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ABSTRACT

Electronic toll collection (ETC) systems are becoming increasingly
popular, but are inherently privacy-sensitive as they deal with users’
location data. To this end, quite some research effort has been put
into the design of privacy-preserving ETC (PPETC) systems. In this
paper, we study the actual privacy properties of PPETC schemes,
which hide the individual toll fees from the toll service provider and
provide it only with a total monthly fee. Since previous work has
shown that PPETC schemes may not suffice to protect the privacy
of users in real scenarios, we analyze the effectiveness of using an
additional protection mechanism: applying a differential privacy
mechanism that hides the actual monthly toll fee by adding a small
amount of noise. While this seems like a straightforward solution, it
is not that simple: Since adding noise to monthly fees can increase
monetary costs for users, the added noise should be kept small.
But since adding more noise intuitively means more privacy when
applying differential privacy, one must carefully choose the amount
of added noise in order to strike a balance between privacy gain
and additional cost.

Our goal is to examine two popular differential privacy mecha-
nisms, namely d-privacy and the exponential mechanism, in order
to evaluate their effectiveness in protecting a user’s toll station vis-
its and to determine the associated privacy costs. To investigate how
well they hide the visited toll stations, we design for each protection
mechanism an attack mechanism that attempts to recover those
from a obscured monthly toll fee, and evaluate its effectiveness on
two real-world scenarios.
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1 INTRODUCTION

Electronic toll collection (ETC) is a technology that is primarily used
to finance road infrastructure, but can also be used for advanced
functions, such as congestion management and pollution reduction
through dynamic pricing. ETC systems are implemented by tolling
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service providers (TSPs), which are authorized to collect tolls and
manage the tolling system and are often private companies. In this
paper, we focus on post-payment ETC systems with monthly billing
periods, as these systems are more convenient for users than pre-
payment systems. In post-payment ETC systems, the TSP needs
to store certain sensitive information in order to be able to charge
users, i.e., users’ names, billing addresses, payment information,
and monthly toll charges. In practice, however, fine-grained billing
information, such as the exact times (and locations) of toll station
visits, is also stored, which inherently allows the TSP to track the
movements of each user. This issue has long been known in the
research community [28]. To address this privacy issue, several
privacy-preserving ETC (PPETC) schemes have been developed [4,
18, 21, 23, 29] that minimize information leakage to the TSP while
still allowing users to be charged.

However, research indicates that simply implementing PPETC
schemes may not sufficiently protect privacy [2, 8, 10]. This is
because there is still some information leakage to the TSP, such
as the monthly toll fee, which is needed for billing. In [2], it is
shown that the monthly toll fee, combined with publicly available
background data such as road maps and usage statistics, is, in some
cases, sufficient to violate user privacy. More specifically, an attack
is constructed on the real ETC system deployed in Brisbane that
reveals the toll stations visited by users with a monthly toll fee
of <10 dollars with a success rate of 94%. This attack stems from
the observation that, given the monthly billing fee, reconstructing
the visited toll station is equivalent to the well-known subset sum
problem (SSP). While the SSP is NP-complete from a complexity-
theoretic point of view, it may still be efficiently solvable for “small”
instances, such as the Brisbane ETC system.

Using Differential Privacy to Restore Privacy. While the con-
cept of using differential privacy (DP) to obscure monthly billing fees
for enhanced privacy has already been proposed [10], it overlooks
the critical consideration of the cost of privacy. This is particularly
important in ETC systems, where cost is a major concern for both
TSPs and their customers [22]. We address this gap by investigating
whether user privacy can be protected while ensuring that the asso-
ciated cost remains relatively small. To accomplish this, we consider
two DP-based protection mechanisms for ETC systems and evalu-
ate them in two real-world ETC infrastructures. We assume that
users themselves apply a DP mechanism before submitting their
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monthly fee to the TSP such that the TSP learns only the obscured
fee and not the original one.!

Trade-Off between Privacy & Utility. When employing the
DP framework, one must always carefully balance the privacy of
the users against the utility (= accuracy) of the noisy data. It is easy
to see that the higher the noise, the higher the privacy of the users,
but the lower the utility/accuracy of the data, and vice versa. In the
context of ETC, the addition of noise also corresponds to a higher
billing fee that a user has to pay.? How much users are willing to
pay for the privacy of their data is an independent research question
that does not seem to be fully answered yet. While the monetary
value of privacy has been empirically evaluated for “some” contexts
a few years ago (e.g., online privacy [20], location data privacy
[3, 9, 38], or removal from marketers’ call lists [36]), [1] suggests
that this question is not easy for many people to answer and is
highly context-dependent. In this work, we, therefore, do not make
assumptions about the costs users are willing to bear for their data
privacy, as this is a separate line of research. Instead, we focus on
developing a mechanism to hide the exact monthly toll fees from
the TSP, while evaluating how much noise needs to be added to
achieve ¢-DP for a given ¢.

Our Contribution. We examine two differential privacy mech-
anisms, namely d-privacy [7] and the exponential mechanism [27],
each of which provides a different granularity of privacy. We evalu-
ate their effectiveness in protecting a user’s toll station visits from
an adversary by simulating attacks on the obscured monthly toll
fee and evaluating their success chance. We also examine the cost
the users have to pay for hiding their toll fee.

Our results show that for ¢ < 1, both mechanisms achieve e-DP
and successfully prevent an adversary that uses a maximum likeli-
hood approach [31, 33] from determining the visited toll stations.
However, the monthly cost coming with this may be multiple dol-
lars. When considering a less stringent privacy notion, i.e., e-DP
for ¢ = 5, the adversary can determine the visited toll stations
with a higher, but still small, chance, with significantly lower costs.
Whether or not this obfuscation approach is suitable for real-world
ETC schemes depends on the price the users are willing to pay for
their privacy.

2 BACKGROUND

We introduce some terms and concepts used in our ETC scenario
and describe our DP frameworks. An overview of the used variables
can be found in Appendix A.

2.1 ETC Background

We introduce several notions that are used in our ETC scenario.
Note that we adopt some notions from [2].

Billing Period: We assume users pay their tolls once per billing
period, e.g., once per month.

Toll Stations: We use S = {s1, s, ...,5;} as set of toll stations.

1We assume that the user also appends a zero-knowledge proof that they applied the
DP mechanism correctly. Details on this can be found in Remark 2.

ZSince we assume that the noise can also be negative, there is a possibility that the
TSP will lose some of its revenue. Therefore, it is also in the TSP’s interest to keep the
noise small.
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Pricing Model: We define the pricing model of an ETC scheme
as a set of toll prices P = {p1, p2, ..., p;}, where each price p;j is
fixed and assigned to toll station s;.

Trace: A trace records the toll stations visited by a user during
a billing period, including the frequency [2]. A trace is denoted
as trace = {(s1, f1), (s2, f2), - - -» (s, f1)}, where f; is the frequency
associated with the toll station s;.

Wallet: A wallet represents the state of a user at the end of a
billing period. It consists of the trace trace and the wallet balance®
w, i.e., the sum of all prices of the visited toll stations. Given w, the
following equation holds:

w=p1-fitpa-fot+-+p-fi, fiE€Ng

Plausible Wallets: The set of plausible wallets is the set of all
wallets that can be possibly achieved, given a pricing model P. To
determine the plausible wallets falling within the range of [wy, wy,],
we formulate the following inequality and find all solutions within
this range.

wp<pr-fitpz ot tpr-fj <wy (1)

The set of all solutions derived from Inequality 1 is denoted as W),
where each element (id, w, trace) consists of a wallet id id, a wallet
balance w, and a trace trace. Note that we add ids to wallets here to
be able to differentiate between wallets that have the same balance,
but different traces. Note that the set of plausible wallets could then
be further refined by using information about the road network
and connectivity between toll stations. Solutions from Inequality 1
can be discarded if they are not possible given the road network.

Plausible Trace: A plausible trace is a trace that can be possibly
achieved by a user and is linked with a plausible wallet. The set of
plausible traces is defined by T, = {trace | (-, -, trace) € Wp}.

Cost of Privacy: We define the cost as the difference between
the balance of the original wallet and the balance of the obfuscated
wallet.

Subset Sum Problem (SSP): The SSP is an NP-complete prob-
lem [25], where we consider a set A = {a; : 1 < j < k,aj € No}
and a value M € Ny, i.e., a non-negative integer. The aim is to find
xijssuch that ag - xy +az - x2 +- - +ag - x = M, xj € Np.

2.2 Differential Privacy

Differential privacy (DP) was introduced as a standard for protect-

ing personal records within datasets. The intuition behind DP is

that the presence or absence of a record in a dataset should not

significantly modify the statistics extracted from the dataset [11],

and the information leakage from the statistics should be negligible.

By doing so, the privacy of each individual record will be preserved.
We now review some terms used in the context of DP.

2.2.1 Differential Privacy Fundamentals.

Definition 2.1 (Distance). The distance Dist(D1, D) between two
datasets D1 € O and Dy € D equals the number of records where
D and D differ.

Definition 2.2 (e-differential privacy). A randomized mechanism
K gives e-differential privacy (¢-DP) if for all datasets D1, D € D

3Note that we will frequently abbreviate the wallet balance with just wallet.
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differing on at most one record, i.e., with Dist(D1, D2) < 1, and all
S C Range(K) it holds that

Pr[K(D) € S| D =D;] < ¢ -Pr[K(D) € S| D = Dy].

Intuitively, mechanism K provides e—differential privacy if adding
or removing a single record in a dataset only affects the probability
of any output by a small multiplicative factor [32]. The privacy
parameter ¢ quantifies the level of privacy loss. A smaller value of
¢ indicates less privacy loss [13].

In our case, the dataset will be the set of users’ wallet balances.

Definition 2.3 (Global sensitivity). The global sensitivity of a query
function f : D — RY is the maximum distance between the values
of the function for V Dy and D, differing in at most one record,
ie, Ay = max||f(D1) — f(D2)ll1, where Dist(D1,Dz) < 1, and
D1, D; € D.1t’s important to note that sensitivity is a characteristic
of the function itself and is not influenced by the database [12].

Definition 2.4 (Laplace mechanism). Dwork et al. [14] demon-
strated that e-DP can be obtained by adding independent and iden-
tically distributed noise to the output of query f. The noise x is
specifically sampled from the Laplace distribution (Lap()), whose

—lx—pl

probability density function (pdf) is denoted as K(x) = ﬁe T,
where y is a mean and A is a scale factor. Dwork et al. prove that

adding noise from Lap(%) to an output of query f with global
sensitivity Ay gives e—differntial privacy.

2.2.2 Metric Differential Privacy (d-Privacy).

Definition 2.5 (Metric differential privacy (dy-privacy)). Standard
differential privacy makes it challenging to fully protect a value
without adding an excessive amount of noise. However, by adopting
a more relaxed metric, we can ensure a meaningful privacy guaran-
tee by maintaining the accuracy of the values. Metric privacy helps
protect the accuracy of a value [7], such as a wallet balance in our
case. This is particularly useful, as disclosing the exact value of a
wallet balance could reveal information about a user’s movements,
e.g., a trace [2]. Differential privacy can be extended to apply to any
set of secrets X, provided it is associated with a metric dx [7]. In
our case, we define the metric dy as the Euclidean distance between
two wallet balances. Let ¥z be a o-algebra over Z and let P(Z)
be the set of probability measures over Z. A metric on a set X is
a function dy : X? — [0, o) such that dx (x,y) = 0 if and only if
x =y, dx(x,y) = dx(y.x), and dx (x, z) < dx(x,y) +dx(y,z) for
all x,y,z € X. A mechanism K : X — P () satisfies e-dx-privacy,
iff Vx,x’ € X and ¢ > 0:

K(x)(2) < &K (K'Y (2) VZeFy

Intuitively, the definition implies that secrets that are hardly indis-
tinguishable with respect to dx should yield outcomes with nearly
the same likelihood [7]. In general, mechanisms developed for dif-
ferential privacy can be adapted for metric differential privacy by
using an appropriate metric for the domain [17]. In our case, we use
the Laplace mechanism (see Definition 2.4) to provide dy-privacy.
We prove in Appendix B.1 how the Laplace mechanism ensures
e-dx-privacy.

