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ABSTRACT

Electronic toll collection (ETC) systems are becoming increasingly

popular, but are inherently privacy-sensitive as they deal with users’

location data. To this end, quite some research effort has been put

into the design of privacy-preserving ETC (PPETC) systems. In this

paper, we study the actual privacy properties of PPETC schemes,

which hide the individual toll fees from the toll service provider and

provide it only with a total monthly fee. Since previous work has

shown that PPETC schemes may not suffice to protect the privacy

of users in real scenarios, we analyze the effectiveness of using an

additional protection mechanism: applying a differential privacy

mechanism that hides the actual monthly toll fee by adding a small

amount of noise. While this seems like a straightforward solution, it

is not that simple: Since adding noise to monthly fees can increase

monetary costs for users, the added noise should be kept small.

But since adding more noise intuitively means more privacy when

applying differential privacy, one must carefully choose the amount

of added noise in order to strike a balance between privacy gain

and additional cost.

Our goal is to examine two popular differential privacy mecha-

nisms, namely 𝑑-privacy and the exponential mechanism, in order

to evaluate their effectiveness in protecting a user’s toll station vis-

its and to determine the associated privacy costs. To investigate how

well they hide the visited toll stations, we design for each protection

mechanism an attack mechanism that attempts to recover those

from a obscured monthly toll fee, and evaluate its effectiveness on

two real-world scenarios.
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1 INTRODUCTION

Electronic toll collection (ETC) is a technology that is primarily used

to finance road infrastructure, but can also be used for advanced

functions, such as congestion management and pollution reduction

through dynamic pricing. ETC systems are implemented by tolling
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service providers (TSPs), which are authorized to collect tolls and

manage the tolling system and are often private companies. In this

paper, we focus on post-payment ETC systems with monthly billing

periods, as these systems are more convenient for users than pre-

payment systems. In post-payment ETC systems, the TSP needs

to store certain sensitive information in order to be able to charge

users, i.e., users’ names, billing addresses, payment information,

and monthly toll charges. In practice, however, fine-grained billing

information, such as the exact times (and locations) of toll station

visits, is also stored, which inherently allows the TSP to track the

movements of each user. This issue has long been known in the

research community [28]. To address this privacy issue, several

privacy-preserving ETC (PPETC) schemes have been developed [4,

18, 21, 23, 29] that minimize information leakage to the TSP while

still allowing users to be charged.

However, research indicates that simply implementing PPETC

schemes may not sufficiently protect privacy [2, 8, 10]. This is

because there is still some information leakage to the TSP, such

as the monthly toll fee, which is needed for billing. In [2], it is

shown that the monthly toll fee, combined with publicly available

background data such as road maps and usage statistics, is, in some

cases, sufficient to violate user privacy. More specifically, an attack

is constructed on the real ETC system deployed in Brisbane that

reveals the toll stations visited by users with a monthly toll fee

of ≤10 dollars with a success rate of 94%. This attack stems from

the observation that, given the monthly billing fee, reconstructing

the visited toll station is equivalent to the well-known subset sum
problem (SSP). While the SSP is NP-complete from a complexity-

theoretic point of view, it may still be efficiently solvable for “small”

instances, such as the Brisbane ETC system.

Using Differential Privacy to Restore Privacy. While the con-

cept of using differential privacy (DP) to obscuremonthly billing fees

for enhanced privacy has already been proposed [10], it overlooks

the critical consideration of the cost of privacy. This is particularly
important in ETC systems, where cost is a major concern for both

TSPs and their customers [22]. We address this gap by investigating

whether user privacy can be protected while ensuring that the asso-

ciated cost remains relatively small. To accomplish this, we consider

two DP-based protection mechanisms for ETC systems and evalu-

ate them in two real-world ETC infrastructures. We assume that

users themselves apply a DP mechanism before submitting their
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monthly fee to the TSP such that the TSP learns only the obscured

fee and not the original one.
1

Trade-Off between Privacy & Utility. When employing the

DP framework, one must always carefully balance the privacy of

the users against the utility (= accuracy) of the noisy data. It is easy

to see that the higher the noise, the higher the privacy of the users,

but the lower the utility/accuracy of the data, and vice versa. In the

context of ETC, the addition of noise also corresponds to a higher

billing fee that a user has to pay.
2
How much users are willing to

pay for the privacy of their data is an independent research question

that does not seem to be fully answered yet. While the monetary

value of privacy has been empirically evaluated for “some” contexts

a few years ago (e.g., online privacy [20], location data privacy

[3, 9, 38], or removal from marketers’ call lists [36]), [1] suggests

that this question is not easy for many people to answer and is

highly context-dependent. In this work, we, therefore, do not make

assumptions about the costs users are willing to bear for their data

privacy, as this is a separate line of research. Instead, we focus on

developing a mechanism to hide the exact monthly toll fees from

the TSP, while evaluating how much noise needs to be added to

achieve 𝜀-DP for a given 𝜀.

Our Contribution. We examine two differential privacy mech-

anisms, namely 𝑑-privacy [7] and the exponential mechanism [27],

each of which provides a different granularity of privacy. We evalu-

ate their effectiveness in protecting a user’s toll station visits from

an adversary by simulating attacks on the obscured monthly toll

fee and evaluating their success chance. We also examine the cost

the users have to pay for hiding their toll fee.

Our results show that for 𝜀 ≤ 1, both mechanisms achieve 𝜀-DP

and successfully prevent an adversary that uses a maximum likeli-

hood approach [31, 33] from determining the visited toll stations.

However, the monthly cost coming with this may be multiple dol-

lars. When considering a less stringent privacy notion, i.e., 𝜀-DP

for 𝜀 = 5, the adversary can determine the visited toll stations

with a higher, but still small, chance, with significantly lower costs.

Whether or not this obfuscation approach is suitable for real-world

ETC schemes depends on the price the users are willing to pay for

their privacy.

2 BACKGROUND

We introduce some terms and concepts used in our ETC scenario

and describe our DP frameworks. An overview of the used variables

can be found in Appendix A.

2.1 ETC Background

We introduce several notions that are used in our ETC scenario.

Note that we adopt some notions from [2].

Billing Period:We assume users pay their tolls once per billing

period, e.g., once per month.

Toll Stations:We use 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑙 } as set of toll stations.

1
We assume that the user also appends a zero-knowledge proof that they applied the

DP mechanism correctly. Details on this can be found in Remark 2.

2
Since we assume that the noise can also be negative, there is a possibility that the

TSP will lose some of its revenue. Therefore, it is also in the TSP’s interest to keep the

noise small.

Pricing Model: We define the pricing model of an ETC scheme

as a set of toll prices 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑙 }, where each price 𝑝 𝑗 is

fixed and assigned to toll station 𝑠 𝑗 .

Trace: A trace records the toll stations visited by a user during

a billing period, including the frequency [2]. A trace is denoted

as 𝑡𝑟𝑎𝑐𝑒 = {(𝑠1, 𝑓1), (𝑠2, 𝑓2), . . . , (𝑠𝑙 , 𝑓𝑙 )}, where 𝑓𝑖 is the frequency
associated with the toll station 𝑠𝑖 .

Wallet: A wallet represents the state of a user at the end of a

billing period. It consists of the trace 𝑡𝑟𝑎𝑐𝑒 and the wallet balance
3

𝑤 , i.e., the sum of all prices of the visited toll stations. Given𝑤 , the

following equation holds:

𝑤 = 𝑝1 · 𝑓1 + 𝑝2 · 𝑓2 + · · · + 𝑝𝑙 · 𝑓𝑙 , 𝑓𝑗 ∈ N0

Plausible Wallets: The set of plausible wallets is the set of all

wallets that can be possibly achieved, given a pricing model 𝑃 . To

determine the plausible wallets falling within the range of [𝑤𝑙 ,𝑤𝑢 ],
we formulate the following inequality and find all solutions within

this range.

𝑤𝑙 < 𝑝1 · 𝑓1 + 𝑝2 · 𝑓2 + · · · + 𝑝𝑙 · 𝑓𝑙 < 𝑤𝑢 (1)

The set of all solutions derived from Inequality 1 is denoted as𝑊𝑝 ,

where each element (𝑖𝑑,𝑤, 𝑡𝑟𝑎𝑐𝑒) consists of a wallet id 𝑖𝑑 , a wallet
balance𝑤 , and a trace 𝑡𝑟𝑎𝑐𝑒 . Note that we add ids to wallets here to

be able to differentiate between wallets that have the same balance,

but different traces. Note that the set of plausible wallets could then

be further refined by using information about the road network

and connectivity between toll stations. Solutions from Inequality 1

can be discarded if they are not possible given the road network.

Plausible Trace: A plausible trace is a trace that can be possibly

achieved by a user and is linked with a plausible wallet. The set of

plausible traces is defined by 𝑇𝑝 := {𝑡𝑟𝑎𝑐𝑒 | (·, ·, 𝑡𝑟𝑎𝑐𝑒) ∈𝑊𝑝 }.
Cost of Privacy:We define the cost as the difference between

the balance of the original wallet and the balance of the obfuscated

wallet.

Subset Sum Problem (SSP): The SSP is an NP-complete prob-

lem [25], where we consider a set 𝐴 = {𝑎 𝑗 : 1 ≤ 𝑗 ≤ 𝑘, 𝑎 𝑗 ∈ N0}
and a value𝑀 ∈ N0, i.e., a non-negative integer. The aim is to find

𝑥𝑖s such that 𝑎1 · 𝑥1 + 𝑎2 · 𝑥2 + · · · + 𝑎𝑘 · 𝑥𝑘 = 𝑀,𝑥 𝑗 ∈ N0.

2.2 Differential Privacy

Differential privacy (DP) was introduced as a standard for protect-

ing personal records within datasets. The intuition behind DP is

that the presence or absence of a record in a dataset should not

significantly modify the statistics extracted from the dataset [11],

and the information leakage from the statistics should be negligible.

By doing so, the privacy of each individual record will be preserved.

We now review some terms used in the context of DP.

2.2.1 Differential Privacy Fundamentals.

Definition 2.1 (Distance). The distance 𝐷𝑖𝑠𝑡 (𝐷1, 𝐷2) between two

datasets 𝐷1 ∈ D and 𝐷2 ∈ D equals the number of records where

𝐷1 and 𝐷2 differ.

