinear/metaplectic structures
on M [36]. Relate them to the square roots δP of the canonical bundle.

• Define the Hilbert product structure on the polarized sections of L⊗ δP and the
action of the observables [15, Section 23.7], [44, Section 10.4].

• Look at the example of Cn [15, Section 23.7] and, time permitting, of D2 and S2

[15, Example 23.30] [7, Section 6.4].

Topic 9: Pairings of polarizations and the BKS construction (Gabriele)

From what we have seen, geometric quantization is far from being canonic. One obvious
reason is the choice of a polarization that determines the subalgebra of quantizable
observables. In this talk we try to relate the quantum systems obtained from two
different polarizations contructing a pairing between them. Already for the simplest
symplectic manifold R2n we get many interesting examples: (i) the Fourier transform is
the pairing between the momentum and position polarization; (ii) the Segal–Bargmann
transform is the pairing between the position and the standard Kähler polarization;
(iii) pairings between different Kähler polarizations become unitary after applying the
half-form correction and give rise to a representation of the metaplectic group on the
quantum Hilbert space. Pairings can also be used to quantize observables which do not
preserve the polarization via the BKS construction. Applying this idea on cotangent
bundles, the kinetic energy is quantized to the classical Schrödinger operator−∆+ 1

6
scal.

Guidelines:

• Describe the pairing construction for two compatible polarizations. Mention that
the pairing map might not be unitary up to a constant [38, Chapter 5] and [15,
Section 23.8].
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• Apply the pairing construction for two real polarizations. In R2n for the position
and momentum polarizations we get the Fourier transform [44, Section 9.5] and
[Carosso].

• Apply the pairing construction for a real and a Kähler polarization. In R2n for
the position and complex polarization we get the Segal–Bargmann transform [44,
Section 9.5]

• Describe the properties of pairings between two Kähler polarizations on a sym-
plectic vector space (V, ωV ) ∼= (R2n, ωR2n) [44, Section 9.9]. Define the projective
representation of the symplectic group on the quantum Hilbert space. Show that
it comes from a unitary representation of the metaplectic group [44, Section 10.2].

• Define the BKS construction and explain how this can be used to extend the space
of quantizable observables. Show that the operator corresponding to the kinetic
energy in R2n is (up to a constant) the Laplacian [Carosso], [44, Section 9.7], [38,
Section 6.3, 7.1-2].

Topic 10: Groenewold-Van Hove Problem for R2n (Steffen)
In this talk we investigate the Groenewold-Van Hove problem for R2n following mainly
[13] which yields to a weak and a strong no-go theorem in mathematical physics. Our
starting point is the space P(2n) of polynomials on R2n equipped with the Poisson
bracket {·, ·} which contains the Heisenberg algebra hn, the symplectic algebra sp(2n,R)
as well as the extended symplectic algebra hsp(2n,R). We are then ready to define
a general concept of quantization of subalgebras of P(2n) showing the importance
of the unitary dual of the Heisenberg group (Schrödinger representations). Starting
from construction of the Schrödinger representation we will show that there exists an
(extended metaplectic) quantization of the expanded symplectic algebra hsp(2n,R)
which cannot be expanded beyond by von Neumann rules. This is called the weak No-
Go theorem. Finally, since any quantization of hsp(2n,R) is unitary equivalent to the
extended metaplectic quantization the strong no-go-theorem follows, i.e. there exists
no quantization of P(2n).
Guidelines :

• Recall the definitions of the Heisenberg group and Heisenberg algebra (cf. [12,
Section 1.2]) and explain their physical significance.

• Classify the unitary irreducible representations of the Heisenberg group. There-
fore introduce the Schrödinger representations of the Heisenberg group (see [12,
Section 1.3]) and state the Stone-Von Neumann Theorem (see [12, Section 1.5])
without proof.

• Define the concept of qunatization given in [13] and relate it to the concept
of geometric quantization. Explain furthermore the relation to the Schrödinger
representation and the derived Schrödinger representation.
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• State and proof the weak no-go theorem starting from introducing the extended
metaplectic quantization, its uniqueness and the Von Neumann rules.

• State and proof finally the strong no-go theorem by following the path given in
Section 4 in [13]. Prove in the process only the very important results coming
from functional analysis.