Parameters RE, z, pr. We also provide a reasonable relative error
bound RE while applying metric differential privacy, meaning that
the extra cost should be tolerable w.r.t users with minimum wallet
balances. We measure the relative error as RE = w = I_ﬁ\
where N is the amount of noise added to w for obfuscation [37, 39].

We relate RE to privacy (), given parameters such as sensitivity
(A) and Laplace’s scale (1). To this end, we calculate the probability
pr of a random Laplace noise exceeding the maximum noise z. The
following integral computes the cumulative distribution function
for the Laplace distribution over the interval [-z, z]:

z
Pr(-z<x<2) :=/ ie%dle—e%
—z 24

From this, we derive Pr(|x| > z) = ex. Let pr = Pr(|x|] > 2),
meaning that with probability pr, the random noise has an absolute
value of at least z or, in other words, with probability 1 — pr, the
noise has a value of at maximum z. We thus call pr the out-of-bounds
probability, since it denotes the probability that the generated noise

is outside the bound defined by z.
The maximum noise z for a given pr is then obtained as z =
—A-In(pr). Given A = % and z == —A - In(pr), the following holds:

= -2 inipr) @
&

To ensure that the relative error remains below the specified thresh-
old denoted as RE for every wallet w in the set W, the condition
RE =
set W. Itmls evident that the relatlve error will be less than and equal
RE for all w > wp,in. Given RE = . (2), we can derive
the following:

z  =A-In(pr)

Wmin € Wmin

RE =

®)

Figure 3 in Appendix B.2 shows how different parameters are con-
nected in Eq. (3). One interpretation of Eq. (3) is that to guarantee
the relative error RE, the ¢ of the Laplace mechanism should be
derived as
. -A- ln(pr). @
RE - Wmin
Post-processing. Let K be an e~DP mechanism, and g be an
arbitrary mapping from the set of possible outputs to an arbitrary
set. Then, g o K is e-differentially private as well [16, 40]. In our ap-
plication, when dealing with obfuscated wallet balances, we clamp
them to the interval [0, Wgx ], where wiqx is the maximum wallet
balance, and round to cents.

2.2.3 The Exponential Mechanism.

Definition 2.6 (Exponential Mechanism). The exponential mech-
anism provides more fine-grained privacy. Instead of merely obfus-
cating wallet balances through the d-privacy mechanism, it allows
us to adjust the level of privacy by obfuscating traces, including
both the toll stations visited and their frequencies, using a scoring
function. With a privacy parameter ¢, an outcome set R, and a scor-
ing function u : D X R — R which maps (x € D,r € R) pairs to a
real-valued score, the exponential mechanism Mg (x, u, R) samples
a single element r from R according to the following probability



distribution [27]:
exp (5-124.(Ax;r) )
Prr] = —————
eu(x,i)
YlieR €Xp (—Z'Au )
The goal is to select a candidate item r € R that approximately max-
imizes u(x, r) while ensuring e-differential privacy. The sensitivity
of the scoring function u is defined as

©)

Ay = maxmax |u(x,r) —u(x’,r)| (6)
reR x,x’

where x and x” are neighboring datasets [27]. In our case, D = R,
which equals the set of plausible traces Tp. Note that we assume
all traces to be “neighbors”, thus aiming to hide the complete trace
from the adversary. We aim to map an original trace € T to an
obfuscated trace € T, using the u function. The cost is calculated
as the absolute difference between the obfuscated wallet and the
original wallet associated with the obfuscated and original traces.

3 WALLET OBFUSCATION MECHANISMS

In post-payment ETC systems, users often settle their debt once
per billing period, i.e., they clear their wallet balance, which cor-
responds to the sum of all prices of all toll stations visited during
that billing period. It is shown in [2, 8] that revealing the exact
wallet balance can violate user privacy, since a user’s trace may
be recovered with significant probability with appropriate addi-
tional information. To address this issue, we present two different
DP-based wallet obfuscation mechanisms.

3.1 Obfuscation based on d-Privacy

We first present a wallet obfuscation mechanism based on d-privacy
(cp. Definition 2.5), which obscures the final wallet balance. The wal-
let obfuscation algorithm is shown in Algorithm 6 in Appendix C.1
and gets the user’s actual wallet balance w, the minimum possible
wallet balance wp,ip, the maximum possible wallet balance wp,qx,
the relative error threshold RE, and the out-of-bounds probability
pr as input. Note that wyi, and wpay are defined by the pricing
scheme and thus fixed for a given ETC scheme and that the privacy
level ¢ is fixed through RE, pr, and wpmin (cp. Eq. (4)).

The algorithm first sets the scale A of the Laplace mechanism
A

using Eq. (4) and the relation A = Z as follows:

A A

¢ —=(A-In(pr))/(RE - Wmin)
Then it generates noise N using the Laplace mechanism with scale
A and adds N to the wallet balance w to get the obfuscated wallet
balance w,. Afterward, post-processing is performed: The obfus-
cated wallet balance w, is clamped to the interval [0, wpax] and
rounded to two decimal places (since wallet balances are expressed
in dollars and cents). Finally, the algorithm returns wy.

We want to highlight that the generated noise N falls into inter-
val (—z, z), with probability 1 — pr, ensuring the additional costs
are capped at RE percent of wy,i, with overwhelming (1 — pr)
probability (cp. Eq. (3)).

A=

= —(RE . Wmin)/l”(pr)

Remark 1. Algorithm 6 is intended to be run by the user after each
billing period, so that only w, and not w is sent to the TSP for billing
purposes. As such, the user needs appropriate information to sample
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the noise according to the TSP’s intended distribution. Instead of
providing the user with the obfuscation parameters (wpmin, RE, pr),
it is sufficient to provide the user with A, since Algorithm 6 uses
the obfuscation parameters only to compute A.

Remark 2. We assume that Algorithm 6 is used in combination
with privacy-preserving ETC schemes. These should already use
cryptographic methods to ensure that a user’s final wallet balance
w correctly equals the sum of the individual toll fees, without the
TSP learning the individual toll fees. Since the TSP now learns w,
instead of w, the TSP must again ensure that w, represents the
correct wallet balance. To achieve this, the user can, for example,
send w, together with a zero-knowledge proof (proving that w,
was computed from w using Algorithm 6 for some w?) to the TSP.
Note that if users are not trusted to sample N « Lap(1) honestly,
the user and the TSP could engage in a joint coin toss to sample
the noise N together [24].

Impact of Parameters on Generated Noise. In Appendix C.2
we discuss how the out-of-bounds probability pr and minimum
wallet balance wy,i, impact the generated noise, which defines the
extra amount of cost users have to bear for privacy. In a nutshell,
we show that TSPs either need to fix a privacy goal (¢) and then
see how much noise they need to achieve that or they need to fix a
noise bound z and see how much privacy they achieve with that.

3.2 Obfuscation based on the Exponential
Mechanism

Next, we construct an obfuscation mechanism based on the expo-
nential mechanism Mg (cp. Definition 2.6), which operates on traces
directly. The pseudocode of the mechanism is shown in Algorithm 1.
The core idea is that, given a fixed trace trace € Tp, Mg selects a
trace from T, that maximizes the score while guaranteeing privacy.
Our scoring function u : Tp X T, — R uses both Euclidean and
similarity distances to calculate the score of two traces:

(1) The Euclidean distance d,,,.; measures the difference between
the two wallet balances associated with the traces

(2) The similarity distance dsj, measures how similar the traces
are in terms of toll station visits

For a high score, the Euclidean distance should be small (low cost),
while the similarity distance should be high (very different traces).
To compute the final score, we assign weights a,,,.; and asim (with
Qeyel + Asim = 1) to both distances, allowing a TSP to adjust the
impact of each distance on the score. Then we compute the score as
score = (dy;,. - dsim _d;ucl “@eycl), Where dy; . (resp. d;ucl) is dsim
(resp. deyeq) scaled to the range [0, 1]. Given score, we compute the

probability that trace; € T is selected by Mg as prob = e“Th
where A is the sensitivity of the scoring function (in our case, A = 1).
After doing this for all trace; € Tp, Mg samples an obfuscated trace
according to the normalized probabilities prob. Note: The TSP can
enhance the scoring function by incorporating additional param-
eters, enabling a more precise and customizable level of privacy
granularity. Additional details on Mg are given in Appendix D.

“For w, the correctness is already ensured by the PPETC scheme (which could also
use a zero-knowledge proof to achieve this).
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Algorithm 1 Obfuscation Algorithm based on the Exponential
Mechanism

Input: trace € Ty, Ty, &, @pycr € [0,1], asim € [0, 1]
Output: obf_trace
1: function EXPONENTIAL_OBFUSCATION(trace, Tp, €, @teycl> Osim)
2: (max_eucl, max_sim) < coMPUTE_MAX_DIST(T}p)
Declare arr_score[|Tp|]
for all trace; € T, do
deycl < COMPUTE_EUCLIDEAN(trace, tracej)
dsim < COMPUTE_SIMILARITY(trace, trace;)

d;ucl ¢ dgyc1/max_eucl
. < dsim/max_sim

arr_score[jl « (dy;,, « dsim —d. - Qeycl)
10: end for

11: arr_prob « COMPUTE_PROB(arr_score, &, A == 1)
12: arr_norm_prob <« NORMALIZE(arr_prob)

13: obf_trace « SELECT_RAND(arr_norm_prob, Ty)
14: return obf _trace

15: end function

Algorithm 2 Precomputation for Attack on d-Privacy
Input: Wp, RE
Output: list_ranges
1: function PRECOMPUTATION_METRIC_ATTACK(Wp, RE)
2: z < RE - Wmin

3: for all w € W, do

4 l—w-z

5 U—w+z

6: if [ < 0 then

7: <0

8: end if

9: if u > wpayx then
10: U — Wmax

11: end if

12: R« (Lu)

13: list_ranges < (R, w)
14: end for

15: return list_ranges

16: end function

4 DEOBFUSCATION ATTACKS

To measure the effectiveness of the DP-based wallet obfuscation
mechanisms, we design attacks against them in this section and
evaluate their effectiveness later in Section 5. For all attacks, the
adversary outputs a guess for the original trace. We start with an
attack against the d-privacy-based approach.

4.1 Deobfuscation Attack on d-Privacy

We begin by discussing our threat model, followed by describing the
three steps of the attack: (1) Precomputation, (2) Wallet Recovery,
and (3) Trace Recovery. In step (2), we first guess the original wallet
balance, given an obfuscated wallet balance, and then assign that
balance a trace in step (3). Afterward, we discuss what influences
the success rate of the deobfuscation attack.

4.1.1 Threat Model. Although the privacy level in the DP frame-
work is parameterized by ¢ [10]; it does not reflect the absolute level
of privacy for a user, i.e., what can really be inferred from a user’s
secret [12, 15, 30]. To analyze the privacy level of our mechanism,
we consider a threat model where an adversary A exploits some
background information so as to measure what actually can be
learned from an obfuscated wallet. Our threat model is similar to
the one in [2]. We assume a passive adversary, i.e., it only observes
information but does not manipulate any data. A has access to an
obfuscated wallet balance, denoted as w,, for which it wants to
identify the correct (deobfuscated) trace. In addition, it has access
to the set of all toll prices P (e.g., by consulting the TSP’s website).
A can also obtain all plausible wallets, denoted as Wj, using the toll
prices and Eq. (1). Furthermore, A knows the maximum relative
cost that users are expected to pay to maintain privacy, denoted by
RE. We assume that RE is publicly available information, so users
know what costs to expect. In summary, the adversary’s knowledge
is represented as K = {wy, P, WP,RE}.