Definition 2.2 (𝜀-differential privacy). A randomized mechanism

𝐾 gives 𝜀-differential privacy (𝜀-DP) if for all datasets 𝐷1, 𝐷2 ∈ D

3
Note that we will frequently abbreviate the wallet balance with just wallet.
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differing on at most one record, i.e., with 𝐷𝑖𝑠𝑡 (𝐷1, 𝐷2) ≤ 1, and all

𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 (𝐾) it holds that

Pr[𝐾 (𝐷) ∈ 𝑆 | 𝐷 = 𝐷1] ≤ 𝑒𝜀 · Pr[𝐾 (𝐷) ∈ 𝑆 | 𝐷 = 𝐷2] .

Intuitively, mechanism 𝐾 provides 𝜀−differential privacy if adding

or removing a single record in a dataset only affects the probability

of any output by a small multiplicative factor [32]. The privacy

parameter 𝜀 quantifies the level of privacy loss. A smaller value of

𝜀 indicates less privacy loss [13].

In our case, the dataset will be the set of users’ wallet balances.

Definition 2.3 (Global sensitivity). The global sensitivity of a query
function 𝑓 : 𝐷 → R𝑞 is the maximum distance between the values

of the function for ∀ 𝐷1 and 𝐷2 differing in at most one record,

i.e., Δ𝑓 := 𝑚𝑎𝑥 | |𝑓 (𝐷1) − 𝑓 (𝐷2) | |1, where 𝐷𝑖𝑠𝑡 (𝐷1, 𝐷2) ≤ 1, and

𝐷1, 𝐷2 ∈ D. It’s important to note that sensitivity is a characteristic

of the function itself and is not influenced by the database [12].

Definition 2.4 (Laplace mechanism). Dwork et al. [14] demon-

strated that 𝜀-DP can be obtained by adding independent and iden-

tically distributed noise to the output of query 𝑓 . The noise 𝑥 is

specifically sampled from the Laplace distribution (𝐿𝑎𝑝 ()), whose
probability density function (pdf) is denoted as 𝐾 (𝑥) := 1

2𝜆
𝑒
−|𝑥−𝜇 |

𝜆 ,

where 𝜇 is a mean and 𝜆 is a scale factor. Dwork et al. prove that

adding noise from 𝐿𝑎𝑝 ( Δ𝑓

𝜀 ) to an output of query 𝑓 with global

sensitivity Δ𝑓 gives 𝜀−differntial privacy.

2.2.2 Metric Differential Privacy (𝑑-Privacy).

Definition 2.5 (Metric differential privacy (𝑑𝑥 -privacy)). Standard

differential privacy makes it challenging to fully protect a value

without adding an excessive amount of noise. However, by adopting

a more relaxed metric, we can ensure a meaningful privacy guaran-

tee by maintaining the accuracy of the values. Metric privacy helps

protect the accuracy of a value [7], such as a wallet balance in our

case. This is particularly useful, as disclosing the exact value of a

wallet balance could reveal information about a user’s movements,

e.g., a trace [2]. Differential privacy can be extended to apply to any

set of secrets 𝑋 , provided it is associated with a metric 𝑑𝑋 [7]. In

our case, we define the metric 𝑑𝑥 as the Euclidean distance between

two wallet balances. Let FZ be a 𝜎-algebra overZ and let P(Z)
be the set of probability measures overZ. A metric on a set 𝑋 is

a function 𝑑𝑋 : 𝑋 2 → [0,∞) such that 𝑑𝑋 (𝑥,𝑦) = 0 if and only if

𝑥 = 𝑦, 𝑑𝑋 (𝑥,𝑦) = 𝑑𝑋 (𝑦, 𝑥), and 𝑑𝑋 (𝑥, 𝑧) ≤ 𝑑𝑋 (𝑥,𝑦) + 𝑑𝑋 (𝑦, 𝑧) for
all 𝑥,𝑦, 𝑧 ∈ 𝑋 . A mechanism 𝐾 : 𝑋 → P(Z) satisfies 𝜀-𝑑𝑋 -privacy,

iff ∀𝑥, 𝑥 ′ ∈ 𝑋 and 𝜀 ≥ 0:

𝐾 (𝑥) (𝑍 ) ≤ 𝑒𝜀 ·𝑑𝑋 (𝑥,𝑥
′ )𝐾 (𝑥 ′) (𝑍 ) ∀𝑍 ∈ FZ

Intuitively, the definition implies that secrets that are hardly indis-

tinguishable with respect to 𝑑𝑋 should yield outcomes with nearly

the same likelihood [7]. In general, mechanisms developed for dif-

ferential privacy can be adapted for metric differential privacy by

using an appropriate metric for the domain [17]. In our case, we use

the Laplace mechanism (see Definition 2.4) to provide 𝑑𝑥 -privacy.

We prove in Appendix B.1 how the Laplace mechanism ensures

𝜀-𝑑𝑥 -privacy.

Parameters 𝑅𝐸, 𝑧, 𝑝𝑟 . We also provide a reasonable relative error
bound 𝑅𝐸 while applying metric differential privacy, meaning that

the extra cost should be tolerable w.r.t users with minimum wallet

balances. We measure the relative error as 𝑅𝐸 :=
|𝑤𝑜−𝑤 |

𝑤 =
|𝑁 |
𝑤 ,

where 𝑁 is the amount of noise added to𝑤 for obfuscation [37, 39].

We relate 𝑅𝐸 to privacy (𝜀), given parameters such as sensitivity

(Δ) and Laplace’s scale (𝜆). To this end, we calculate the probability

𝑝𝑟 of a random Laplace noise exceeding the maximum noise 𝑧. The
following integral computes the cumulative distribution function

for the Laplace distribution over the interval [−𝑧, 𝑧]:

Pr(−𝑧 ≤ 𝑥 ≤ 𝑧) :=
∫ 𝑧

−𝑧

1

2𝜆
𝑒
−|𝑥 |
𝜆 𝑑𝑥 = 1 − 𝑒

−𝑧
𝜆

From this, we derive Pr( |𝑥 | ≥ 𝑧) := 𝑒
−𝑧
𝜆 . Let 𝑝𝑟 := Pr( |𝑥 | ≥ 𝑧),

meaning that with probability 𝑝𝑟 , the random noise has an absolute

value of at least 𝑧 or, in other words, with probability 1 − 𝑝𝑟 , the
noise has a value of at maximum 𝑧. We thus call 𝑝𝑟 the out-of-bounds
probability, since it denotes the probability that the generated noise
is outside the bound defined by 𝑧.

The maximum noise 𝑧 for a given 𝑝𝑟 is then obtained as 𝑧 :=

−𝜆 · 𝑙𝑛(𝑝𝑟 ). Given 𝜆 := Δ
𝜀 and 𝑧 := −𝜆 · 𝑙𝑛(𝑝𝑟 ), the following holds:

𝑧 := −Δ
𝜀
· 𝑙𝑛(𝑝𝑟 ) (2)

To ensure that the relative error remains below the specified thresh-

old denoted as 𝑅𝐸 for every wallet 𝑤 in the set𝑊 , the condition

𝑅𝐸 := 𝑧
𝑤𝑚𝑖𝑛

must be satisfied, where𝑤𝑚𝑖𝑛 is the smallest𝑤 in the

set𝑊 . It is evident that the relative error will be less than and equal

𝑅𝐸 for all𝑤 ≥ 𝑤𝑚𝑖𝑛 . Given 𝑅𝐸 := 𝑧
𝑤𝑚𝑖𝑛

, and Eq. (2), we can derive

the following:

𝑅𝐸 :=
𝑧

𝑤𝑚𝑖𝑛
=
−Δ · 𝑙𝑛(𝑝𝑟 )
𝜀 ·𝑤𝑚𝑖𝑛

(3)

Figure 3 in Appendix B.2 shows how different parameters are con-

nected in Eq. (3). One interpretation of Eq. (3) is that to guarantee

the relative error 𝑅𝐸, the 𝜀 of the Laplace mechanism should be

derived as

𝜀 :=
−Δ · ln(𝑝𝑟 )
𝑅𝐸 ·𝑤𝑚𝑖𝑛

. (4)

Post-processing. Let 𝐾 be an 𝜀−DP mechanism, and 𝑔 be an

arbitrary mapping from the set of possible outputs to an arbitrary

set. Then, 𝑔 ◦𝐾 is 𝜀-differentially private as well [16, 40]. In our ap-

plication, when dealing with obfuscated wallet balances, we clamp

them to the interval [0,𝑤𝑚𝑎𝑥 ], where𝑤𝑚𝑎𝑥 is the maximum wallet

balance, and round to cents.

2.2.3 The Exponential Mechanism.

Definition 2.6 (Exponential Mechanism). The exponential mech-

anism provides more fine-grained privacy. Instead of merely obfus-

cating wallet balances through the d-privacy mechanism, it allows

us to adjust the level of privacy by obfuscating traces, including

both the toll stations visited and their frequencies, using a scoring

function. With a privacy parameter 𝜀, an outcome set 𝑅, and a scor-
ing function 𝑢 : 𝐷 × 𝑅 → R which maps (𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅) pairs to a

real-valued score, the exponential mechanism𝑀𝐸 (𝑥,𝑢, 𝑅) samples

a single element 𝑟 from 𝑅 according to the following probability

3
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distribution [27]:

Pr[𝑟 ] =
exp

(
𝜀 ·𝑢 (𝑥,𝑟 )
2·Δ𝑢

)
∑
𝑖∈𝑅 exp

(
𝜀 ·𝑢 (𝑥,𝑖 )
2·Δ𝑢

) (5)

The goal is to select a candidate item 𝑟 ∈ 𝑅 that approximately max-

imizes 𝑢 (𝑥, 𝑟 ) while ensuring 𝜀-differential privacy. The sensitivity
of the scoring function 𝑢 is defined as

Δ𝑢 = max

𝑟 ∈𝑅
max

𝑥,𝑥 ′
|𝑢 (𝑥, 𝑟 ) − 𝑢 (𝑥 ′, 𝑟 ) | (6)

where 𝑥 and 𝑥 ′ are neighboring datasets [27]. In our case, 𝐷 = 𝑅,

which equals the set of plausible traces 𝑇𝑝 . Note that we assume

all traces to be “neighbors”, thus aiming to hide the complete trace

from the adversary. We aim to map an original 𝑡𝑟𝑎𝑐𝑒 ∈ 𝑇𝑝 to an

obfuscated 𝑡𝑟𝑎𝑐𝑒 ∈ 𝑇𝑝 using the 𝑢 function. The cost is calculated

as the absolute difference between the obfuscated wallet and the

original wallet associated with the obfuscated and original traces.