Topic 11: Unitary Representations via The Orbit Method (Steffen)
As an application of geometric quantization we want to consider Kirillov’s orbit method
in the case of connected, simply connected, nilpotent Lie groups as the Heisenberg
group. The method was historically proposed by Kirillov in [19] to describe the unitary

dual Ĝ of a general reductive Lie group and indeed geometric quantization has its
origins in this method. Kirillov’s orbit method is a heuristic method in representation
theory establishing a correspondence between unitary representations of certain Lie
groups and geometric objects called coadjoint orbits. In this sense the method tries to
complete the circle: we understand geometric objects with group actions in terms of
representations, and we understand representations in terms of geometric objects with
group actions. The goal of this talk is to illustrate the connection between geometric
quantization and the orbit method and give a complete description of the unitary dual
Ĝ of a simply connected nilpotent Lie group G. As an example we will consider the
Heisenberg group Heis(R) and the (non-nilpotent) Lie group SU(2).
Guidelines:

• We start our journey with the geometry of coadjoint orbits. Introduce coadjoint
orbits and show that these orbits have a symplectic structure ([21, Section 1.1,1.2]
and [21, Section 2.1]). Give as examples the coadjoint orbits of SL(2,R),Heis(R)
and SU(2). Moreover, prove Theorem 1.1 in [20, Section 1.3].

• Explain both views of the orbit method: geometric quantization and induced
representations (cf. [27, Section 6], [20, Section 1.3], [21]). Relate both points of
view (cf. [18, Section 7]).

• Apply the orbit method to the Heisenberg group and the compact group SU(2).
State for which types of groups the orbit method works ([21]).

• Try finally to explain from a mathematical and physical point of view why the
orbit method works and finally the merits and demerits of the orbit method ([21],
Introduction). Moreover, if there is still time give an outlook to the general
compact group case.

Topic 12: Conformal Quantum Mechanics (Steffen)
The conformal group of a 1 + 0 dimensional quantum field theory is given by the
Lie group SL(2,R). Therefore, we can use representations of SL(2,R) to describe the
conformal symmetries of such systems. We start our journey by describing the (unitary)
representation theory of SL(2,R). The irreducible unitary representations of SL(2,R),
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up to unitary equivalence, are the discrete series D+
n (n ≥ 2), limits of discrete series

representation D±1 , principal series P+,iy for y ∈ R and P ,iy for y ∈ R\{0} such as the
complementary series C u for 0 < u < 1. We will use this fact to study the DFF model,
a conformal invariant quantum mechanical model introduced by de Alfaro, Furlan and
Fubini in 1976. The Hamiltonian of this model is given by

H =
p2

2m
+

g2

2x2
.

We will use the irreducible unitary representations of SL(2,R) and show in the DFF
model that for all values of the coupling constant g one can find the relevant quantum
mechanical system exhibiting exact SL(2,R) conformal symmetry. Its Hilbert space of
states spans an irreducible unitary representation of the SL(2,R) group (or its univer-
sal cover). We finally indicate how the resulting theory emerges form the geometric
quantization of the Hamiltonian dynamics on the relevant coadjoint orbits. Guidelines:

• Define conformal transformations and the conformal group of the semi-Riemannian
manifold Rp,q ([37, Section 1.2]), but only sketch the idea of conformal Killing vec-
tor fields and conformal compactification. Now restrict to the case d = 1 + 0 and
show that the conformal group is given by SL(2,R).

• State Bargmann’s Theorem (cf. Theorem 16.3 in [22]) of the unitary dual of
SL(2,R). Explain shortly each type of unitary irreducible representation in a
specific realization ([22, Section 2.5]).

• Explain the coadjoint geometry of SL(2,R) and relate the coadjoint orbits to
representations of SL(2,R) (([6, Section 8.3]) or [35]).

• As a toy model of conformal quantum mechanics we look at the DFF model named
after de Alfaro, Fubini and Furlan (see [9]). Construct for the DFF model fully
conformally invariant quantum mechanics for all values of the coupling constant
following [2]. Here its enough to explain the discrete series case in full detail.

What to do now?

Get acquainted with the general idea behind geometric quantization: Have
a quick look to the summary of all talks above and read the introduction to [Baykara].

Study the references of your talk and clarify questions: Ask us if you need help,
more references or copies of books. In the guidelines of the talks we suggested some of
the references in the list. However, useful information about every topic can be found
in almost all the items in the reference list so please have a look at several places.

Make an appointement with the person tutoring your talk: 1 or 2 weeks before
your talk to discuss your plan of the talk and to clarify open questions
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What to do after the seminar?

There is a Summer School Deformation quantization and convergence at the University
of Freiburg and online. The mini-courses look extremely interesting. All information
can be found at http://home.mathematik.uni-freiburg.de/GEOQUANT2021/school
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