4.1.2 Step 1: Precomputation. First, A pre-calculates all possi-
ble ranges that an obfuscated balance w, can fall into. Each range R

contains all possible obfuscated balances corresponding to a given
original balance w. To create each range, A computes the lower
and upper bounds of the obfuscated values associated with w, us-
ing w itself and z. Recall that all generated noises fall within the
interval (—z, z) with probability 1 — pr (cp. Section 3.1). The pseu-
docode for the precomputation algorithm is given in Algorithm 2.
A takes Wy, RE as input and computes z = RE - wiin (cp. Eq. (3)).
Then, for each w € W), A computes its lower and upper bounds
asl:=w —zand u = w + z, respectively, and clamps ([, u) to the
interval [0, wiax]. A then constructs the corresponding range as
R = (I, u). Finally, A stores the pair (R, w) in a list list_ranges.

Note that the precomputation step needs to be executed only
once when deobfuscating the first wallet balance and can be skipped
when deobfuscating further wallet balances.

4.1.3 Step 2: Wallet Recovery. The idea behind finding the cor-
rect wallet associated with the obfuscated wallet w,, is to first com-
pute which ranges (computed in Step 1) w,, falls into and then select
one of them. The goal is to deobfuscate a wallet w, using the list
of precomputed ranges list_ranges computed in Step 1. For each
(R, w) in the list, A checks whether w, falls into R or not. If it does,
A retrieves its corresponding wallet w from the tuple (R, w) and
adds it to the list of deobfuscated wallets (list_deobf_wallets) as a
candidate for being a deobfuscated wallet. After obtaining the list
of deobfuscated wallets, A selects one of them, denoted as we, as
its solution for the correct wallet. This selection can be based on
different strategies, which will be discussed soon in Section 4.1.4.

Later in the evaluation part, we will need the term overlapping
ranges: Given two precomputed ranges and their corresponding
wallets (R1 = (w1—2z, w1+2), w1) and (Rz = (wy—2z, wa+2), wz), we
say that Ry and Ry overlap each other iff 2-z > g holds, where g is the
distance between the wallets w; and wy. Intuitively, deobfuscation
becomes more difficult when more ranges overlap. This is because,
among the overlapping ranges that include the obfuscated wallet
Wo, A must correctly identify the range that includes the correct
wallet w¢ corresponding to w,.



Algorithm 3 Wallet Recovery Attack on d- Privacy

Input: wy, list_ranges

Output: w,
1: function METRIC_WALLET_RECOVERY_ATTACK(w,, list_ranges)
2 for all (R, w) € list_ranges do

3 if w, € R then

4 list_deobf _wallets «— w

5 end if

6: end for

7 we «— SELECT(list_deobf _wallets)

8 return w,

9: end function

4.1.4 Success Rate of the Wallet Recovery Attack. To obtain
the success rate for deobfuscating w,, we compute the probability
that A correctly guesses the correct trace. We first examine the
success rate of the wallet recovery attack.

For the wallet recovery attack, A is given w, and has to output
the correct original wallet balance w., which is among all deob-
fuscated wallet balances in the list list_deobf_wallets := {w1, wy,
..., Wi}, each of which is a candidate for being a correct wallet.
The index ¢ in w. denotes an arbitrary but fixed wallet in the list
list_deobf_wallets. The adversary could use different strategies
to distinguish between the wallets in the list, assigning different
probabilities to each as being correct. Consequently, using different
strategies could result in different success rates. We now discuss
three different strategies.

Baseline Strategy. To select the correct wallet from the list,
we treat the following method as a baseline strategy: randomly
selecting a wallet (w;) with equal probability. The success rate
of the attack with this strategy, i.e., the probability of correctly
guessing the correct original wallet balance, is computed as SR =
1/ |list_deobf_wallets| = 1/k.

Strategy 1. A more advanced strategy than the baseline strategy
is to use the fact that w;s that are closer to w, are more likely to be
connected to w,. This is due to the fact that smaller deviations (i.e.,
noise) are more likely than larger ones in the Laplace distribution.
To determine the probability that w; is the correct wallet connected
to wy, the adversary computes the probability ¢; for each w; in the
list using Laplace (cp. Definition 2.4):

ZIwo—wi ZIN;

¢i5:$6‘/1 ‘:ie%
where Nj is the noise added to w; for obfuscation. Thus, the adver-
sary obtains the set {¢1, 2, . .., ¢r }, where ¢; corresponds to w; in
the list of deobfuscated wallets. Since the probabilities in the set
might not add up to one, they need to be normalized. Finally, from
the list of deobfuscated wallets, the adversary picks the w; whose
associated normalized probability ¢; has the highest value. Note
that this is a maximum likelihood strategy [33].

Strategy 2. If the adversary has more background knowledge
than initially assumed in the threat model (cp. Section 4.1.1) and
knows the probabilities of (original) wallet balances occurring in the
system, this strategy can be used. Strategy 2 builds upon strategy 1,
but the adversary enhances its guessing by utilizing statistics on
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the frequencies of occurrences of w; collected over many periods.
Basically, the more frequently w; appears in the system, the more
likely it is to be associated with w,. Let’s say the adversary knows
the probability, i.e., w;, of each plausible wallet w; occurring in the
ETC system. The probability that w; is connected to w, is calculated
by multiplying two probabilities for two independent events: (1) The
probability w; that w; occurs in the ETC system. (2) The probability
¢; that w; is connected to w, using Laplace (cp. Strategy 1). Thus,
the final probability is computed as i/; := ¢;-w;. Similar to Strategy 1,
the adversary obtains the set {1, ¥, . . ., Y+ }, where ¥; corresponds
to w;s and then normalizes the probabilities so that the sum of all
i equals one. Finally, from the list of deobfuscated wallets, the
adversary picks the w; whose associated normalized probability
/i has the highest value. Note that we will use Strategy 1 for our
evaluation in Section 5.1 since we do not have detailed knowledge
of wallet balance occurrences for our case studies.

4.1.5 Step 3: Trace Recovery. Given a guess of w for the original
wallet balance, the adversary now needs to find the trace corre-
sponding to w. For that, we employ the trace finding attack from
[2, Section 4], which gets a wallet balance as input and outputs a
possible corresponding trace.

The success rate for the complete deobfuscation attack is then
determined by multiplying the success rates of the wallet recovery
attack with the success rate of the trace recovery attack from [2].

4.2 Deobfuscation Attack on the Exponential
Mechanism

We begin by discussing our threat model, followed by describing
the two steps of the attack.

4.2.1 Threat model. Similar to the threat model in Section 4.1.1,
we assume a passive adversary A that has access to the set of all
toll prices P and thus also to the set of plausible wallets W), and
the set of plausible traces Tp. Furthermore, we assume for evalu-
ation purposes that A knows the parameters of the exponential
mechanism, i.e., €, A, Qg and agim. But depending on who the
real-world adversary is, it might not have access to all of these
parameters and may have to guess (some of) them. It also knows an
obfuscated trace trace, which it wants to deobfuscate. In summary,
our adversary knowledge is represented as K = {trace,, P, Wy, Tp,
&0, Qeycls Asim}-

4.2.2 Deobfuscation Attack. The attack includes two steps: (1)
precomputation and (2) deobfuscation. In the precomputation phase
(cp. Algorithm 4), A creates a table containing the probabilities
that trace; got mapped to trace; during obfuscation, for i, j € {0,
..+, |Tp| = 1}. For that, the exponential obfuscation algorithm (Algo-
rithm 1) is executed for each trace; € T), to get the probability that
this trace gets mapped to tracej, for all tracej € Tp. The results are
stored in a table, where the cell (i, j) contains the likelihood that
trace; is mapped to trace;j. .

In the deobfuscation phase (cp. Algorithm 5), given an obfus-
cated trace tracej, A simply selects the cell in the jth column that
contains the maximum of the jth column. This cell holds the id of
the trace with the highest probability of being the original trace.
Note that attack is again a maximum likelihood strategy.
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Algorithm 4 Precomputation for Attack on the Exponential Mech-
anism

Input: Tp, &, doycl, Asim
Output: table
1: function PRECOMPUTATION_EXP_ATTACK(Tp, &, Xeycl> Asim)
2 Declare table[|T,|][|Tpl]
3 for all trace; € Ty do
4 input « (trace;, Ty, ¢, Qeycls Asim)
5 arr_norm_prob « COMPUTE_NORMALIZED_PROB(input)
6: \\This executes EXPONENTIAL_OBFUSCATION until
7
8
9

\\Create 2-dimensional array

arr_norm_prob is computed
table[i] « arr_norm_prob
end for
10: return table
11: end function

Algorithm 5 Attack on the Exponential Mechanism

Input: trace, € Tp, Tp, table
Output: trace.

1: function EXP_ATTACK(trace,, Tp, table)

2 Declare column[|Ty|]
Let j be the index for which trace, = T [j] holds
for i from 0 to |Tp| — 1 do

column|i] « table[i][J]

end for
index « arg_max(column) \\Find maximum probability
tracec < Tp[index]

9: return trace.
10: end function

\\get jth column of table

5 EVALUATION

We now evaluate the effectiveness of our deobfuscation attacks
against our wallet obfuscation mechanisms to determine the level
of privacy achievable and the associated costs. Using the current
ETC systems in Brisbane and Melbourne as case studies, we ap-
ply their parameters,i.e., toll stations and prices, to a hypotheti-
cal PPETC scheme. We then assess whether adding d-privacy or
exponential-DP to this scheme helps in hiding the toll station visits.
The adversary’s goal, in this section, is to recover the original trace
of the user, given an obfuscated wallet. Note that in Appendix G, we
consider a more relaxed attacker where the adversary tries to find
a trace that is just similar to the original trace instead of finding
the exact trace.

5.1 Evaluation of d-Privacy

We analyze the effectiveness of the deobfuscation attack against
the d-privacy approach as follows.

Privacy Analysis. We evaluate the privacy level of an individual
by calculating the success rate of the deobfuscation attack from
Section 4.1, while using Strategy 1 (cp. Section 4.1.4) for the selection
of the deobfuscated wallet, for different ¢, namely ¢ € {0.5,1,5}.
More precisely, we perform the following steps:

Step 1: For a given ¢ € {0.5,1,5}, we compute the correspond-
ing relative error bound RE and the noise bound z. We then

execute the precomputation phase (cp. Section 4.1.2) to get
for each wallet w the range R in which all obfuscated wallets
fall into (with probability 1 — pr).

Step 2: For each wallet w, we take the corresponding range R
of possible obfuscated wallets (computed in step 1). Then, for
each w, € R we execute the wallet recovery attack (cp. Sec-
tion 4.1.3).

Step 3: To get the results for the complete deobfuscation attack,
we multiply the probability that the adversary can recover
the correct wallet balance (obtained in step 2) with the proba-
bility that the correct trace can be recovered from that wallet
balance.

Foreach ¢ € {0.5,1, 5}, we provide the results of the privacy analysis
for the complete deobfuscation attack as a graph. Note that in
Appendix E we additionally provide the results for just the wallet
recovery attack (without trace recovery).

Cost Analysis. We also evaluate the amount of additional noise
introduced by obfuscation for the same es used in the privacy eval-
uation. This helps us to understand at what cost the level of privacy
is achieved. The cost analysis includes the following steps:

Step 1: For different ¢ and its associated RE, we add noise to
each plausible wallet w to obtain its associated obfuscated
wallet wy, using Algorithm 6.

Step 2: Having obtained an obfuscated wallet, we compute the
cost as |wy, — W/, for each w and its corresponding wj.

We repeat this 1000 times to get a good estimate of the costs. The
cost analysis results are presented in a table, where each row dis-
plays various parameters, including pr, RE, ¢, non-outliers, outliers,
and z. The columns for non-outliers and outliers are determined
using a box plot method that identifies noise data distribution (ex-
plained in Appendix C.2). The non-outliers, outliers, and z, are
given in dollars.

5.1.1 Brisbane Case Study.

Parameters. To evaluate our attack, we utilize the actual pa-
rameters of Brisbane’s ETC system [6, 34, 35], which has also been
examined in [2]. We use the following parameters for our evalua-
tion:

Toll prices (P): The 9 toll prices (in dollars) are as follows [34]:
P ={1.72,2.68,2.84,3.19,4.09,4.55,5.11,5.11, 5.46}.