3 WALLET OBFUSCATION MECHANISMS

In post-payment ETC systems, users often settle their debt once

per billing period, i.e., they clear their wallet balance, which cor-

responds to the sum of all prices of all toll stations visited during

that billing period. It is shown in [2, 8] that revealing the exact

wallet balance can violate user privacy, since a user’s trace may

be recovered with significant probability with appropriate addi-

tional information. To address this issue, we present two different

DP-based wallet obfuscation mechanisms.

3.1 Obfuscation based on 𝑑-Privacy

We first present a wallet obfuscation mechanism based on 𝑑-privacy

(cp. Definition 2.5), which obscures the final wallet balance. The wal-

let obfuscation algorithm is shown in Algorithm 6 in Appendix C.1

and gets the user’s actual wallet balance𝑤 , the minimum possible

wallet balance𝑤𝑚𝑖𝑛 , the maximum possible wallet balance𝑤𝑚𝑎𝑥 ,

the relative error threshold 𝑅𝐸, and the out-of-bounds probability

𝑝𝑟 as input. Note that 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥 are defined by the pricing

scheme and thus fixed for a given ETC scheme and that the privacy

level 𝜀 is fixed through 𝑅𝐸, 𝑝𝑟 , and𝑤𝑚𝑖𝑛 (cp. Eq. (4)).

The algorithm first sets the scale 𝜆 of the Laplace mechanism

using Eq. (4) and the relation 𝜆 = Δ
𝜀 as follows:

𝜆 =
Δ

𝜀
=

Δ

−(Δ · 𝑙𝑛(𝑝𝑟 ))/(𝑅𝐸 ·𝑤𝑚𝑖𝑛)
= −(𝑅𝐸 ·𝑤𝑚𝑖𝑛)/𝑙𝑛(𝑝𝑟 )

Then it generates noise 𝑁 using the Laplace mechanism with scale

𝜆 and adds 𝑁 to the wallet balance𝑤 to get the obfuscated wallet

balance 𝑤𝑜 . Afterward, post-processing is performed: The obfus-

cated wallet balance 𝑤𝑜 is clamped to the interval [0,𝑤𝑚𝑎𝑥 ] and
rounded to two decimal places (since wallet balances are expressed

in dollars and cents). Finally, the algorithm returns𝑤𝑜 .

We want to highlight that the generated noise 𝑁 falls into inter-

val (−𝑧, 𝑧), with probability 1 − 𝑝𝑟 , ensuring the additional costs

are capped at 𝑅𝐸 percent of 𝑤𝑚𝑖𝑛 with overwhelming (1 − 𝑝𝑟 )
probability (cp. Eq. (3)).

Remark 1. Algorithm 6 is intended to be run by the user after each
billing period, so that only𝑤𝑜 and not𝑤 is sent to the TSP for billing

purposes. As such, the user needs appropriate information to sample

the noise according to the TSP’s intended distribution. Instead of

providing the user with the obfuscation parameters (𝑤𝑚𝑖𝑛, 𝑅𝐸, 𝑝𝑟 ),
it is sufficient to provide the user with 𝜆, since Algorithm 6 uses

the obfuscation parameters only to compute 𝜆.

Remark 2. We assume that Algorithm 6 is used in combination

with privacy-preserving ETC schemes. These should already use

cryptographic methods to ensure that a user’s final wallet balance

𝑤 correctly equals the sum of the individual toll fees, without the

TSP learning the individual toll fees. Since the TSP now learns𝑤𝑜

instead of 𝑤 , the TSP must again ensure that 𝑤𝑜 represents the

correct wallet balance. To achieve this, the user can, for example,

send 𝑤𝑜 together with a zero-knowledge proof (proving that 𝑤𝑜

was computed from𝑤 using Algorithm 6 for some𝑤4
) to the TSP.

Note that if users are not trusted to sample 𝑁 ← 𝐿𝑎𝑝 (𝜆) honestly,
the user and the TSP could engage in a joint coin toss to sample

the noise 𝑁 together [24].

Impact of Parameters on Generated Noise. In Appendix C.2

we discuss how the out-of-bounds probability 𝑝𝑟 and minimum

wallet balance𝑤𝑚𝑖𝑛 impact the generated noise, which defines the

extra amount of cost users have to bear for privacy. In a nutshell,

we show that TSPs either need to fix a privacy goal (𝜀) and then

see how much noise they need to achieve that or they need to fix a

noise bound 𝑧 and see how much privacy they achieve with that.

3.2 Obfuscation based on the Exponential

Mechanism

Next, we construct an obfuscation mechanism based on the expo-

nential mechanism𝑀𝐸 (cp. Definition 2.6), which operates on traces

directly. The pseudocode of the mechanism is shown in Algorithm 1.

The core idea is that, given a fixed trace 𝑡𝑟𝑎𝑐𝑒 ∈ 𝑇𝑝 , 𝑀𝐸 selects a

trace from 𝑇𝑝 that maximizes the score while guaranteeing privacy.

Our scoring function 𝑢 : 𝑇𝑝 × 𝑇𝑝 → R uses both Euclidean and

similarity distances to calculate the score of two traces:

(1) The Euclidean distance𝑑𝑒𝑢𝑐𝑙 measures the difference between

the two wallet balances associated with the traces

(2) The similarity distance 𝑑𝑠𝑖𝑚 measures how similar the traces

are in terms of toll station visits

For a high score, the Euclidean distance should be small (low cost),

while the similarity distance should be high (very different traces).

To compute the final score, we assign weights 𝛼𝑒𝑢𝑐𝑙 and 𝛼𝑠𝑖𝑚 (with

𝛼𝑒𝑢𝑐𝑙 + 𝛼𝑠𝑖𝑚 = 1) to both distances, allowing a TSP to adjust the

impact of each distance on the score. Then we compute the score as

𝑠𝑐𝑜𝑟𝑒 := (𝑑′
𝑠𝑖𝑚
·𝛼𝑠𝑖𝑚 −𝑑′𝑒𝑢𝑐𝑙 ·𝛼𝑒𝑢𝑐𝑙 ), where 𝑑

′
𝑠𝑖𝑚

(resp. 𝑑′
𝑒𝑢𝑐𝑙

) is 𝑑𝑠𝑖𝑚

(resp. 𝑑𝑒𝑢𝑐𝑙 ) scaled to the range [0, 1]. Given 𝑠𝑐𝑜𝑟𝑒 , we compute the

probability that 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝 is selected by 𝑀𝐸 as 𝑝𝑟𝑜𝑏 := 𝑒
𝜀 ·𝑠𝑐𝑜𝑟𝑒

2·Δ ,

whereΔ is the sensitivity of the scoring function (in our case,Δ := 1).

After doing this for all 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝 ,𝑀𝐸 samples an obfuscated trace

according to the normalized probabilities 𝑝𝑟𝑜𝑏. Note: The TSP can

enhance the scoring function by incorporating additional param-

eters, enabling a more precise and customizable level of privacy

granularity. Additional details on𝑀𝐸 are given in Appendix D.

4
For 𝑤, the correctness is already ensured by the PPETC scheme (which could also

use a zero-knowledge proof to achieve this).

4



Differential Privacy to the Rescue? On Obfuscating Tolls in Privacy-Preserving ETC Systems ()

Algorithm 1 Obfuscation Algorithm based on the Exponential

Mechanism

Input: 𝑡𝑟𝑎𝑐𝑒 ∈ 𝑇𝑝 ,𝑇𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 ∈ [0, 1], 𝛼𝑠𝑖𝑚 ∈ [0, 1]
Output: 𝑜𝑏𝑓 _𝑡𝑟𝑎𝑐𝑒

1: function exponential_obfuscation(𝑡𝑟𝑎𝑐𝑒,𝑇𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚)

2: (𝑚𝑎𝑥_𝑒𝑢𝑐𝑙,𝑚𝑎𝑥_𝑠𝑖𝑚) ← compute_max_dist(𝑇𝑝 )
3: Declare 𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒 [|𝑇𝑝 |]
4: for all 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝 do

5: 𝑑𝑒𝑢𝑐𝑙 ← compute_euclidean(𝑡𝑟𝑎𝑐𝑒, 𝑡𝑟𝑎𝑐𝑒 𝑗 )
6: 𝑑𝑠𝑖𝑚 ← compute_similarity(𝑡𝑟𝑎𝑐𝑒, 𝑡𝑟𝑎𝑐𝑒 𝑗 )
7: 𝑑′

𝑒𝑢𝑐𝑙
← 𝑑𝑒𝑢𝑐𝑙/𝑚𝑎𝑥_𝑒𝑢𝑐𝑙

8: 𝑑′
𝑠𝑖𝑚
← 𝑑𝑠𝑖𝑚/𝑚𝑎𝑥_𝑠𝑖𝑚

9: 𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒 [ 𝑗] ← (𝑑′
𝑠𝑖𝑚
· 𝛼𝑠𝑖𝑚 − 𝑑′𝑒𝑢𝑐𝑙 · 𝛼𝑒𝑢𝑐𝑙 )

10: end for

11: 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏 ← compute_prob(𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒, 𝜀,Δ := 1)
12: 𝑎𝑟𝑟_𝑛𝑜𝑟𝑚_𝑝𝑟𝑜𝑏 ← normalize(𝑎𝑟𝑟_𝑝𝑟𝑜𝑏)
13: 𝑜𝑏𝑓 _𝑡𝑟𝑎𝑐𝑒 ← select_rand(𝑎𝑟𝑟_𝑛𝑜𝑟𝑚_𝑝𝑟𝑜𝑏,𝑇𝑝 )
14: return 𝑜𝑏𝑓 _𝑡𝑟𝑎𝑐𝑒

15: end function

4 DEOBFUSCATION ATTACKS

To measure the effectiveness of the DP-based wallet obfuscation

mechanisms, we design attacks against them in this section and

evaluate their effectiveness later in Section 5. For all attacks, the

adversary outputs a guess for the original trace. We start with an

attack against the 𝑑-privacy-based approach.

4.1 Deobfuscation Attack on 𝑑-Privacy

We begin by discussing our threat model, followed by describing the

three steps of the attack: (1) Precomputation, (2) Wallet Recovery,

and (3) Trace Recovery. In step (2), we first guess the original wallet

balance, given an obfuscated wallet balance, and then assign that

balance a trace in step (3). Afterward, we discuss what influences

the success rate of the deobfuscation attack.

