Übungen zur Vorlesung Linearen Algebra I

Blatt 7

Aufgabe 1

Sei V ein Vektorraum und $f: V \to V$ eine lineare Abbildung. Zeigen Sie, dass die "Fixpunktmenge" $\{v \in V : f(v) = v\}$ ein Untervektorraum ist.

Aufgabe 2

Sei $f: V \to V$ eine lineare Abbildung wobei V ein Vektorraum ist. Sei $v \in V$ und $n \in \mathbb{N} \setminus \{0\}$ sodass $f^n(v) \neq 0 = f^{n+1}(v)$. (f^n bezeichnet hier die n-fache Komposition, also $f^n = f \circ \ldots \circ f$.) Zeigen Sie, dass $v, f(v), \ldots, f^n(v)$ linear unabhängig sind.

Aufgabe 3

Welche der folgenden Abbildungen sind linear?

- 1. $f: \mathbb{R}^2 \to \mathbb{R}^2$ gegeben durch $f(x,y) = (y^2, x)$.
- 2. $f: \mathbf{C} \to \mathbf{R}$ gegeben durch $f(z) = \Re(z)$ wobei \mathbf{C} als Vektorraum über \mathbf{R} zu betrachten ist.
- 3. $f: \mathbf{R}^2 \to \mathbf{R}$ wobei f(x,y) = 2x falls x = y und

$$f(x,y) = \frac{x^2 - y^2}{x - y}$$

falls $x \neq y$.

4. Sei $V=U\oplus W$ und $f:V\to U$ die Projektionsabbildung, also f(u+w)=u für alle $u\in U,$ $w\in W.$

Abgabe: Dienstag, den 2. 12. 2008, vor der Vorlesung.

Hinweise: Bitte Namen und Übungsgruppe auf jedem Blatt. Maximal 3 Namen zusammen. Für jede Aufgabe ein separates Blatt. Verschiedene Aufgaben nicht zusammenheften.