Plausible wallets (W,): Based on the toll prices, we can com-
pute the set of plausible wallets W, within the range [$0, $10] >
using Eq. (1).

Obfuscated wallets (W,): We obtain the ranges that include
the obfuscated wallets through the precomputation phase.®
Parameters needed for obfuscation of wallets include RE,
& Wmin, pr, and A. The parameter RE is computed using
£€{0.51,5}, A =1, wpip = 1.72 and pr = 0.001. Note that
the parameters ¢, and pr are not available to the adversary;
they are only used for the purpose of our evaluation.

5Since we will see that larger wallets are easier to obfuscate, we intentionally examine
only “small” wallets to better see the effects of the obfuscation.

®Since it is not feasible to display every precomputed range on the x-axis of the graphs,
we exclude ranges with success rates that are very similar.



pr  RE ¢ | non-outliers outliers z
0.001 80 05| (40,46) (-82099) 13.82
0.001 40 10| (2224 (73,95 691
0.001 08 50| (-0505) (2.6 20) 138
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pr  RE ¢ | non-outliers  outliers z
0.001 7.2 05| (41,47) (81,100) 13.82
0.001 3.6 10| (24,26) (6992 691
0001 07 50| (0505 (20,15 138

Table 1: d-privacy for Brisbane case study: Each row shows
the noise range w.r.t different ¢ and corresponding RE.

Privacy Analysis. Figure 1a shows the success rate of the com-
plete deobfuscation attack. Each range (-, -) on the x-axis encom-
passes all obfuscated wallets w, w.r.t one plausible wallet w. Note
that for space reasons, not all plausible wallets are labeled on the x-
axis, but all 93 possible wallets in the range [$0, $10] have their suc-
cess chance plotted. Overall, Fig. 1a demonstrates that for ¢ € {0.5,
1} all success rates are pretty similar. Only the smallest and the
second-smallest wallet balances have a deobfuscation success rate
>5%, and most wallet balances have a deobfuscation success rate
<0.2%. For ¢ = 5, only wallet balances below $6.77 have a deobfus-
cation success rate >5%. Note that success rates are higher than
the corresponding ones in the graphs for ¢ € {0.5, 1}. Since here
considerably less noise was used, this is not surprising.

In all three graphs it is evident that higher wallet balances have
lower success rates. This is because there are significantly more
possible wallets with higher balances than ones with lower balances,
and thus higher balances are harder to deobfuscate due to there
being more possible original balances.

Cost Analysis. Each row in Table 1 displays the non-outlier
and outlier noise values corresponding to ¢ € {0.5,1,5}. The ta-
ble clearly shows the trade-off between privacy and cost. ¢ = 0.5
provides very good privacy, but the expected cost (non-outlier) is
quite high at <5 dollars. For ¢ = 1, which also achieves very good
results in the privacy analysis, the expected costs are significantly
better at <2.6 dollars, but are still above w,;p (1.72 dollars). Only for
¢ =5 are the expected costs <0.6 dollars, but this variant performs
notably worse than the other two in the privacy analysis.

Remark 3. Note that approximately 94% of the noise values are
non-outliers, which satisfies the threshold defined by RE and are in
the range (—z, z). About 6% of noises are considered outliers, some
of which are greater than the noise bound z. The probability that a
generated noise is outside (—z, z) is set to pr = 0.001.

5.1.2 Melbourne Case Study.

Parameters. As a second real-world example, we examine a
PPETC system based on the Melbourne ETC system [26], which
has the following parameters:

Toll prices (P): We assume the following 19 toll prices (in dol-
lars): P = {1.92,1.92,3.07, 3.07, 3.07, 3.07, 3.84, 3.84, 4.99, 6.14,
6.14,6.91,6.91,6.91, 8.06,9.98,9.98, 9.98, 10.75}.

Plausible wallets (W}): As for the Brisbane case study, we
obtain all plausible wallet balances within the range [$1, $10]
with Eq. (1).

Obfuscated wallets (W,): As for the Brisbane case study, the
parameters needed for the obfuscation of wallets include
RE, &, Wmin, pr, and A. The parameter RE is computed using

Table 2: d-privacy for Melbourne case study: Each row shows
the noise range w.r.t different ¢ and corresponding RE.

e €{0.5,1,5}, A =1, wpin = 1.92 and pr, which we set to
pr = 0.001.

Privacy Analysis. For the complete deobfuscation attack, Fig. 1b
shows a trend similar to Fig. 1a, but with a notable difference: the
overall success rate is smaller compared to the Brisbane case study.
For ¢ € {0.5, 1}, the difference is that now only the smallest wallet
balances have a success rate >5%. A more notable difference is for
¢ = 5, where the success rate is >5% for the three smallest wallet
balances and pretty small for all others.

When comparing the results from the complete attack with only
the wallet recovery attack (cp. Fig. 4b), the complete deobfuscation
attack performs notably better than the wallet recovery attack alone.
This is probably due to the fact that our price list for Melbourne
contains several toll stations that share the same price, thus making
visits to them indistinguishable given a wallet balance.

Remark 4. Figure 1b shows only 13 different wallet ranges since
there are only 13 possible wallet balances that are <10 dollars.

Cost Analysis. Table 2 is very similar to Table 1, since they
share the same z values (cp. Eq. (3)). The only difference is that the
relative error bound RE is smaller than for Brisbane since wy,ip, is
higher.

5.2 Evaluation of the Exponential Mechanism

We analyze the effectiveness of the deobfuscation attack against
the exponential mechanism as follows.

Privacy Analysis. We evaluate the privacy level of an individual
by calculating the success rate of the deobfuscation attack from
Section 4.2 for the selection of the deobfuscated trace, for different
e. To do so, for each obfuscated trace from the set T, we compute
the success rate of finding the associated origin trace from the set
Tp. The results of the privacy analysis are presented in a series of
graphs, where each graph shows the success rate with respect to
an obfuscated trace, for different ¢, a,;,.;, and asim.

For ¢, we will analyze ¢ € {0.5,1,5}. Due to space restrictions,
we will focus on (@gye; = 0.75, asim = 0.25) in this section. In
Appendix F, we will also evaluate for the parameters (@pye; =
1, asim = 0) and (gye; = 0.5, asim = 0.5).

Cost Analysis. We evaluate the amount of additional noise
introduced by obfuscation for the different ¢ used in the privacy
analysis. This helps us to understand at what cost the level of
privacy is achieved. The cost analysis includes the following steps:

Step 1: For a fixed ¢ and for each plausible trace trace, we
obtain its associated obfuscated trace trace,, using the ex-
ponential obfuscation mechanism (Algorithm 1).
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Range of obfuscated wallets (¢ = 5, RE = 0.7, z = 1.38)
(b) Melbourne

(a) Brisbane
Each graph shows the success rate of the complete deobfuscation attack w.r.t a certain ¢ and correspond

RE, z. On the x-axis, each range (in dollars) includes all possible obfuscated wallets (w,), linked with a certain original wallet
(w). For example, the first x-axis value on the lower left graph (Brisbane with ¢ = 5) depicts the wallet with balance $1.72. For

this wallet, the obfuscated wallet balances fall into the range [$0.34, $3.1]. On the y-axis, the success rate of the attack is shown,

i.e., the percentage of successful deobfuscations. (Brisbane and Melbourne case study)

Range of obfuscated wallets (¢ = 5, RE = 0.8, z = 1.38)

-privacy
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Figure 1



Step 2: Having obtained the obfuscated trace, we compute the
cost as [GET_BALANCE(trace,) — GET_BALANCE(trace)|.

We repeat this 1000 times to get a good estimate of the costs. The
cost analysis results are presented in a table, where each row dis-
plays parameters, including wallet (consisting of wallet id and wallet
balance), ¢, non-outliers, and outliers. The character N in the tables
(if present) indicates that no outliers occurred in the corresponding
row.

5.2.1 Brisbane Case Study. We use the same parameters as in
Section 5.1.1.

Privacy Analysis. Figure 2a shows the success rate of the de-
obfuscation attack on the exponential mechanism for Brisbane. In
contrast to d-privacy (cp. Fig. 1a), for € € {0.5, 1} all success rates
are between 0.9% and 1.2%, thus very close together. For ¢ = 5, the
seven smallest wallets have success rates between 2% and 2.8%, and
all other wallets have a success rate <2%. Overall, the exponential
mechanism performs significantly better than d-privacy for small
wallet balances, but for larger balances, both perform similarly (they
are all <4% and thus all relatively small). It is noticeable that for the
exponential mechanism, the success rates for different balances are
all very close together, whereas they fluctuate more for d-privacy.

Cost Analysis. In Table 3 we show the cost of privacy for ¢ €
{0.5,1,5}. It should be noted that, compared to d-privacy, where
each wallet had the same noise bound, the imposed noise for the
exponential mechanism differs from wallet to wallet. The imposed
noise for the exponential mechanism also seems to generally be
higher than for the d-privacy mechanism (cp. Table 1). For ¢ = 0.5,
the difference is not that significant, but for ¢ € {1,5} the imposed
noise for exponential is considerably higher than the expected
noise for d-privacy. It is noticeable that the first wallet has by far
the highest cost. This is due to the fact that this wallet is the smallest
and can thus only be mapped to wallets with a greater (or equal)
balance, whereas other wallets can be mapped to wallets with a
greater or smaller balance. Combined with the fact that the noise
is depicted as the absolute difference between balances, it is not
surprising that the smallest wallet has a higher cost than the others.

5.2.2 Melbourne Case Study. We use the same parameters as
in Section 5.1.2.

Privacy Analysis. Figure 2b shows the success rate of the deob-
fuscation attack on the exponential mechanism for Melbourne. The
same observations that were made for Brisbane (cp. Fig. 2a) can
be made for Melbourne as well, with the difference that all graphs
have even lower success chances than the exponential mechanism
for Brisbane, for ¢ € {0.5, 1} all are <0.5% and for ¢ = 5 all are <1.5%.
This is probably due to the fact that the set T, for Melbourne is
more than two times as large as the one for Brisbane, thus the set
of possible deobfuscated traces is much larger.

Cost Analysis. The costs for Melbourne under the exponential
mechanism (depicted in Table 4) are still higher than those under
d-privacy (cp. Table 2), but they are significantly lower than for
Brisbane under the exponential mechanism (cp. Table 3). The fact
that traces from Melbourne are apparently easier to obfuscate than
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traces from Brisbane is consistent with the results from the pri-
vacy analysis of the exponential mechanism, where traces from
Melbourne were more difficult to deobfuscate.

6 DISCUSSION

Discussion of Evaluation Results. The privacy analysis of the
Brisbane and Melbourne ETC schemes, for both d-privacy and the
exponential mechanism, shows that the success rate differs between
smaller and larger wallet balances. It is noticeable that larger wallet
balances provide significantly more privacy than smaller ones since
for higher wallet balances, there are more distinct traces that have
the same wallet balance. It is noticeable that the smallest wallet
balance (w,in) has by far the highest success rate in all scenarios.
This is due to the fact that there are by far more traces that have a
high wallet balances than ones with a small wallet balance, thus
making traces with a high balance easier to obfuscate.

When comparing d-privacy to the exponential mechanism, it can
be deducted from Figs. 1 and 2 that, for all ¢, the exponential mech-
anism performs significantly better for small wallets. For larger
wallets, while both perform similar on average, the exponential
mechanism consistently has very low success rates, while the suc-
cess rates for d-privacy depend more on the individual balance and
thus fluctuate more. Thus, if success rates need to be consistently
small, using the exponential mechanism would be a safer option.

When comparing the cost for d-privacy and the exponential
mechanism (cp. Tables 1, 2, 3 and 4), it can be seen that the exponen-
tial mechanism needs more noise than the d-privacy mechanism.

In conclusion, while the exponential mechanism yields good
privacy for all traces, it also has a higher cost. It is thus up to the
TSP to select a suitable mechanism, depending on how they want
to balance user privacy and cost.