4.1.1 Threat Model. Although the privacy level in the DP frame-

work is parameterized by 𝜀 [10]; it does not reflect the absolute level

of privacy for a user, i.e., what can really be inferred from a user’s

secret [12, 15, 30]. To analyze the privacy level of our mechanism,

we consider a threat model where an adversary A exploits some

background information so as to measure what actually can be

learned from an obfuscated wallet. Our threat model is similar to

the one in [2]. We assume a passive adversary, i.e., it only observes

information but does not manipulate any data. A has access to an

obfuscated wallet balance, denoted as 𝑤𝑜 , for which it wants to

identify the correct (deobfuscated) trace. In addition, it has access

to the set of all toll prices 𝑃 (e.g., by consulting the TSP’s website).

A can also obtain all plausible wallets, denoted as𝑊𝑝 , using the toll

prices and Eq. (1). Furthermore, A knows the maximum relative

cost that users are expected to pay to maintain privacy, denoted by

𝑅𝐸. We assume that 𝑅𝐸 is publicly available information, so users

know what costs to expect. In summary, the adversary’s knowledge

is represented as 𝐾 = {𝑤𝑜 , 𝑃,𝑊𝑝 , 𝑅𝐸}.

4.1.2 Step 1: Precomputation. First, A pre-calculates all possi-

ble ranges that an obfuscated balance𝑤𝑜 can fall into. Each range 𝑅

Algorithm 2 Precomputation for Attack on 𝑑-Privacy

Input: 𝑊𝑝 , 𝑅𝐸

Output: 𝑙𝑖𝑠𝑡_𝑟𝑎𝑛𝑔𝑒𝑠

1: function precomputation_metric_attack(𝑊𝑝 , 𝑅𝐸)

2: 𝑧 ← 𝑅𝐸 ·𝑤𝑚𝑖𝑛

3: for all𝑤 ∈𝑊𝑝 do

4: 𝑙 ← 𝑤 − 𝑧
5: 𝑢 ← 𝑤 + 𝑧
6: if 𝑙 < 0 then

7: 𝑙 ← 0

8: end if

9: if 𝑢 > 𝑤𝑚𝑎𝑥 then

10: 𝑢 ← 𝑤𝑚𝑎𝑥

11: end if

12: 𝑅 ← (𝑙, 𝑢)
13: 𝑙𝑖𝑠𝑡_𝑟𝑎𝑛𝑔𝑒𝑠 ← (𝑅,𝑤)
14: end for

15: return 𝑙𝑖𝑠𝑡_𝑟𝑎𝑛𝑔𝑒𝑠

16: end function

contains all possible obfuscated balances corresponding to a given

original balance 𝑤 . To create each range, A computes the lower

and upper bounds of the obfuscated values associated with𝑤 , us-

ing 𝑤 itself and 𝑧. Recall that all generated noises fall within the

interval (−𝑧, 𝑧) with probability 1 − 𝑝𝑟 (cp. Section 3.1). The pseu-

docode for the precomputation algorithm is given in Algorithm 2.

A takes𝑊𝑝 , 𝑅𝐸 as input and computes 𝑧 := 𝑅𝐸 ·𝑤𝑚𝑖𝑛 (cp. Eq. (3)).

Then, for each 𝑤 ∈𝑊𝑝 , A computes its lower and upper bounds

as 𝑙 := 𝑤 − 𝑧 and 𝑢 := 𝑤 + 𝑧, respectively, and clamps (𝑙, 𝑢) to the

interval [0,𝑤𝑚𝑎𝑥 ]. A then constructs the corresponding range as

𝑅 := (𝑙, 𝑢). Finally, A stores the pair (𝑅,𝑤) in a list 𝑙𝑖𝑠𝑡_𝑟𝑎𝑛𝑔𝑒𝑠 .

Note that the precomputation step needs to be executed only

once when deobfuscating the first wallet balance and can be skipped

when deobfuscating further wallet balances.

4.1.3 Step 2: Wallet Recovery. The idea behind finding the cor-

rect wallet associated with the obfuscated wallet𝑤𝑜 is to first com-

pute which ranges (computed in Step 1)𝑤𝑜 falls into and then select

one of them. The goal is to deobfuscate a wallet𝑤𝑜 using the list

of precomputed ranges 𝑙𝑖𝑠𝑡_𝑟𝑎𝑛𝑔𝑒𝑠 computed in Step 1. For each

(𝑅,𝑤) in the list,A checks whether𝑤𝑜 falls into 𝑅 or not. If it does,

A retrieves its corresponding wallet𝑤 from the tuple (𝑅,𝑤) and
adds it to the list of deobfuscated wallets (𝑙𝑖𝑠𝑡_𝑑𝑒𝑜𝑏𝑓 _𝑤𝑎𝑙𝑙𝑒𝑡𝑠) as a

candidate for being a deobfuscated wallet. After obtaining the list

of deobfuscated wallets, A selects one of them, denoted as𝑤𝑐 , as

its solution for the correct wallet. This selection can be based on

different strategies, which will be discussed soon in Section 4.1.4.

Later in the evaluation part, we will need the term overlapping
ranges: Given two precomputed ranges and their corresponding

wallets

(
𝑅1 = (𝑤1−𝑧,𝑤1+𝑧),𝑤1

)
and

(
𝑅2 = (𝑤2−𝑧,𝑤2+𝑧),𝑤2

)
, we

say that 𝑅1 and 𝑅2 overlap each other iff 2·𝑧 > 𝑔 holds, where𝑔 is the

distance between the wallets𝑤1 and𝑤2. Intuitively, deobfuscation

becomes more difficult when more ranges overlap. This is because,

among the overlapping ranges that include the obfuscated wallet

𝑤𝑜 , A must correctly identify the range that includes the correct

wallet𝑤𝑐 corresponding to𝑤𝑜 .
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Algorithm 3Wallet Recovery Attack on 𝑑- Privacy

Input: 𝑤𝑜 , 𝑙𝑖𝑠𝑡_𝑟𝑎𝑛𝑔𝑒𝑠

Output: 𝑤𝑐

1: functionmetric_wallet_recovery_attack(𝑤𝑜 , 𝑙𝑖𝑠𝑡_𝑟𝑎𝑛𝑔𝑒𝑠)

2: for all (𝑅,𝑤) ∈ 𝑙𝑖𝑠𝑡_𝑟𝑎𝑛𝑔𝑒𝑠 do
3: if 𝑤𝑜 ∈ 𝑅 then

4: 𝑙𝑖𝑠𝑡_𝑑𝑒𝑜𝑏𝑓 _𝑤𝑎𝑙𝑙𝑒𝑡𝑠 ←𝑤

5: end if

6: end for

7: 𝑤𝑐 ← select(𝑙𝑖𝑠𝑡_𝑑𝑒𝑜𝑏𝑓 _𝑤𝑎𝑙𝑙𝑒𝑡𝑠)
8: return𝑤𝑐

9: end function

4.1.4 Success Rate of the Wallet Recovery Attack. To obtain

the success rate for deobfuscating𝑤𝑜 , we compute the probability

that A correctly guesses the correct trace. We first examine the

success rate of the wallet recovery attack.

For the wallet recovery attack, A is given𝑤𝑜 and has to output

the correct original wallet balance 𝑤𝑐 , which is among all deob-

fuscated wallet balances in the list 𝑙𝑖𝑠𝑡_𝑑𝑒𝑜𝑏𝑓 _𝑤𝑎𝑙𝑙𝑒𝑡𝑠 := {𝑤1,𝑤2,

. . . ,𝑤𝑘 }, each of which is a candidate for being a correct wallet.

The index 𝑐 in𝑤𝑐 denotes an arbitrary but fixed wallet in the list

𝑙𝑖𝑠𝑡_𝑑𝑒𝑜𝑏𝑓 _𝑤𝑎𝑙𝑙𝑒𝑡𝑠 . The adversary could use different strategies

to distinguish between the wallets in the list, assigning different

probabilities to each as being correct. Consequently, using different

strategies could result in different success rates. We now discuss

three different strategies.

Baseline Strategy. To select the correct wallet from the list,

we treat the following method as a baseline strategy: randomly

selecting a wallet (𝑤𝑖 ) with equal probability. The success rate

of the attack with this strategy, i.e., the probability of correctly

guessing the correct original wallet balance, is computed as 𝑆𝑅 =

1 / |𝑙𝑖𝑠𝑡_𝑑𝑒𝑜𝑏𝑓 _𝑤𝑎𝑙𝑙𝑒𝑡𝑠 | = 1/𝑘 .

Strategy 1. Amore advanced strategy than the baseline strategy

is to use the fact that𝑤𝑖s that are closer to𝑤𝑜 are more likely to be

connected to𝑤𝑜 . This is due to the fact that smaller deviations (i.e.,

noise) are more likely than larger ones in the Laplace distribution.

To determine the probability that𝑤𝑖 is the correct wallet connected

to𝑤𝑜 , the adversary computes the probability 𝜙𝑖 for each𝑤𝑖 in the

list using Laplace (cp. Definition 2.4):

𝜙𝑖 :=
1

2𝜆
𝑒
−|𝑤𝑜 −𝑤𝑖 |

𝜆 =
1

2𝜆
𝑒
−|𝑁𝑖 |
𝜆

where 𝑁𝑖 is the noise added to𝑤𝑖 for obfuscation. Thus, the adver-

sary obtains the set {𝜙1, 𝜙2, . . . , 𝜙𝑘 }, where 𝜙𝑖 corresponds to𝑤𝑖 in

the list of deobfuscated wallets. Since the probabilities in the set

might not add up to one, they need to be normalized. Finally, from

the list of deobfuscated wallets, the adversary picks the𝑤𝑖 whose

associated normalized probability 𝜙𝑖 has the highest value. Note

that this is a maximum likelihood strategy [33].

Strategy 2. If the adversary has more background knowledge

than initially assumed in the threat model (cp. Section 4.1.1) and

knows the probabilities of (original) wallet balances occurring in the

system, this strategy can be used. Strategy 2 builds upon strategy 1,

but the adversary enhances its guessing by utilizing statistics on

the frequencies of occurrences of𝑤𝑖 collected over many periods.