Reimbursement of Additional Costs. When using the ETC
scheme for many billing periods, the cost for privacy equals the
sum of the individual noises, i.e., C = }}; N;. The expectation value
for C after a great number of billing periods is close to zero. Thus, if
the ETC is used for a long time, the actual additional cost of privacy
should be small for most users. Of course, there will always be users
who are a bit unlucky and may end up with a large additional cost.
Thus, the TSP could offer some kind of reimbursement mechanism,
like the one in [10], for the excess cost.

Further Research Opportunities. Note that our evaluation
only considers one billing period. By consolidating information
about multiple billing periods, the adversary may have a higher
chance of violating the user’s privacy. Intuitively, the adversary’s
chances of doing so depend on the behavior of users. For example,
consider the extreme case of a user who has exactly the same trace
and, thus, the same wallet balance every month. The adversary
could analyze the obfuscated wallets over several months and de-
duce the correct original traces with a higher probability than if
only one month was considered. For example, for d-privacy, the ad-
versary could divide the sum of obfuscated balances by the number
of billing periods, which gives a good estimate of the real balances
(if the number of billing periods is large enough). Conversely, for
users whose driving behavior changes significantly from month
to month, their obfuscated wallets would be harder to deobfuscate
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¢ | (id, wallet) non_outliers outliers ¢ | (id, wallet) non_outliers outliers ¢ | (id, wallet) non_outliers outliers
05| (0,1.72) (1.7,82)  (0.0,1.5) 1| (0,1.72) (1.0,82)  (0.0,0.0) 5] (0,1.72) (0.0, 8.2) N
05| (10,5.11) (0.0, 4.9) N 1] (10,5.11) (0.0, 4.9) N 5] (10,5.11) (0.0, 4.9) N
05 | (20,6.12) (0.0, 4.4) N 1] (20,6.12) (0.0, 4.4) N 5| (20,6.12) (0.0, 4.4) N
05 | (30,7.08) (0.0,44)  (5.4,54) 1| (30,7.08) 0.0,44)  (5.4,54) 5| (30,7.08) (0.0,42)  (44,54)
05 | (40,7.75) (0.0,37)  (43,6.0) 1| (40,7.75) (0.0,37)  (43,6.0) 5| (40, 7.75) (0.0,37)  (43,6.0)
05 | (50, 8.14) 0.0,3.6) (3.7, 6.4) 1] (50, 8.14) 0.0,32) (3.6, 6.4) 5| (50,8.14) 0.0,30) (3.2, 6.4)
05 | (60, 8.55) 0.0,29)  (3.0,6.8) 1| (60, 8.55) 0.0,29)  (3.0,6.8) 5| (60, 8.55) 0.0,25)  (2.7,68)
05| (70, 8.9) 0.0,4.0)  (43,7.2) 1| (70,8.9) 0.0,4.0)  (43,7.2) 5] (70, 8.9) 0.0,23) (25,7.2)
05 | (80,9.22) 0.0,51)  (58,7.5) 1| (80,9.22) (0.0,43)  (47,7.5) 5| (80,9.22) 0.0,30)  (3.1,7.5)
05 | (90, 9.57) 0.0,6.1)  (64,7.9) 1| (90,9.57) 0.0,55)  (6.1,7.9) 5| (90,9.57) (0.0,44) (45,79
05 | (100,9.82)  (0.0,64) (6.6, 8.1) 1] (100,9.82)  (0.0,5.7) (6.4, 8.1) 5| (100, 9.82)  (0.0,47)  (4.9,81)

(a)e=0.5 (b) ¢ (c)e=5

Table 3: Exponential mechanism for Brisbane case study: Each row shows the cost (in dollars) w.r.t a wallet (associated with a
trace) and a fixed ¢, using (@) = 0.75, asim = 0.25). The id in (id, wallet) distinguishes identical wallets with different traces.

¢ | (id, wallet) non_outliers outliers ¢ | (id, wallet) non_outliers outliers ¢ | (id, wallet) non_outliers outliers
05| (0,1.92) (19,81  (0.0,1.1) 1| (0,1.92) (1.1,81)  (0.0,0.0) 51 (0,1.92) (0.0, 8.1) N
05 | (26,5.76) (0.0, 4.2) N 1| (26,5.76) (0.0, 4.2) N 5| (26,5.76) (0.0, 4.2) N
05| (52,6.91) (0.0, 5.0) N 1| (52,6.91) (0.0, 5.0) N 5| (52,6.91) (0.0, 5.0) N
05 | (78,7.68) (0.0,38)  (4.6,58) 1| (78,7.68) 0.0,38)  (4.6,58) 5] (78, 7.68) (0.0,38)  (4.6,58)
05 | (104,8.06)  (0.0,3.1) (4.2, 6.1) 1| (104, 806)  (0.0,3.1) (42 61) 5| (104,8.06)  (0.0,3.1) (4.2, 6.1)
05 | (130,8.83)  (0.0,1.9)  (2.7,6.9) 1] (130,883  (0.0,1.9) (2.7, 6.9) 5| (130,8.83)  (0.0,1.9)  (2.7,6.9)
05| (156,9.21)  (0.0,3.1) (3.5 7.3) 1] (156,9.21)  (0.0,3.1)  (3.5,7.3) 5] (156,9.21)  (0.0,23)  (3.1,6.1)
05 | (182, 9.6) 0.0,3.8)  (4.6,7.7) 1| (182,9.6) 0.0,27)  (35,7.7) 5| (182, 9.6) 0.0,27) (35,77
05 | (208,9.98)  (0.0,50) (6.1, 8.1) 1] (208,9.98)  (0.0,42)  (5.0,8.1) 5| (208,9.98)  (0.0,23)  (3.1,8.1)
05 | (234,9.98)  (0.0,50)  (6.1,8.1) 1] (234,998  (0.0,42)  (5.0,8.1) 5| (234,9.98)  (0.0,23)  (3.1,8.1)
05 | (260,9.98)  (0.0,42)  (5.0,8.1) 1| (260,9.98)  (0.0,5.0)  (6.1,8.1) 5| (260,9.98)  (0.0,42)  (5.0,8.1)

(@) e=0.5 (b) ¢ (c)e=5

Table 4: Exponential mechanism for Melbourne case study: Each row shows the cost (in dollars) w.r.t a wallet (associated with a
trace) and a fixed ¢, using (@, = 0.75, dsim = 0.25). The id in (id, wallet) distinguishes identical wallets with different traces.

successfully. Understanding how user behavior impacts privacy and
determining how varied a user’s activities need to be to prevent
privacy loss are important areas for future research.

7 RELATED WORK

Attacks on PPETC Schemes. Attacks on post-payment PPETC
schemes have been considered in [2] and [8]. Both use knowledge
of wallet balances and try to solve the SSP to obtain additional in-
formation about user behavior. In [2] the evaluation is based on real
ETC data. It is shown that the Brisbane scenario from Section 5.1.1
is vulnerable to attacks: For wallet balances <10 dollars, the ad-
versary could identify the visited toll stations with a 94% success
rate by solving the SSP problem. [8] also shows that solving the
SSP helps to effectively recover user traces. In contrast to [2], the
adversary in [8] uses every information the TSP gets.

Protection Mechanisms. Some PPETC schemes [4, 18, 29] briefly
mention that solving the SSP might lead to privacy problems, al-
though no solutions are presented. We are only aware of one work
that examines possible protection mechanisms: While [10] does
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not directly look at PPETC schemes, they consider the more gen-
eral setting of applications that use fine-grained billing, where the
details of the billing are hidden from the service provider. Their
central idea is to use the DP framework to add noise to the final
bill of a user. The noise can be freely chosen by the user, which
in practice may lead to the problem that most users will choose a
noise of zero to save costs and thus get no privacy gain. [10] addi-
tionally proposes a cryptographic protocol that helps customers
reclaim the additional expenditure incurred for the sake of privacy.
A limitation of [10] is that it does not consider protection against
adversaries who may exploit background information. In contrast,
we present attacks and use real-world settings from the Brisbane
and Melbourne ETC systems to evaluate our mechanism against
adversaries who may exploit background information.

In smart metering applications, rather than transmitting actual
measurements, it is possible that the smart meter sends masked
data to the power provider in a way that does not interfere with
the accuracy of aggregation operations. [5] and [19] present meth-
ods to obscure measurements using a straightforward approach.
Specifically, the smart meter adds noise from a Laplace distribution
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with a certain scale parameter and transmits this data to the power
provider. The scale parameter is selected to ensure that the cumula-
tive noise remains below a predefined error threshold. The authors
explain that when a large number of measurements is considered,
this cumulative error approximates a normal distribution. However,
their method is not suitable for our scenario, as the number of
obfuscated wallets may be too small for their approach to work
effectively. Additionally, their method does not consider controlling
noise for individual measurements.

8 CONCLUSION

Since previous work has shown that a PPETC version of the Bris-
bane ETC system is vulnerable to trace recovery attacks (success
rates up to 94%), we have investigated in this work whether common
e-DP mechanisms such as d-privacy or the exponential mechanism
could help to prevent these attacks. Our analysis showed that both
mechanisms are very good at making these attacks more difficult.
But privacy does not come for free: basically, users must be willing
to pay a slightly randomized price for using the ETC system. Al-
though the expected cost of privacy is small over a large number
of billing periods, the cost for a single billing period can be several
dollars for ¢ < 1, which may discourage users from using the ETC
system. It is up to the TSP to balance the cost that users are willing
to pay against the privacy that can be achieved.
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Notation Description

N noise (added to wallet balances)

p toll price

P set of toll prices

pr out-of-bounds probability

RE relative error threshold / relative noise
bound

SR success rate

w wallet balance

w set of wallet balances

Wmin/Wmax | minimum/maximum possible wallet bal-
ance

Wo obfuscated wallet balance

W, set of obfuscated wallet balances

Wp set of plausible wallet balances

Ty set of plausible traces

z Absolute noise bound

A sensitivity

A Laplace’s scale

Table 5: Overview of Variables

[40] Keyu Zhu, Pascal Van Hentenryck, and Ferdinando Fioretto. 2021. Bias and
variance of post-processing in differential privacy. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35. 11177-11184.

A NOTATION

We give an overview over our notation in Table 5.

B BACKGROUND DETAILS

B.1 Proof that the Laplace mechanism ensures
e-dy-privacy
Forz € Z and x,x” € X, let pry and pry be the probability density

—lx=z| —lx’ —z|

function ﬁeT and ﬁeT respectively. Let A = % Then, we
have
=
Prx(2) _ 21¢ * _ et — o (Ix"—z|=|x-2])
prx/(z) 1 —|x’—z| e—£~|x’—z|
ﬂe

Using the triangle inequality for the metric dy and as dy (x, x”) =
dx(x’,x), we get

prx(z) < x| < ped(xx)
pry(2)

which completes our proof.

B.2 Relation of Parameters

Figure 3 shows how different parameters are connected in Eq. (3).
The figure illustrates that:

(1) To increase the probability (1 - pr) of keeping relative error
(re) below a certain threshold RE (given fixed A and wp,in),
larger values of ¢ are required.

(2) Smaller relative errors (RE) correspond to larger values of ¢
when wpin, pr, and A are fixed.

14

Fetzer et al.
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Probability (1 — pr), (Wmin= 70, A=1)

Figure 3: Relation of parameters in Eq. (3).

Algorithm 6 Obfuscation Algorithm based on d-Privacy

Input: w, Wmin, Wmax, RE, pr
Output: w,
1: function METRIC_OBFUSCATION(W, Wmin, Wmax, RE, pr)
2: A «— —(RE - Wmin)/In(pr)
N « Lap(R)
Wo «— w+ N
if wy, < 0 then
wo «— 0
else if wy > wipax then
Wo < Wmax
else
10: return w,
11: end if
12: return w,
13: end function

Note that the values shown in the graph are chosen arbitrarily.
However, this does not impact the overall trends discussed in Sec-
tion 2.2.