Basically, the more frequently𝑤𝑖 appears in the system, the more

likely it is to be associated with𝑤𝑜 . Let’s say the adversary knows

the probability, i.e., 𝜔𝑖 , of each plausible wallet𝑤𝑖 occurring in the

ETC system. The probability that𝑤𝑖 is connected to𝑤𝑜 is calculated

bymultiplying two probabilities for two independent events: (1) The

probability 𝜔𝑖 that𝑤𝑖 occurs in the ETC system. (2) The probability

𝜙𝑖 that𝑤𝑖 is connected to𝑤𝑜 using Laplace (cp. Strategy 1). Thus,

the final probability is computed as𝜓𝑖 := 𝜙𝑖 ·𝜔𝑖 . Similar to Strategy 1,

the adversary obtains the set {𝜓1,𝜓2, . . . ,𝜓𝑘 }, where𝜓𝑖 corresponds
to𝑤𝑖s and then normalizes the probabilities so that the sum of all

𝜓𝑖 equals one. Finally, from the list of deobfuscated wallets, the

adversary picks the 𝑤𝑖 whose associated normalized probability

𝜓𝑖 has the highest value. Note that we will use Strategy 1 for our

evaluation in Section 5.1 since we do not have detailed knowledge

of wallet balance occurrences for our case studies.

4.1.5 Step 3: Trace Recovery. Given a guess of𝑤 for the original

wallet balance, the adversary now needs to find the trace corre-

sponding to𝑤 . For that, we employ the trace finding attack from

[2, Section 4], which gets a wallet balance as input and outputs a

possible corresponding trace.

The success rate for the complete deobfuscation attack is then

determined by multiplying the success rates of the wallet recovery

attack with the success rate of the trace recovery attack from [2].

4.2 Deobfuscation Attack on the Exponential

Mechanism

We begin by discussing our threat model, followed by describing

the two steps of the attack.

4.2.1 Threat model. Similar to the threat model in Section 4.1.1,

we assume a passive adversary A that has access to the set of all

toll prices 𝑃 and thus also to the set of plausible wallets𝑊𝑝 and

the set of plausible traces 𝑇𝑝 . Furthermore, we assume for evalu-

ation purposes that A knows the parameters of the exponential

mechanism, i.e., 𝜀, Δ, 𝛼𝑒𝑢𝑐𝑙 and 𝛼𝑠𝑖𝑚 . But depending on who the

real-world adversary is, it might not have access to all of these

parameters and may have to guess (some of) them. It also knows an

obfuscated trace 𝑡𝑟𝑎𝑐𝑒𝑜 which it wants to deobfuscate. In summary,

our adversary knowledge is represented as 𝐾 = {𝑡𝑟𝑎𝑐𝑒𝑜 , 𝑃,𝑊𝑝 ,𝑇𝑝 ,

𝜀,Δ, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚}.

4.2.2 Deobfuscation Attack. The attack includes two steps: (1)

precomputation and (2) deobfuscation. In the precomputation phase

(cp. Algorithm 4), A creates a table containing the probabilities

that 𝑡𝑟𝑎𝑐𝑒𝑖 got mapped to 𝑡𝑟𝑎𝑐𝑒 𝑗 during obfuscation, for 𝑖, 𝑗 ∈ {0,
. . . , |𝑇𝑝 | − 1}. For that, the exponential obfuscation algorithm (Algo-

rithm 1) is executed for each 𝑡𝑟𝑎𝑐𝑒𝑖 ∈ 𝑇𝑝 to get the probability that

this trace gets mapped to 𝑡𝑟𝑎𝑐𝑒 𝑗 , for all 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝 . The results are
stored in a table, where the cell (𝑖, 𝑗) contains the likelihood that

𝑡𝑟𝑎𝑐𝑒𝑖 is mapped to 𝑡𝑟𝑎𝑐𝑒 𝑗 . .

In the deobfuscation phase (cp. Algorithm 5), given an obfus-

cated trace 𝑡𝑟𝑎𝑐𝑒 𝑗 , A simply selects the cell in the 𝑗th column that

contains the maximum of the 𝑗th column. This cell holds the id of

the trace with the highest probability of being the original trace.

Note that attack is again a maximum likelihood strategy.
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Algorithm 4 Precomputation for Attack on the Exponential Mech-

anism

Input: 𝑇𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚
Output: 𝑡𝑎𝑏𝑙𝑒

1: function precomputation_exp_attack(𝑇𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚)

2: Declare 𝑡𝑎𝑏𝑙𝑒 [|𝑇𝑝 |] [|𝑇𝑝 |] \\Create 2-dimensional array

3: for all 𝑡𝑟𝑎𝑐𝑒𝑖 ∈ 𝑇𝑝 do

4: 𝑖𝑛𝑝𝑢𝑡 ← (𝑡𝑟𝑎𝑐𝑒𝑖 ,𝑇𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚)
5: 𝑎𝑟𝑟_𝑛𝑜𝑟𝑚_𝑝𝑟𝑜𝑏 ← compute_normalized_prob(𝑖𝑛𝑝𝑢𝑡)
6: \\This executes exponential_obfuscation until

7: 𝑎𝑟𝑟_𝑛𝑜𝑟𝑚_𝑝𝑟𝑜𝑏 is computed

8: 𝑡𝑎𝑏𝑙𝑒 [𝑖] ← 𝑎𝑟𝑟_𝑛𝑜𝑟𝑚_𝑝𝑟𝑜𝑏

9: end for

10: return 𝑡𝑎𝑏𝑙𝑒

11: end function

Algorithm 5 Attack on the Exponential Mechanism

Input: 𝑡𝑟𝑎𝑐𝑒𝑜 ∈ 𝑇𝑝 ,𝑇𝑝 , 𝑡𝑎𝑏𝑙𝑒
Output: 𝑡𝑟𝑎𝑐𝑒𝑐
1: function exp_attack(𝑡𝑟𝑎𝑐𝑒𝑜 ,𝑇𝑝 , 𝑡𝑎𝑏𝑙𝑒)

2: Declare 𝑐𝑜𝑙𝑢𝑚𝑛[|𝑇𝑝 |]
3: Let 𝑗 be the index for which 𝑡𝑟𝑎𝑐𝑒𝑜 = 𝑇𝑝 [ 𝑗] holds
4: for 𝑖 from 0 to |𝑇𝑝 | − 1 do
5: 𝑐𝑜𝑙𝑢𝑚𝑛[𝑖] ← 𝑡𝑎𝑏𝑙𝑒 [𝑖] [ 𝑗] \\get 𝑗th column of 𝑡𝑎𝑏𝑙𝑒

6: end for

7: 𝑖𝑛𝑑𝑒𝑥 ← 𝑎𝑟𝑔_𝑚𝑎𝑥 (𝑐𝑜𝑙𝑢𝑚𝑛) \\Find maximum probability

8: 𝑡𝑟𝑎𝑐𝑒𝑐 ← 𝑇𝑝 [𝑖𝑛𝑑𝑒𝑥]
9: return 𝑡𝑟𝑎𝑐𝑒𝑐
10: end function

5 EVALUATION

We now evaluate the effectiveness of our deobfuscation attacks

against our wallet obfuscation mechanisms to determine the level

of privacy achievable and the associated costs. Using the current

ETC systems in Brisbane and Melbourne as case studies, we ap-

ply their parameters,i.e., toll stations and prices, to a hypotheti-

cal PPETC scheme. We then assess whether adding 𝑑-privacy or

exponential-DP to this scheme helps in hiding the toll station visits.

The adversary’s goal, in this section, is to recover the original trace

of the user, given an obfuscated wallet. Note that in Appendix G, we

consider a more relaxed attacker where the adversary tries to find

a trace that is just similar to the original trace instead of finding

the exact trace.

5.1 Evaluation of 𝑑-Privacy

We analyze the effectiveness of the deobfuscation attack against

the 𝑑-privacy approach as follows.

Privacy Analysis. We evaluate the privacy level of an individual

by calculating the success rate of the deobfuscation attack from

Section 4.1, while using Strategy 1 (cp. Section 4.1.4) for the selection

of the deobfuscated wallet, for different 𝜀, namely 𝜀 ∈ {0.5, 1, 5}.
More precisely, we perform the following steps:

Step 1: For a given 𝜀 ∈ {0.5, 1, 5}, we compute the correspond-

ing relative error bound 𝑅𝐸 and the noise bound 𝑧. We then

execute the precomputation phase (cp. Section 4.1.2) to get

for each wallet𝑤 the range 𝑅 in which all obfuscated wallets

fall into (with probability 1 − 𝑝𝑟 ).
Step 2: For each wallet𝑤 , we take the corresponding range 𝑅

of possible obfuscated wallets (computed in step 1). Then, for

each𝑤𝑜 ∈ 𝑅 we execute the wallet recovery attack (cp. Sec-

tion 4.1.3).

Step 3: To get the results for the complete deobfuscation attack,

we multiply the probability that the adversary can recover

the correct wallet balance (obtained in step 2) with the proba-

bility that the correct trace can be recovered from that wallet

balance.

For each 𝜀 ∈ {0.5, 1, 5}, we provide the results of the privacy analysis
for the complete deobfuscation attack as a graph. Note that in

Appendix E we additionally provide the results for just the wallet

recovery attack (without trace recovery).

Cost Analysis. We also evaluate the amount of additional noise

introduced by obfuscation for the same 𝜀s used in the privacy eval-

uation. This helps us to understand at what cost the level of privacy

is achieved. The cost analysis includes the following steps:

Step 1: For different 𝜀 and its associated 𝑅𝐸, we add noise to

each plausible wallet𝑤 to obtain its associated obfuscated

wallet𝑤𝑜 , using Algorithm 6.

Step 2: Having obtained an obfuscated wallet, we compute the

cost as |𝑤𝑜 −𝑤 |, for each𝑤 and its corresponding𝑤𝑜 .

We repeat this 1000 times to get a good estimate of the costs. The

cost analysis results are presented in a table, where each row dis-

plays various parameters, including 𝑝𝑟 , 𝑅𝐸, 𝜀, non-outliers, outliers,

and 𝑧. The columns for non-outliers and outliers are determined

using a box plot method that identifies noise data distribution (ex-

plained in Appendix C.2). The non-outliers, outliers, and 𝑧, are

given in dollars.

5.1.1 Brisbane Case Study.

Parameters. To evaluate our attack, we utilize the actual pa-

rameters of Brisbane’s ETC system [6, 34, 35], which has also been

examined in [2]. We use the following parameters for our evalua-

tion:

Toll prices (𝑃): The 9 toll prices (in dollars) are as follows [34]:

𝑃 = {1.72, 2.68, 2.84, 3.19, 4.09, 4.55, 5.11, 5.11, 5.46}.
Plausible wallets (𝑊𝑝 ): Based on the toll prices, we can com-

pute the set of plausiblewallets𝑊𝑝 within the range [$0, $10]5
using Eq. (1).

Obfuscated wallets (𝑊𝑜 ): We obtain the ranges that include

the obfuscated wallets through the precomputation phase.
6

Parameters needed for obfuscation of wallets include 𝑅𝐸,

𝜀, 𝑤𝑚𝑖𝑛 , 𝑝𝑟 , and Δ. The parameter 𝑅𝐸 is computed using

𝜀 ∈ {0.5, 1, 5}, Δ = 1,𝑤𝑚𝑖𝑛 = 1.72 and 𝑝𝑟 = 0.001. Note that

the parameters 𝜀, and 𝑝𝑟 are not available to the adversary;

they are only used for the purpose of our evaluation.

5
Since we will see that larger wallets are easier to obfuscate, we intentionally examine

only “small” wallets to better see the effects of the obfuscation.

6
Since it is not feasible to display every precomputed range on the x-axis of the graphs,

we exclude ranges with success rates that are very similar.
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𝑝𝑟 𝑅𝐸 𝜀 non-outliers outliers 𝑧

0.001 8.0 0.5 (-4.0, 4.6) (-8.2, 9.9) 13.82

0.001 4.0 1.0 (-2.2, 2.4) (-7.3, 9.5) 6.91

0.001 0.8 5.0 (-0.5, 0.5) (-2.6, 2.0) 1.38

Table 1: 𝑑-privacy for Brisbane case study: Each row shows

the noise range w.r.t different 𝜀 and corresponding 𝑅𝐸.

Privacy Analysis. Figure 1a shows the success rate of the com-
plete deobfuscation attack. Each range (·, ·) on the x-axis encom-

passes all obfuscated wallets𝑤𝑜 w.r.t one plausible wallet𝑤 . Note

that for space reasons, not all plausible wallets are labeled on the x-

axis, but all 93 possible wallets in the range [$0, $10] have their suc-
cess chance plotted. Overall, Fig. 1a demonstrates that for 𝜀 ∈ {0.5,
1} all success rates are pretty similar. Only the smallest and the

second-smallest wallet balances have a deobfuscation success rate

>5%, and most wallet balances have a deobfuscation success rate

<0.2%. For 𝜀 = 5, only wallet balances below $6.77 have a deobfus-

cation success rate >5%. Note that success rates are higher than

the corresponding ones in the graphs for 𝜀 ∈ {0.5, 1}. Since here
considerably less noise was used, this is not surprising.

In all three graphs it is evident that higher wallet balances have

lower success rates. This is because there are significantly more

possible wallets with higher balances than ones with lower balances,

and thus higher balances are harder to deobfuscate due to there

being more possible original balances.

Cost Analysis. Each row in Table 1 displays the non-outlier

and outlier noise values corresponding to 𝜀 ∈ {0.5, 1, 5}. The ta-
ble clearly shows the trade-off between privacy and cost. 𝜀 = 0.5

provides very good privacy, but the expected cost (non-outlier) is

quite high at <5 dollars. For 𝜀 = 1, which also achieves very good

results in the privacy analysis, the expected costs are significantly

better at <2.6 dollars, but are still above𝑤𝑚𝑖𝑛 (1.72 dollars). Only for

𝜀 = 5 are the expected costs <0.6 dollars, but this variant performs

notably worse than the other two in the privacy analysis.

Remark 3. Note that approximately 94% of the noise values are

non-outliers, which satisfies the threshold defined by RE and are in

the range (−𝑧, 𝑧). About 6% of noises are considered outliers, some

of which are greater than the noise bound 𝑧. The probability that a

generated noise is outside (−𝑧, 𝑧) is set to 𝑝𝑟 = 0.001.

5.1.2 Melbourne Case Study.

Parameters. As a second real-world example, we examine a

PPETC system based on the Melbourne ETC system [26], which

has the following parameters:

Toll prices (𝑃): We assume the following 19 toll prices (in dol-

lars): 𝑃 = {1.92, 1.92, 3.07, 3.07, 3.07, 3.07, 3.84, 3.84, 4.99, 6.14,
6.14, 6.91, 6.91, 6.91, 8.06, 9.98, 9.98, 9.98, 10.75}.

Plausible wallets (𝑊𝑝 ): As for the Brisbane case study, we

obtain all plausible wallet balances within the range [$1, $10]
with Eq. (1).

Obfuscated wallets (𝑊𝑜 ): As for the Brisbane case study, the

parameters needed for the obfuscation of wallets include

𝑅𝐸, 𝜀,𝑤𝑚𝑖𝑛 , 𝑝𝑟 , and Δ. The parameter 𝑅𝐸 is computed using

𝑝𝑟 𝑅𝐸 𝜀 non-outliers outliers 𝑧

0.001 7.2 0.5 (-4.1, 4.7) (-8.1, 10.0) 13.82

0.001 3.6 1.0 (-2.4, 2.6) (-6.9, 9.2) 6.91

0.001 0.7 5.0 (-0.5, 0.5) (-2.0, 1.5) 1.38

Table 2: 𝑑-privacy for Melbourne case study: Each row shows

the noise range w.r.t different 𝜀 and corresponding 𝑅𝐸.

𝜀 ∈ {0.5, 1, 5}, Δ = 1, 𝑤𝑚𝑖𝑛 = 1.92 and 𝑝𝑟 , which we set to

𝑝𝑟 = 0.001.

Privacy Analysis. For the complete deobfuscation attack, Fig. 1b
shows a trend similar to Fig. 1a, but with a notable difference: the

overall success rate is smaller compared to the Brisbane case study.

For 𝜀 ∈ {0.5, 1}, the difference is that now only the smallest wallet

balances have a success rate >5%. A more notable difference is for

𝜀 = 5, where the success rate is >5% for the three smallest wallet

balances and pretty small for all others.

When comparing the results from the complete attack with only

the wallet recovery attack (cp. Fig. 4b), the complete deobfuscation

attack performs notably better than the wallet recovery attack alone.

This is probably due to the fact that our price list for Melbourne

contains several toll stations that share the same price, thus making

visits to them indistinguishable given a wallet balance.

Remark 4. Figure 1b shows only 13 different wallet ranges since

there are only 13 possible wallet balances that are ≤10 dollars.

Cost Analysis. Table 2 is very similar to Table 1, since they

share the same 𝑧 values (cp. Eq. (3)). The only difference is that the

relative error bound 𝑅𝐸 is smaller than for Brisbane since𝑤𝑚𝑖𝑛 is

higher.

5.2 Evaluation of the Exponential Mechanism

We analyze the effectiveness of the deobfuscation attack against

the exponential mechanism as follows.

Privacy Analysis. We evaluate the privacy level of an individual

by calculating the success rate of the deobfuscation attack from

Section 4.2 for the selection of the deobfuscated trace, for different

𝜀. To do so, for each obfuscated trace from the set 𝑇𝑝 , we compute

the success rate of finding the associated origin trace from the set

𝑇𝑝 . The results of the privacy analysis are presented in a series of

graphs, where each graph shows the success rate with respect to

an obfuscated trace, for different 𝜀, 𝛼𝑒𝑢𝑐𝑙 , and 𝛼𝑠𝑖𝑚 .

For 𝜀, we will analyze 𝜀 ∈ {0.5, 1, 5}. Due to space restrictions,

we will focus on (𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 = 0.25) in this section. In

Appendix F, we will also evaluate for the parameters (𝛼𝑒𝑢𝑐𝑙 =

1, 𝛼𝑠𝑖𝑚 = 0) and (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5).

Cost Analysis. We evaluate the amount of additional noise

introduced by obfuscation for the different 𝜀 used in the privacy

analysis. This helps us to understand at what cost the level of

privacy is achieved. The cost analysis includes the following steps:

Step 1: For a fixed 𝜀 and for each plausible trace 𝑡𝑟𝑎𝑐𝑒 , we

obtain its associated obfuscated trace 𝑡𝑟𝑎𝑐𝑒𝑜 , using the ex-

ponential obfuscation mechanism (Algorithm 1).
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Figure 1: 𝑑-privacy: Each graph shows the success rate of the complete deobfuscation attack w.r.t a certain 𝜀 and corresponding

𝑅𝐸, 𝑧. On the x-axis, each range (in dollars) includes all possible obfuscated wallets (𝑤𝑜 ), linked with a certain original wallet

(𝑤 ). For example, the first x-axis value on the lower left graph (Brisbane with 𝜀 = 5) depicts the wallet with balance $1.72. For

this wallet, the obfuscated wallet balances fall into the range [$0.34, $3.1]. On the y-axis, the success rate of the attack is shown,

i.e., the percentage of successful deobfuscations. (Brisbane and Melbourne case study)
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Step 2: Having obtained the obfuscated trace, we compute the

cost as |get_balance(𝑡𝑟𝑎𝑐𝑒𝑜 ) − get_balance(𝑡𝑟𝑎𝑐𝑒) |.
We repeat this 1000 times to get a good estimate of the costs. The

cost analysis results are presented in a table, where each row dis-

plays parameters, includingwallet (consisting ofwallet id andwallet

balance), 𝜀, non-outliers, and outliers. The character 𝑁 in the tables

(if present) indicates that no outliers occurred in the corresponding

row.

5.2.1 Brisbane Case Study. We use the same parameters as in

Section 5.1.1.

Privacy Analysis. Figure 2a shows the success rate of the de-
obfuscation attack on the exponential mechanism for Brisbane. In

contrast to 𝑑-privacy (cp. Fig. 1a), for 𝜀 ∈ {0.5, 1} all success rates
are between 0.9% and 1.2%, thus very close together. For 𝜀 = 5, the

seven smallest wallets have success rates between 2% and 2.8%, and

all other wallets have a success rate <2%. Overall, the exponential

mechanism performs significantly better than 𝑑-privacy for small
wallet balances, but for larger balances, both perform similarly (they

are all <4% and thus all relatively small). It is noticeable that for the

exponential mechanism, the success rates for different balances are

all very close together, whereas they fluctuate more for 𝑑-privacy.

Cost Analysis. In Table 3 we show the cost of privacy for 𝜀 ∈
{0.5, 1, 5}. It should be noted that, compared to 𝑑-privacy, where

each wallet had the same noise bound, the imposed noise for the

exponential mechanism differs from wallet to wallet. The imposed

noise for the exponential mechanism also seems to generally be

higher than for the 𝑑-privacy mechanism (cp. Table 1). For 𝜀 = 0.5,

the difference is not that significant, but for 𝜀 ∈ {1, 5} the imposed

noise for exponential is considerably higher than the expected

noise for 𝑑-privacy. It is noticeable that the first wallet has by far

the highest cost. This is due to the fact that this wallet is the smallest

and can thus only be mapped to wallets with a greater (or equal)

balance, whereas other wallets can be mapped to wallets with a

greater or smaller balance. Combined with the fact that the noise

is depicted as the absolute difference between balances, it is not

surprising that the smallest wallet has a higher cost than the others.