C DETAILS OF THE d-PRIVACY-BASED
OBFUSCATION MECHANISM

C.1 The Obfuscation Algorithm

The details of the d-privacy based obfuscation algorithm are pre-
sented in Algorithm 6.

C.2 Impact of Parameters on Generated Noise

We now discuss how the parameters of the wallet obfuscation mech-
anism affect the generated noise, which defines the extra amount of
cost users have to bear for privacy. We investigate the parameters
out-of-bounds probability pr and minimum wallet balance wpin. In
addition, we also use various fixed ¢ values, i.e., ¢ € {0.1,0.5,1,5}.
With these parameters fixed, we evaluate how they influence the
generated noise. Given a fixed pr, wpin, and ¢, we also investigate
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the impact of these parameters on RE and z using Egs. (2) and (3).
To keep the additional cost small, we cap the maximum amount of
noise z relative to the minimum wallet balance, i.e.,

™

For example, setting RE to 0.1 means that we set the maximum
noise z to 10% of the minimum wallet balance w;,i,. Note that
Eq. (7) only holds with probability 1 — pr, i.e., out-of-bound noises
are possible with a (very) small probability. This stems from the fact
that to achieve differential privacy, one can’t use a bounded noise
function. This is also the reason why we employ post-processing
in Algorithm 6. To analyze the distribution of generated noise, we
generate 10° noises to examine the percentage of noises inside the
threshold z. We deem this amount of noise sufficient, as we assume
that a user will not participate in more than 1000 billing periods.
In our analysis we will subsequently vary either pr or wpin,
while keeping the other value fixed. For that purpose we will use
pr= 1073 and wy,in = 1 as default values. Combined with different
target privacy levels ¢, we evaluate how the generated noise is
affected. Note that the exact values of the examined parameters are
not important, as they are only used to identify trends in the noise
change when moving to larger/smaller parameter values. We show
the results of our analysis in a table format, with the value under
analysis (pr/wpmin), the privacy level ¢, the relative noise bound RE,
the generated “non-outlier” noises, the generated “outlier” noises,
and the absolute noise bound z as columns. Note that all noise values
(“non-outliers”, “outliers”, and z) are in dollars. The gray and white
colors (in a table) group rows that share the same values in the first
column across all € values to improve readability. The columns for
non-outliers and outliers are determined using a box plot method
that helps us to identify the range of generated noises. Non-outlier
noise values fall within the range (Q1 — 1.5 IQR, Q3 + 1.5 - IQR),
where Q; is the first quartile, Q3 is the third quartile, and IQR is
the interquartile range (the difference between the third and first
quartiles). Outlier noise values N fall outside this range: For them,
either (1) N < Q1 — 1.5-IQRor (2) N > Q3 + 1.5 - IQR holds. In
our analysis, we denote outliers as the tuple (Npin, Nmax), where
Npin and Ny, qx are the minimum and maximum of outliers.

z =RE - Wwnin

Parameter pr. The out-of-bounds probability pr denotes the
probability that the generated noise falls outside the range (-z, z).
To ensure that the additional costs for users are not too high, pr
should be small. But which values of pr are “small enough”? We
evaluate the generated noise for pr € {10_3, 1073, 10_7}. The re-
sults in Table 6 show that as pr decreases, the corresponding relative
error RE and noise bound z increase. This means that to achieve
the same privacy level (¢-DP) with a smaller pr, the generated noise
is higher. This also means that the smaller pr, the higher the av-
erage additional cost to users. While this might suggest that the
solution is to use a higher pr, i.e., pr = 1073, the situation is a bit
more complicated. This is because one should also consider that the
generated noise really falls in the range (—z, z) to rule out the case
that individual users have unrealistically high costs. But regarding
this, the results show that for smaller pr the probability that the
generated noise falls in the range (—z, z) is higher. In particular, the
table shows that for pr = 1077 and pr = 107> the noises (including
outliers) are within the range (-z,z), while for pr = 1073 some
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pr £ RE  non-outliers outliers zZ
0.001 0.1 | 691 (-28.0,27.3) (-66.5,65.1) 69.1
0.001 0.5 | 13.8 (-5.6, 5.7) (-12.2,15.3) 13.8
0001 1 | 69  (-27,28)  (-47,7.2) 69
0001 5 | 14  (-06,06) (17,27) 14
1e-05 0.1 | 115.1 (-26.6, 27.4) (-61.3,61.8) 115.1
1e-05 05| 230  (-53,53) (-12.4,15.2) 23.0
le-05 1 | 115  (-28,28)  (-10.9,7.0) 115
1e-05 5 | 23  (-0.6,05) (12,1.9) 23
1le-07 0.1 | 161.2 (-26.3,24.5) (-67.4,70.2) 161.2
1e-07 05 | 322  (-6.0,60) (-12.8,11.3) 322
1le-07 1 | 161  (-28,29) (74,82 161
le-07 5 3.2 (-0.5, 0.6) (-1.3, 1.2) 3.2

Table 6: d-privacy: impact of pr on the generated noise

Wmin € RE  non-outliers outliers Z
1 01] 691 (-264,25.1) (-59.9,66.2) 69.1
1 05| 138  (-56,56) (-17.2,11.7) 138
1 69 (26,27 (62,58 69
1 5 | 1.4 (06 06) (1412 14
5 01| 138 (267,263) (-584,854) 69.1
5 05| 28  (-56,56) (215 100) 138
5 14 (2929 (7259 69
5 5 | 03 (06 06) (1316 14
10 0.1 | 6.9 (-28.6,28.4) (-67.2,64.1) 69.1
10 05| 1.4  (54,56) (12.1,11.2) 138
10 1| 07 (-26,26) (94,68 69
10 5 | 01 (0606 (1312 14

Table 7: d-privacy: impact of wy,i, on the generated noise

outlier noises are outside of (—z, z). Thus, the parameter pr should
be chosen carefully to achieve a balance between a small additional
cost and a high probability of staying within the desired noise range.

Parameter wy,in. The minimum possible wallet balance wyin
is directly defined by the ETC pricing scheme. For our analysis, we
consider wpin € {1,5, 10}. Table 7 reveals that as wp,i, increases,
the corresponding RE decreases for the same epsilon values. This
indicates that the additional cost due to noise addition, relative
to Wmin, becomes smaller for the same level of privacy (¢-DP).
Note that the actual noise bound z remains the same, because an
increase in Wy, is compensated by a decrease in RE (cp. Eq. (7)).
This suggests that pricing schemes with a larger minimum possible
wallet balance require less noise (relative to wy,in), even though
the actual noise bound remains the same for all wy,;p.

J

A Note on Outliers. As previously mentioned, the “outliers’
and “non-outliers” columns in the tables are derived from the box
plot method. Our results show that a significant portion of the
generated noises, about 94%, comprises non-outliers. In contrast,
only a small portion, i.e., approximately 6%, consists of outliers.
This distribution occurs because the Laplace mechanism generates
smaller noises with a much higher probability.



Summary of Results. While the out-of-bounds probability pr
must be carefully chosen to achieve a reasonable privacy-cost trade-
off, the privacy level ¢ plays the most critical role. Tables 6 and 7 all
show that the higher ¢ is (corresponding to less privacy), the lower
the noise bound z is. So TSPs should either set a desired privacy
level € and then see how much noise is needed, or set a desired noise
bound z and then see how much privacy can be achieved. Whether
or not there are acceptable combinations of ¢ and z that satisfy both
a customer’s need for privacy and a small additional cost depends
on the pricing scheme and what additional costs users are willing
to pay. As mentioned above, the question of what users consider
an appropriate price for privacy is a separate line of research.

D DETAILS OF THE EXPONENTIAL
OBFUSCATION MECHANISM

In this appendix, we explain the exponential obfuscation mecha-
nism (Algorithm 1) in more detail, as well as Algorithms 7, 8, 9
and 10, which are sub-algorithms of Algorithm 1.

D.1 Algorithm EXPONENTIAL_OBFUSCATION

Algorithm 1 takes as its input (trace € Tp, Tp, €, @eycr € [0, 1], asim €
[0, 1]) and outputs the obfuscated trace obf_trace. We now explain
the algorithm in detail.

Step 1: Precomputation. We first calculate the maximum pos-
sible Euclidean distance and the maximum possible similarity dis-
tance with coMPUTE_MAX_DIST (Algorithm 7) in line 2. Note that
the precomputation step needs only to be executed once, as long as
Tp stays the same.

Step 2: Score Calculation. Given an input trace trace, we now
compute the score of the input trace and every possible output trace
in lines 3 to 10, i.e., we calculate u(trace, trace;) for all trace; € Tp.
We calculate u(trace, trace;) for a given trace; as follows: We first
compute the euclidean distance d,,,.; between the traces with com-
PUTE_EUCLIDEAN (Algorithm 8). We also compute the similarity
distance ds;;, between the traces with COMPUTE_SIMILARITY (Algo-
rithm 9). Afterwards we scale d,,,¢; to the range [0, 1] by dividing it
by the maximum possible Euclidean distance (calculated in line 2).
We also scale dsip, to [0, 1] analogously. Afterwards we compute
the score u(trace, tracej) as

— ’ . — 4 .
score = (dg;,, « Asim = d0p * Feuct)s

whered’ andd’. are the scaled versions of d,,,.; and ds;in,. Note

eucl sim euc
that for a high score, the similarity distance should be high (which
indicated very different traces), while the Euclidean distance should

be small (which corresponds to small costs).

Step 3: Probability Calculation. Given the scores u(trace,
trace;) for all trace; € Tp, we calculate for each trace; the prob-
ability that trace; gets selected as output trace in lines 11 an 12.
According to the exponential mechanism, we calculate the the prob-
ability as specified in Eq. (5). We calculate the numerator of Eq. (5)
in line 11 and then apply normalization in line 12.

Step 4: Selection of Output Trace. Given for each trace; € T,
the probability that the input trace trace gets mapped to trace;
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Algorithm 7 Compute Maximum Distances

Input: T,

Output: max_eucl, max_sim
1: function comPUTE_max_DIST(Tp)
2: max_eucl «— 0

3: max_sim < 0

4: for all trace; € T, do

5: for all trace; € T, do

6: deycl < COMPUTE_EUCLIDEAN(trace;, trace;)
7: dsim < COMPUTE_SIMILARITY (trace;, trace;)
8: if dgye; > max_eucl then

9: max_eucl «— d,y,¢;

10: end if

11: if dgim > max_sim then

12: max_sim < dsim

13: end if

14: end for

15: end for

16: return max_eucl, max_sim

17: end function

Algorithm 8 Compute Euclidean Distance

Input: irace; € Ty, trace; € Tp
Output: euclidean_dist
1: function COMPUTE_EUCLIDEAN(traces, tracez)

2: W1 <— GET_BALANCE(trace;)
3 Wy «— GET_BALANCE(tracey)
4 euclidean_dist «— |w1 — wa|
5 return euclidean_dist

6: end function

as output trace, we now just need to draw an output trace accord-
ing to this probability distribution. Thus, we sample in line 13 an
output trace obf_trace using the previously calculated probability
distribution. Finally, we output obf_trace as obfuscated trace for
trace.

Depending on whether the user sends a trace or a wallet balance
to the TSP at the end of a billing period, he now may need to
calculate the balance of the obfuscated trace afterwards.

D.2 Algorithm COMPUTE_MAX_DIST

In Algorithm 7 we calculate the maximum possible Euclidean dis-
tance and the maximum possible similarity distance for a given set
of traces Tp. To achieve that, we simply iterate over all possible
pairs of traces, calculate the Euclidean distance and the sensitiv-
ity distance and check whether they are larger than are currently
maximum. The algorithm outputs the maximum possible Euclidean
distance as max_eucl and the maximum possible similarity distance
as max_sim.