5.2.2 Melbourne Case Study. We use the same parameters as

in Section 5.1.2.

Privacy Analysis. Figure 2b shows the success rate of the deob-
fuscation attack on the exponential mechanism for Melbourne. The

same observations that were made for Brisbane (cp. Fig. 2a) can

be made for Melbourne as well, with the difference that all graphs

have even lower success chances than the exponential mechanism

for Brisbane, for 𝜀 ∈ {0.5, 1} all are <0.5% and for 𝜀 = 5 all are <1.5%.

This is probably due to the fact that the set 𝑇𝑝 for Melbourne is

more than two times as large as the one for Brisbane, thus the set

of possible deobfuscated traces is much larger.

Cost Analysis. The costs for Melbourne under the exponential

mechanism (depicted in Table 4) are still higher than those under

𝑑-privacy (cp. Table 2), but they are significantly lower than for

Brisbane under the exponential mechanism (cp. Table 3). The fact

that traces from Melbourne are apparently easier to obfuscate than

traces from Brisbane is consistent with the results from the pri-

vacy analysis of the exponential mechanism, where traces from

Melbourne were more difficult to deobfuscate.

6 DISCUSSION

Discussion of Evaluation Results. The privacy analysis of the
Brisbane and Melbourne ETC schemes, for both 𝑑-privacy and the

exponential mechanism, shows that the success rate differs between

smaller and larger wallet balances. It is noticeable that larger wallet

balances provide significantly more privacy than smaller ones since

for higher wallet balances, there are more distinct traces that have

the same wallet balance. It is noticeable that the smallest wallet

balance (𝑤𝑚𝑖𝑛) has by far the highest success rate in all scenarios.

This is due to the fact that there are by far more traces that have a

high wallet balances than ones with a small wallet balance, thus

making traces with a high balance easier to obfuscate.

When comparing 𝑑-privacy to the exponential mechanism, it can

be deducted from Figs. 1 and 2 that, for all 𝜀, the exponential mech-

anism performs significantly better for small wallets. For larger

wallets, while both perform similar on average, the exponential

mechanism consistently has very low success rates, while the suc-

cess rates for 𝑑-privacy depend more on the individual balance and

thus fluctuate more. Thus, if success rates need to be consistently
small, using the exponential mechanism would be a safer option.

When comparing the cost for 𝑑-privacy and the exponential

mechanism (cp. Tables 1, 2, 3 and 4), it can be seen that the exponen-

tial mechanism needs more noise than the 𝑑-privacy mechanism.

In conclusion, while the exponential mechanism yields good

privacy for all traces, it also has a higher cost. It is thus up to the

TSP to select a suitable mechanism, depending on how they want

to balance user privacy and cost.

Reimbursement of Additional Costs. When using the ETC

scheme for many billing periods, the cost for privacy equals the

sum of the individual noises, i.e.,𝐶 :=
∑
𝑖 𝑁𝑖 . The expectation value

for𝐶 after a great number of billing periods is close to zero. Thus, if

the ETC is used for a long time, the actual additional cost of privacy
should be small for most users. Of course, there will always be users

who are a bit unlucky and may end up with a large additional cost.

Thus, the TSP could offer some kind of reimbursement mechanism,

like the one in [10], for the excess cost.

Further Research Opportunities. Note that our evaluation

only considers one billing period. By consolidating information

about multiple billing periods, the adversary may have a higher

chance of violating the user’s privacy. Intuitively, the adversary’s

chances of doing so depend on the behavior of users. For example,

consider the extreme case of a user who has exactly the same trace

and, thus, the same wallet balance every month. The adversary

could analyze the obfuscated wallets over several months and de-

duce the correct original traces with a higher probability than if

only one month was considered. For example, for 𝑑-privacy, the ad-

versary could divide the sum of obfuscated balances by the number

of billing periods, which gives a good estimate of the real balances

(if the number of billing periods is large enough). Conversely, for

users whose driving behavior changes significantly from month

to month, their obfuscated wallets would be harder to deobfuscate

10
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Figure 2: Exponential mechanism: Each graph shows the success rate of deobfuscation for 𝜀 ∈ {0.5, 1, 5} and for (𝛼𝑒𝑢𝑐𝑙 =

0.75, 𝛼𝑠𝑖𝑚 = 0.25). The tuples on the x-axis indicate (𝑖𝑑,𝑤𝑎𝑙𝑙𝑒𝑡) where 𝑖𝑑 distinguishes identical wallets with different traces.

(Brisbane and Melbourne case study)
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𝜀 (id, wallet) non_outliers outliers

0.5 (0, 1.72) (1.7, 8.2) (0.0, 1.5)

0.5 (10, 5.11) (0.0, 4.9) N

0.5 (20, 6.12) (0.0, 4.4) N

0.5 (30, 7.08) (0.0, 4.4) (5.4, 5.4)

0.5 (40, 7.75) (0.0, 3.7) (4.3, 6.0)

0.5 (50, 8.14) (0.0, 3.6) (3.7, 6.4)

0.5 (60, 8.55) (0.0, 2.9) (3.0, 6.8)

0.5 (70, 8.9) (0.0, 4.0) (4.3, 7.2)

0.5 (80, 9.22) (0.0, 5.1) (5.8, 7.5)

0.5 (90, 9.57) (0.0, 6.1) (6.4, 7.9)

0.5 (100, 9.82) (0.0, 6.4) (6.6, 8.1)

(a) 𝜀 = 0.5

𝜀 (id, wallet) non_outliers outliers

1 (0, 1.72) (1.0, 8.2) (0.0, 0.0)

1 (10, 5.11) (0.0, 4.9) N

1 (20, 6.12) (0.0, 4.4) N

1 (30, 7.08) (0.0, 4.4) (5.4, 5.4)

1 (40, 7.75) (0.0, 3.7) (4.3, 6.0)

1 (50, 8.14) (0.0, 3.2) (3.6, 6.4)

1 (60, 8.55) (0.0, 2.9) (3.0, 6.8)

1 (70, 8.9) (0.0, 4.0) (4.3, 7.2)

1 (80, 9.22) (0.0, 4.3) (4.7, 7.5)

1 (90, 9.57) (0.0, 5.5) (6.1, 7.9)

1 (100, 9.82) (0.0, 5.7) (6.4, 8.1)

(b) 𝜀 = 1

𝜀 (id, wallet) non_outliers outliers

5 (0, 1.72) (0.0, 8.2) N

5 (10, 5.11) (0.0, 4.9) N

5 (20, 6.12) (0.0, 4.4) N

5 (30, 7.08) (0.0, 4.2) (4.4, 5.4)

5 (40, 7.75) (0.0, 3.7) (4.3, 6.0)

5 (50, 8.14) (0.0, 3.0) (3.2, 6.4)

5 (60, 8.55) (0.0, 2.5) (2.7, 6.8)

5 (70, 8.9) (0.0, 2.3) (2.5, 7.2)

5 (80, 9.22) (0.0, 3.0) (3.1, 7.5)

5 (90, 9.57) (0.0, 4.4) (4.5, 7.9)

5 (100, 9.82) (0.0, 4.7) (4.9, 8.1)

(c) 𝜀 = 5

Table 3: Exponential mechanism for Brisbane case study: Each row shows the cost (in dollars) w.r.t a wallet (associated with a

trace) and a fixed 𝜀, using (𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 = 0.25). The id in (𝑖𝑑,𝑤𝑎𝑙𝑙𝑒𝑡) distinguishes identical wallets with different traces.

𝜀 (id, wallet) non_outliers outliers

0.5 (0, 1.92) (1.9, 8.1) (0.0, 1.1)

0.5 (26, 5.76) (0.0, 4.2) N

0.5 (52, 6.91) (0.0, 5.0) N

0.5 (78, 7.68) (0.0, 3.8) (4.6, 5.8)

0.5 (104, 8.06) (0.0, 3.1) (4.2, 6.1)

0.5 (130, 8.83) (0.0, 1.9) (2.7, 6.9)

0.5 (156, 9.21) (0.0, 3.1) (3.5, 7.3)

0.5 (182, 9.6) (0.0, 3.8) (4.6, 7.7)

0.5 (208, 9.98) (0.0, 5.0) (6.1, 8.1)

0.5 (234, 9.98) (0.0, 5.0) (6.1, 8.1)

0.5 (260, 9.98) (0.0, 4.2) (5.0, 8.1)

(a) 𝜀 = 0.5

𝜀 (id, wallet) non_outliers outliers

1 (0, 1.92) (1.1, 8.1) (0.0, 0.0)

1 (26, 5.76) (0.0, 4.2) N

1 (52, 6.91) (0.0, 5.0) N

1 (78, 7.68) (0.0, 3.8) (4.6, 5.8)

1 (104, 8.06) (0.0, 3.1) (4.2, 6.1)

1 (130, 8.83) (0.0, 1.9) (2.7, 6.9)

1 (156, 9.21) (0.0, 3.1) (3.5, 7.3)

1 (182, 9.6) (0.0, 2.7) (3.5, 7.7)

1 (208, 9.98) (0.0, 4.2) (5.0, 8.1)

1 (234, 9.98) (0.0, 4.2) (5.0, 8.1)

1 (260, 9.98) (0.0, 5.0) (6.1, 8.1)

(b) 𝜀 = 1

𝜀 (id, wallet) non_outliers outliers

5 (0, 1.92) (0.0, 8.1) N

5 (26, 5.76) (0.0, 4.2) N

5 (52, 6.91) (0.0, 5.0) N

5 (78, 7.68) (0.0, 3.8) (4.6, 5.8)

5 (104, 8.06) (0.0, 3.1) (4.2, 6.1)

5 (130, 8.83) (0.0, 1.9) (2.7, 6.9)

5 (156, 9.21) (0.0, 2.3) (3.1, 6.1)

5 (182, 9.6) (0.0, 2.7) (3.5, 7.7)

5 (208, 9.98) (0.0, 2.3) (3.1, 8.1)

5 (234, 9.98) (0.0, 2.3) (3.1, 8.1)

5 (260, 9.98) (0.0, 4.2) (5.0, 8.1)

(c) 𝜀 = 5

Table 4: Exponential mechanism for Melbourne case study: Each row shows the cost (in dollars) w.r.t a wallet (associated with a

trace) and a fixed 𝜀, using (𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 = 0.25). The id in (𝑖𝑑,𝑤𝑎𝑙𝑙𝑒𝑡) distinguishes identical wallets with different traces.

successfully. Understanding how user behavior impacts privacy and

determining how varied a user’s activities need to be to prevent

privacy loss are important areas for future research.