D.3 Algorithm cOMPUTE_EUCLIDEAN

Algorithm 8 takes as input two traces, trace; and tracey, and out-
puts the Euclidean distance between them. To achieve this, the algo-
rithm uses the function GET_BALANCE to retrieve the corresponding
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Algorithm 9 Compute Similarity Distance

Input: irace; € Ty, trace; € Tp
Output: sim_dist
1: function COMPUTE_SIMILARITY(trace, traces)
2 sim_dist < 0
3 for all (s}, fj) € trace; and (sj,fj’) € tracey do
4 iffj;t0andfj’¢0then
sim_dist « sim_dist + (fj - fj’)2

o

6: elseif fj #0 andfj’ == (0 then

7: sim_dist « sim_dist + (f})? + penalty?
8 else if fj == 0 and fj' # 0 then

9: sim_dist «— sim_dist + (fj’)2 + penalty?
10: end if

11: end for

12: sim_dist « Vsim_dist

13: return sim_dist

14: end function

Algorithm 10 Compute Probabilities

Input: arr_score, e, A
Output: arr_prob
1: function COMPUTE_PROB(arr_score, ¢, )
2 Declare arr_prob[|arr_score|]
3 for all score; € arr_score do
4 arr_prob[i] « elescorei)/(2:4)
5: end for
6 return arr_prob
7: end function

wallet balances, denoted as wi and wy. It then computes the Eu-
clidean distance as |w; —wy| and stores the result in euclidean_dist.

D.4 Algorithm COMPUTE_SIMILARITY

Algorithm 9 takes two traces, trace; and tracey, as input and com-
putes the similarity distance between them, denoted as sim_dist.
To calculate this distance, the algorithm compares both the toll
stations visited and their respective frequencies in the two traces.
We denote a trace as

trace = {(s1, f1), (s2, f2)o -, (s, i)}
where each tuple (s;, f;) represents a toll station s; and its corre-
sponding frequency f;. A frequency f; = 0 in the tuple (s;, f;) €
trace indicates that the toll station s; has not been visited at all. In
general, the Similarity distance between two points P = (x1, y1, 21, - - .)
and Q = (x2, Y2, 22, . ..) in an n-dimensional space is given by:

d(P,Q) = \/(xz —x1)?+ (g2 —y)?+ (2 —21)% + .
For each tuple (sj, fj) € trace; and (sj,fj’) € tracey, the algorithm

checks if both f; and fj’ are non-zero. If so, it computes the distance
as sim_dist = sim_dist + (fj —fj’)z. Note that sim_dist is initialized
to zero.

If the frequency of one trace is zero, while it non-zero in the other
trace, an additional “penalty” is added. This reflects the intuition
that traces that differ in terms of the toll stations visited cause more
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uncertainty than those that differ only in frequency values. Note
that the penalty value can also be set to zero.

Finally, the algorithm takes the root of the final distance and
returns the result as the output.

Remark 5 (On choosing the penalty value). Choosing an appropri-
ate penalty value depends on what one assumes the background
knowledge of the attacker to be. We differentiate two cases:

(1) We assume that the attacker knows which toll stations a
user visited during the billing period, for example because
he knows the home and work address of the user. Therefore,
we only want to hide how often the user has passed the toll
stations.

(2) We assume that the attacker does not possess such back-
ground knowledge and thus also want to hide which toll
stations where visited during the billing period.

If (1) is the case, the penalty value should set very high. In that
case, the obfuscation mechanism likely selects an output trace that
visits the same toll station as the input trace, just with different
frequencies. If (2) is the case, the penalty should be set to 0. In that
case, the obfuscation algorithm ignores whether the output trace
has the same visited toll stations as the input trace.

Note that we use penalty = 0 since we assume that the attacker
does not have this kind of background knowledge.

D.5 Algorithm coMPUTE_PROB

Algorithm 10 takes as input the list of scores arr_score, the pa-
rameter ¢, and the sensitivity A, and it outputs a list arr_prob of
probabilities. For each score; in arr_score, the algorithm computes
the corresponding probability as elescorei)/(2:4) (according to the
exponential mechanism, cp. the numerator in Eq. (5)) and stores
it in the list arr_prob. Finally, the algorithm returns arr_prob as
output.

E FURTHER EVALUATION OF d-PRIVACY

In this appendix, we present the results for the wallet recovery attack
alone (Step 2 of our evaluation of d-privacy in Section 5.1).

Brisbane. In Fig. 4a the results for Brisbane are depicted. Overall,
they are pretty similar to the results of the complete deobfuscation
attack (cp. Fig. 1a). When taking a closer look, the success rates
in the complete deobfuscation attack are a bit lower (or equal)
than for the wallet recovery attack alone. This is because many
wallet balances have different traces they could belong to (although
some wallet balances only have on trace), so the adversary has to
additionally figure out the correct trace.

Melbourne. For the wallet recovery attack on Melbourne, Fig. 4b
shows a trend similar to Fig. 4a, but with a notable difference:
the overall success rate is higher compared to the Brisbane case
study. For ¢ € {0.5,1}, the difference is very small because the
success rates remains close to zero for all wallet balances as well.
The only considerable difference is for ¢ = 5, where the success
rate can be >10% even for high wallet balances. This is because
the precomputed ranges of deobfuscated wallet balances have less
overlapping in the Melbourne case study (cp. Section 4.1.3) and the
small noise (z = 1.38) that is added for ¢ = 5 is not enough to span
many wallet balances.
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Figure 4

example, the first x-axis value on the lower left graph (Brisbane with ¢ = 5) depicts the wallet with balance $1.72. For this wallet,

the obfuscated wallet balances fall into the range [$0.34, $3.1]. On the y-axis the success rate of the attack is shown, i.e., the

percentage of successful wallet recoveries. (Brisbane and Melbourne case study)
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F FURTHER EVALUATION OF THE
EXPONENTIAL MECHANISM

Here we further evaluate the exponential mechanism using different
weights for euclidean distance and similarity distance. While we
looked at (@gyc; = 0.75, atsim = 0.25) in Section 5.2, we will now
also consider (@pye; = 1, asim = 0) and (aeyep = 0.5, dsim = 0.5).

F.1 Parameters (deyc; = 1, Qsim = 0)

The privacy analysis for Brisbane and Melbourne can be found in
Fig. 5. The cost analysis for Brisbane can be found in Table 8 and
the one for Melbourne in Table 9.

F.2 Parameters (o, = 0.5, ttipm = 0.5)

The privacy analysis for Brisbane and Melbourne can be found in
Fig. 6. The cost analysis for Brisbane can be found in Table 10 and
the one for Melbourne in Table 11.

F.3 Privacy and Cost Analysis

When considering privacy, Figs. 5 and 6 do not differ much from
Fig. 2, as all provide pretty low success rates.

When comparing the cost (Tables 3, 4, 8, 9, 10 and 11,), it can be
seen that the higher as;p, is, the higher the average costs are. This
is due to the fact that when using a higher as;pm, obfuscated traces
are favored that differ from the original trace in terms of the toll
stations visited, and therefore also have a different wallet balance
than the original trace.

G SIMILAR TRACE ATTACK

Instead of evaluating the success of an adversary based on whether
he can find the exact original trace, one could also consider a more
relaxed attack, where the adversary aims to find a trace that is
similar to the original trace. We call this a “similar trace attack”.
In this section, we first provide some details on how this similar
trace attack is executed, before providing the results. To be able
to evaluate the results, we compare an adversary that uses the
similar trace attack with an adversary that just guesses a random
trace. For the comparison with the random attacker, we describe
in Appendix G.1 how to obtain the average similarity of traces. In
Appendix G.2 we then provide the algorithms for the similar trace

attack. Finally, in Appendix G.3 we evaluate the similar trace attack.

G.1 Average Similarity Between Traces

In Algorithm 11, given a set of plausible traces T, we calculate the
average similarity between the traces. For that, we iterate over all
possible pairs of traces and compute their similarity difference with
Algorithm 9. Afterwards we calculate the average avg over all the
differences.

G.2 Executing the Similar Trace Attack

We describe the similar trace attack for both d-privacy and the
exponential mechanism. Basically, both algorithms get an original
trace as input, then obfuscate the trace with the corresponding
obfuscation mechanism and afterwards try to deobfuscate it using
the corresponding deobfuscation algorithm. Then the similarity
distance between the original trace and the deobfuscated trace,
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Algorithm 11 Compute Average Similarity Between Traces

Input: T,
Output: avg
1: function COMPUTE_AVERAGE_SIMILARITY(T})
2: Initialize arr_dsim as empty list
3 for all trace; € T, do
4 for all trace; € T, do
5 dsim < COMPUTE_SIMILARITY (trace;, trace;)
6: Append dsim to arr_dsim
7 end for
8 end for
9 avg < AVERAGE(arr_dsim) \\Compute average of list
10: return avg

11: end function

Algorithm 12 Relaxed Attack on one Trace for d-Privacy

Input: irace € Ty, Wmin, Wmax, RE, pr,num € N, list_ranges
Output: arr_dsim
1: function METRIC_RELAXED_ATK(trace, Wmin, Wmax, RE, pr,
num, list_ranges)
2 Initialize arr_dg;m as empty list
3 W ¢« GET_BALANCE(trace)
4: for i from 1 to num do
5 obf_balance «— METRIC_OBFUSCATION(W, Wmin, Wmax
RE, pr)

6: W¢ ¢— METRIC_WALLET_RECOVERY_ATTACK(obf _balance,
list_ranges)

7: deobf_trace « TSD_ATTACK(w,)

8: dsim ¢ COMPUTE_SIMILARITY(trace, deobf_trace)

9: Append dsim to arr_dsim

10: end for

11: return arr_dsim

12: end function

i.e., the attacker’s guess for the original trace, is calculated. This
procedure is repeated num times to get a good estimate of the
attacker’s success.

The similar trace attack for d-privacy is depicted in Algorithm 12.
The similar trace attack for the exponential mechanism is depicted
in Algorithm 13.

G.3 Evaluating the Similar Trace Attack

We describe the results of the similar trace attack for both d-privacy
and the exponential mechanism.

G.3.1 Evaluation Approach.

d-Privacy. Our evaluation of the similar trace attack for d-
privacy proceeds as follows:

(1) Fix parameters Tp, Wmin, Wmax, RE, pr, num.

(2) Precomputation: Execute Algorithm 2:
list_ranges «— PRECOMPUTATIONiMETRlciATTACK(Wp,RE)
to get the list of ranges list_ranges

(3) For each trace € Ty, we execute Algorithm 12 to get a
list arr_dsim. Algorithm 12 basically obfuscates the origi-
nal trace trace, then deobfuscates it again and calculates the
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Each graph shows the success rate of deobfuscation for ¢ € {0.5, 1,5} and for (a,,,¢;

0.5). The tuples on the x-axis indicate (id, wallet) where id distinguishes identical wallets with different traces. (Brisbane and

Melbourne case study)

ism

(a) Brisbane

Exponential mechan

Figure 6
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¢ | (id, wallet) non_outliers outliers ¢ | (id, wallet) non_outliers outliers ¢ | (id, wallet) non_outliers outliers
05| (0,1.72) (15,82)  (0.0,1.1) 1| (0,1.72) (1.0,82)  (0.0,0.0) 5] (0,1.72) (0.0, 8.2) N
05| (10,5.11) (0.0, 4.9) N 1] (10,5.11) (0.0, 4.9) N 5] (10,5.11) (0.0, 4.9) N
05 | (20,6.12) (0.0, 4.4) N 1] (20,6.12) (0.0, 4.4) N 5| (20,6.12) (0.0, 4.4) N
05 | (30,7.08) (0.0,44)  (5.4,54) 1| (30,7.08) 0.0,44)  (5.4,54) 5| (30,7.08) (0.0,42)  (44,54)
05 | (40,7.75) (0.0,37)  (43,6.0) 1| (40,7.75) (0.0,37)  (43,6.0) 5| (40, 7.75) (0.0,37)  (43,6.0)
05 | (50, 8.14) 0.0,3.6) (3.7, 6.4) 1] (50, 8.14) 0.0,32) (3.6, 6.4) 5| (50,8.14) 0.0,30)  (3.0,55)
05 | (60, 8.55) (0.0,34)  (3.6,6.8) 1| (60, 8.55) 0.0,29)  (3.0,6.8) 5| (60, 8.55) 0.0,27)  (2.9,68)
05| (70, 8.9) 0.0,44)  (45,7.2) 1| (70,8.9) 0.0,4.0)  (43,7.2) 5] (70, 8.9) 0.0,21) (23,72
05 | (80,9.22) 0.0,51)  (58,7.5) 1| (80,9.22) (0.0,47)  (438,7.5) 5| (80,9.22) 0.0,2.6)  (28,7.5)
05 | (90, 9.57) 0.0,64)  (6.7,7.9) 1| (90,9.57) (0.0,52) (5.5 7.9) 5| (90,9.57) (00,35  (3.7,7.9)
05 | (100,9.82)  (0.0,64) (6.6, 8.1) 1] (100,9.82)  (0.0,66)  (7.0,8.1) 5| (100, 9.82)  (0.0,4.1)  (4.3,81)

(a)e=0.5 (b)e=1 (c)e=5

Table 8: Exponential mechanism for Brisbane case study: Each row shows the cost (in dollars) w.r.t a wallet (associated with a
trace) and a fixed ¢, using (@yc; = 1, &sim = 0). The id in (id, wallet) distinguishes identical wallets with different traces.

¢ | (id, wallet) non_outliers outliers ¢ | (id, wallet) non_outliers outliers ¢ | (id, wallet) non_outliers outliers
05| (0,1.92) (3.1,81)  (0.0,1.9) 1| (0,1.92) (1.1,81)  (0.0,0.0) 51 (0,1.92) (0.0, 8.1) N
05 | (26,5.76) (0.0, 4.2) N 1| (26,5.76) (0.0, 4.2) N 5| (26,5.76) (0.0, 4.2) N
05| (52,6.91) (0.0, 5.0) N 1| (52,6.91) (0.0, 5.0) N 5| (52,6.91) (0.0, 5.0) N
05 | (78,7.68) (0.0,38)  (4.6,58) 1| (78,7.68) 0.0,38)  (4.6,58) 5] (78, 7.68) (0.0,38) (4.6, 4.6)
05 | (104,8.06)  (0.0,31)  (42,61) | | 1] (104,806)  (0.0,31) (4.2 6.1) 5| (104,8.06)  (0.0,3.1) (4.2 50)
05 | (130,8.83)  (0.0,1.9)  (2.7,6.9) 1] (130,883  (0.0,1.9) (2.7, 6.9) 5| (130,8.83)  (0.0,1.9)  (2.7,6.9)
05| (156,9.21)  (0.0,3.1) (3.5 7.3) 1] (156,9.21)  (0.0,2.3) (3.1, 7.3) 5] (156,9.21)  (0.0,23)  (3.1,7.3)
05 | (182, 9.6) 0.0,3.8)  (4.6,7.7) 1| (182,9.6) 0.0,27)  (35,7.7) 5| (182, 9.6) (0.0,08)  (1.5,7.7)
05 | (208,9.98)  (0.0,50) (6.1, 8.1) 1] (208,9.98)  (0.0,42)  (5.0,8.1) 5| (208,9.98)  (0.0,23)  (3.1,6.9)
05 | (234,9.98)  (0.0,50)  (6.1,8.1) 1] (234,998  (0.0,42)  (5.0,8.1) 5| (234,9.98)  (0.0,23)  (3.1,8.1)
05 | (260,9.98)  (0.0,42)  (5.0,8.1) 1| (260,9.98)  (0.0,5.0)  (6.1,8.1) 5| (260,9.98)  (0.0,23)  (3.1,81)

(@) e=0.5 (b)e= (c)e=5

Table 9: Exponential mechanism for Melbourne case study: Each row shows the cost (in dollars) w.r.t a wallet (associated with a
trace) and a fixed ¢, using (@pyc; = 1, dsim = 0). The id in (id, wallet) distinguishes identical wallets with different traces.

¢ | (id, wallet) non_outliers outliers ¢ | (id, wallet) non_outliers outliers ¢ | (id, wallet) non_outliers outliers
05| (0,1.72) (15,82)  (0.0,1.1) 1| (0,1.72) (1.7,82) (0.0, 1.5) 5] (0,1.72) (0.0, 8.2) N
05 | (10,5.11) (0.0, 4.9) N 1] (10,5.11) (0.0, 4.9) N 5 (10, 5.11) (0.0, 4.9) N
05 | (20,6.12) (0.0, 4.4) N 1] (20,6.12) (0.0, 4.4) N 5| (20, 6.12) (0.0, 4.4) N
0.5 | (30,7.08) (0.0,44)  (5.4,54) 1| (30,7.08) (0.0,44)  (5.4,54) 5 | (30,7.08) (0.0,42)  (44,54)
05 | (40,7.75) (0.0,37)  (43,6.0) 1] (40,7.75) (0.0,37)  (43,6.0) 5 | (40, 7.75) 0.0,37) (43, 6.0)
05 | (50, 8.14) (0.0,3.6) (3.6, 6.4) 1] (50, 8.14) 0.0,3.2) (3.6, 6.4) 5| (50, 8.14) (0.0,3.0) (3.2, 64)
05 | (60, 8.55) (0.0,3.6) (4.0, 6.8) 1| (60, 8.55) (0.0,34) (3.6, 6.8) 5| (60, 8.55) 0.0,27) (29, 6.8)
05 | (70,8.9) (0.0,4.8)  (55,7.2) 1] (70,89) (0.0,4.0)  (43,7.2) 5] (70, 8.9) 0.0,29)  (3.0,7.2)
05 | (80,9.22) (0.0,51) (5.8, 7.5) 1] (80,9.22) 0.0,4.8)  (5.1,7.5) 5 (80, 9.22) 0.0,35)  (3.7,7.5)
05 | (90,9.57) (0.0,6.1)  (64,7.9) 1| (90,9.57) (0.0,61)  (64,7.9) 5| (90, 9.57) 0.0,47)  (5.0,7.9)
05 | (100,9.82)  (0.0,64)  (6.6,8.1) 1| (100,9.82)  (0.0,5.7) (6.4 8.1) 5| (100,9.82)  (0.0,54) (6.4, 8.1)

(a)e=05 (b) e = (c)e=5

Table 10: Exponential mechanism for Brisbane case study: Each row shows the cost (in dollars) w.r.t a wallet (associated with a
trace) and a fixed ¢, using (@, = 0.5, &sim = 0.5). The id in (id, wallet) distinguishes identical wallets with different traces.

similarity between the deobfuscated trace and the original

trace. This is repeated num times and the similarity after

each deobfuscation is stored in an element of arr_dsjn,.
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¢ | (id, wallet) non_outliers outliers ¢ | (id, wallet) non_outliers outliers ¢ | (id, wallet) non_outliers outliers
05| (0,1.92) (1.1,81)  (0.0,0.0) 1| (0,1.92) (3.1,81)  (0.0,1.9) 5] (0,1.92) (1.1,81)  (0.0,0.0)
05 | (26,5.76) (0.0, 4.2) N 1| (26,576) (0.0, 4.2) N 5] (26,5.76) (0.0,4.2) N
05 | (52,6.91) (0.0, 5.0) N 1| (52 6.91) (0.0, 5.0) N 5| (52,6.91) (0.0, 5.0) N
05 | (78,7.68) (0.0,38)  (4.6,5.8) 1| (78,7.68) 0.0,38)  (4.6,58) 5| (78,7.68) (0.0,38)  (4.6,58)
05 | (104, 8.06)  (0.0,3.1)  (4.2,6.1) 1] (104,806)  (0.0,3.1) (42 6.1) 5| (104, 8.06)  (0.0,3.1)  (4.2,6.1)
05 | (130,8.83)  (0.0,1.9)  (2.7,6.9) 1] (130,883  (04,12) (0.0, 6.9) 5| (130,8.83)  (0.0,1.9) (2.7, 69)
05| (156,9.21)  (0.0,3.1) (3.5 7.3) 1] (156,9.21)  (0.0,23) (3.1, 7.3) 5] (156,9.21)  (0.0,23)  (3.1,7.3)
05| (182, 9.6) 0.0,38)  (46,7.7) 1| (182,9.6) 0.0,38)  (4.6,7.7) 5] (182, 9.6) 0.0,27) (35,7.7)
05 | (208,9.98)  (0.0,5.0) (6.1, 8.1) 1] (208,9.98)  (0.0,42)  (5.0,8.1) 5| (208,9.98)  (0.0,42)  (5.0,8.1)
05 | (234,9.98)  (0.0,50)  (6.1,8.1) 1] (234,998  (0.0,5.0) (6.1, 8.1) 5| (234,9.98)  (0.0,42)  (5.0,8.1)
05 | (260,9.98)  (0.0,50)  (6.1,8.1) 1] (260,9.98)  (0.0,5.0) (6.1, 8.1) 5] (260,9.98)  (0.0,42)  (5.0,8.1)

(a)e=0.5 (b) ¢ (c)e=5

Table 11: Exponential mechanism for Melbourne case study: Each row shows the cost (in dollars) w.r.t a wallet (associated with
a trace) and a fixed ¢, using (2., c; = 0.5, &sim = 0.5). The id in (id, wallet) distinguishes identical wallets with different traces.

Algorithm 13 Relaxed Attack on one Trace for Exponential

Input: trace € Tp, Tp, &, Qeyel> Asim, num € N, table
Output: arr_dsim
1: function EXP_RELAXED_ATK(trace, Tp, & Aeycls Asim, NUM, table)

2: Initialize arr_dsim as empty list
3: for i from 1 to num do
4: obf_trace < EXPONENTIAL_OBFUSCATION(trace, Tp,

& Qeycls Osim)

5 deobf_trace « Exp_ATTACK(0obf _trace, Tp, table)
6 dsim < COMPUTE_SIMILARITY(trace, deobf _trace)
7: Append dsjm to arr_dsim

8 end for

9: return arr_dsim

10: end function

(4) The results are plotted in a graph, where each element on
the x-axis equals an original trace and the values of the
corresponding arr_dg;im are depicted as a box plot on the
y-axis.

We then compare the results of the similar trace attack with the av-

erage similarity between traces, i.e., an attacker that just randomly
guesses a trace.

Exponential Mechanism. Our evaluation of the similar trace
attack for the exponential mechanism proceeds as follows:

(1) Fix parameters Tp, €, Qeyels Qsim, NUM.

(2) Precomputation: Execute Algorithm 4 as
table < PRECOMPUTATION_EXP_ATTACK(Tp, & Qeycls Asim)
to get the table table with all probabilities

(3) For each trace € Tp, execute Algorithm 13(trace, Tp, €, &yl
Qsim, num, table) to get a list arr_dgim. Algorithm 13 basi-
cally obfuscates the original trace trace, then deobfuscates
it again and calculates the similarity between the deobfus-
cated trace and the original same. This is repeated num times
and the similarity after each deobfuscation is stored in an
element of arr_dgim.
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(4) The results are plotted in a graph, where each element on
the x-axis equals an original trace and the values of the
corresponding arr_dsim, are depicted as a box plot on the
y-axis.

We then compare the results oft the similar trace attack with the av-
erage similarity between traces, i.e., an attacker that just randomly
guesses a trace.

G.3.2 Results. In Fig. 7 the results of num = 1000 iterations of
the similar trace attack are depicted, in Fig. 7a for d-privacy and
in Fig. 7b for the exponential mechanism. For both mechanism it
can be seen that this attack does not fare much better than just
guessing a random trace. Since the red line inside each box plot that
depicts the median is in most cases close to the average similarity
between traces (depicted as blue line), the chance for an adversary
to recover a trace that is “similar” to the original trace is not much
better than just guessing the original trace. But more medians (for
both mechanism) are below the blue line, so the similar trace attack
seems to yield better results than just guessing — even if only a
little.

When comparing Fig. 7a and Fig. 7b in a bit more detail, it can be
seen that for d-privacy the achieved similarity seems to fluctuate
more and thus depends more on the input wallet, while for the
exponential mechanism most input wallets yield a similar similarity.
This is consistent with the results from the “exact trace attack”,
which we considered in Section 5.
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