7 RELATEDWORK

Attacks on PPETC Schemes. Attacks on post-payment PPETC

schemes have been considered in [2] and [8]. Both use knowledge

of wallet balances and try to solve the SSP to obtain additional in-

formation about user behavior. In [2] the evaluation is based on real

ETC data. It is shown that the Brisbane scenario from Section 5.1.1

is vulnerable to attacks: For wallet balances ≤10 dollars, the ad-

versary could identify the visited toll stations with a 94% success

rate by solving the SSP problem. [8] also shows that solving the

SSP helps to effectively recover user traces. In contrast to [2], the

adversary in [8] uses every information the TSP gets.

ProtectionMechanisms. Some PPETC schemes [4, 18, 29] briefly

mention that solving the SSP might lead to privacy problems, al-

though no solutions are presented. We are only aware of one work

that examines possible protection mechanisms: While [10] does

not directly look at PPETC schemes, they consider the more gen-

eral setting of applications that use fine-grained billing, where the

details of the billing are hidden from the service provider. Their

central idea is to use the DP framework to add noise to the final

bill of a user. The noise can be freely chosen by the user, which

in practice may lead to the problem that most users will choose a

noise of zero to save costs and thus get no privacy gain. [10] addi-

tionally proposes a cryptographic protocol that helps customers

reclaim the additional expenditure incurred for the sake of privacy.

A limitation of [10] is that it does not consider protection against

adversaries who may exploit background information. In contrast,

we present attacks and use real-world settings from the Brisbane

and Melbourne ETC systems to evaluate our mechanism against

adversaries who may exploit background information.

In smart metering applications, rather than transmitting actual

measurements, it is possible that the smart meter sends masked

data to the power provider in a way that does not interfere with

the accuracy of aggregation operations. [5] and [19] present meth-

ods to obscure measurements using a straightforward approach.

Specifically, the smart meter adds noise from a Laplace distribution
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with a certain scale parameter and transmits this data to the power

provider. The scale parameter is selected to ensure that the cumula-

tive noise remains below a predefined error threshold. The authors

explain that when a large number of measurements is considered,

this cumulative error approximates a normal distribution. However,

their method is not suitable for our scenario, as the number of

obfuscated wallets may be too small for their approach to work

effectively. Additionally, their method does not consider controlling

noise for individual measurements.

8 CONCLUSION

Since previous work has shown that a PPETC version of the Bris-

bane ETC system is vulnerable to trace recovery attacks (success

rates up to 94%), we have investigated in this workwhether common

𝜀-DP mechanisms such as 𝑑-privacy or the exponential mechanism

could help to prevent these attacks. Our analysis showed that both

mechanisms are very good at making these attacks more difficult.

But privacy does not come for free: basically, users must be willing

to pay a slightly randomized price for using the ETC system. Al-

though the expected cost of privacy is small over a large number

of billing periods, the cost for a single billing period can be several

dollars for 𝜀 ≤ 1, which may discourage users from using the ETC

system. It is up to the TSP to balance the cost that users are willing

to pay against the privacy that can be achieved.
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Notation Description

𝑁 noise (added to wallet balances)

𝑝 toll price

𝑃 set of toll prices

𝑝𝑟 out-of-bounds probability

𝑅𝐸 relative error threshold / relative noise

bound

𝑆𝑅 success rate

𝑤 wallet balance

𝑊 set of wallet balances

𝑤𝑚𝑖𝑛/𝑤𝑚𝑎𝑥 minimum/maximum possible wallet bal-

ance

𝑤𝑜 obfuscated wallet balance

𝑊𝑜 set of obfuscated wallet balances

𝑊𝑝 set of plausible wallet balances

𝑇𝑝 set of plausible traces

𝑧 Absolute noise bound

Δ sensitivity

𝜆 Laplace’s scale

Table 5: Overview of Variables

[40] Keyu Zhu, Pascal Van Hentenryck, and Ferdinando Fioretto. 2021. Bias and

variance of post-processing in differential privacy. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35. 11177–11184.

A NOTATION

We give an overview over our notation in Table 5.

B BACKGROUND DETAILS

B.1 Proof that the Laplace mechanism ensures

𝜀-𝑑𝑥 -privacy

For 𝑧 ∈ 𝑍 and 𝑥, 𝑥 ′ ∈ 𝑋 , let 𝑝𝑟𝑥 and 𝑝𝑟𝑥 ′ be the probability density

function
1

2𝜆
𝑒
−|𝑥−𝑧 |

𝜆 and
1

2𝜆
𝑒
−|𝑥 ′−𝑧 |

𝜆 respectively. Let 𝜆 = 1

𝜀 . Then, we

have

𝑝𝑟𝑥 (𝑧)
𝑝𝑟𝑥 ′ (𝑧)

=

1

2𝜆
𝑒
−|𝑥−𝑧 |

𝜆

1

2𝜆
𝑒
−|𝑥 ′−𝑧 |

𝜆

=
𝑒−𝜀 · |𝑥−𝑧 |

𝑒−𝜀 · |𝑥 ′−𝑧 |
= 𝑒𝜀 · ( |𝑥

′−𝑧 |− |𝑥−𝑧 | )

Using the triangle inequality for the metric 𝑑𝑥 and as 𝑑𝑥 (𝑥, 𝑥 ′) =
𝑑𝑥 (𝑥 ′, 𝑥), we get

𝑝𝑟𝑥 (𝑧)
𝑝𝑟𝑥 ′ (𝑧)

≤ 𝑒𝜀 · |𝑥−𝑥
′ | ≤ 𝑒𝜀 ·𝑑 (𝑥,𝑥

′ )

which completes our proof.

B.2 Relation of Parameters

Figure 3 shows how different parameters are connected in Eq. (3).

The figure illustrates that:

(1) To increase the probability (1 - 𝑝𝑟 ) of keeping relative error

(𝑟𝑒) below a certain threshold 𝑅𝐸 (given fixed Δ and𝑤𝑚𝑖𝑛),

larger values of 𝜀 are required.

(2) Smaller relative errors (𝑅𝐸) correspond to larger values of 𝜀

when𝑤𝑚𝑖𝑛 , 𝑝𝑟 , and Δ are fixed.
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Figure 3: Relation of parameters in Eq. (3).

Algorithm 6 Obfuscation Algorithm based on 𝑑-Privacy

Input: 𝑤,𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥 , 𝑅𝐸, 𝑝𝑟

Output: 𝑤𝑜

1: function metric_obfuscation(𝑤,𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥 , 𝑅𝐸, 𝑝𝑟 )

2: 𝜆 ← −(𝑅𝐸 ·𝑤𝑚𝑖𝑛)/𝑙𝑛(𝑝𝑟 )
3: 𝑁 ← 𝐿𝑎𝑝 (𝜆)
4: 𝑤𝑜 ← 𝑤 + 𝑁
5: if 𝑤𝑜 < 0 then

6: 𝑤𝑜 ← 0

7: else if 𝑤𝑜 >𝑤𝑚𝑎𝑥 then

8: 𝑤𝑜 ← 𝑤𝑚𝑎𝑥

9: else

10: return𝑤𝑜

11: end if

12: return𝑤𝑜

13: end function

Note that the values shown in the graph are chosen arbitrarily.

However, this does not impact the overall trends discussed in Sec-

tion 2.2.

C DETAILS OF THE 𝑑-PRIVACY-BASED

OBFUSCATION MECHANISM

C.1 The Obfuscation Algorithm

The details of the 𝑑-privacy based obfuscation algorithm are pre-

sented in Algorithm 6.

C.2 Impact of Parameters on Generated Noise

We now discuss how the parameters of the wallet obfuscation mech-

anism affect the generated noise, which defines the extra amount of

cost users have to bear for privacy. We investigate the parameters

out-of-bounds probability 𝑝𝑟 and minimum wallet balance𝑤𝑚𝑖𝑛 . In

addition, we also use various fixed 𝜀 values, i.e., 𝜀 ∈ {0.1, 0.5, 1, 5}.
With these parameters fixed, we evaluate how they influence the

generated noise. Given a fixed 𝑝𝑟 ,𝑤𝑚𝑖𝑛 , and 𝜀, we also investigate
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the impact of these parameters on 𝑅𝐸 and 𝑧 using Eqs. (2) and (3).

To keep the additional cost small, we cap the maximum amount of

noise 𝑧 relative to the minimum wallet balance, i.e.,

𝑧 := 𝑅𝐸 ·𝑤𝑚𝑖𝑛 (7)

For example, setting 𝑅𝐸 to 0.1 means that we set the maximum

noise 𝑧 to 10% of the minimum wallet balance 𝑤𝑚𝑖𝑛 . Note that

Eq. (7) only holds with probability 1 − 𝑝𝑟 , i.e., out-of-bound noises

are possible with a (very) small probability. This stems from the fact

that to achieve differential privacy, one can’t use a bounded noise

function. This is also the reason why we employ post-processing

in Algorithm 6. To analyze the distribution of generated noise, we

generate 10
3
noises to examine the percentage of noises inside the

threshold 𝑧. We deem this amount of noise sufficient, as we assume

that a user will not participate in more than 1000 billing periods.

In our analysis we will subsequently vary either 𝑝𝑟 or 𝑤𝑚𝑖𝑛 ,

while keeping the other value fixed. For that purpose we will use

𝑝𝑟 = 10
−3

and𝑤𝑚𝑖𝑛 = 1 as default values. Combined with different

target privacy levels 𝜀, we evaluate how the generated noise is

affected. Note that the exact values of the examined parameters are

not important, as they are only used to identify trends in the noise

change when moving to larger/smaller parameter values. We show

the results of our analysis in a table format, with the value under

analysis (𝑝𝑟 /𝑤𝑚𝑖𝑛), the privacy level 𝜀, the relative noise bound 𝑅𝐸,

the generated “non-outlier” noises, the generated “outlier” noises,

and the absolute noise bound 𝑧 as columns. Note that all noise values

(“non-outliers”, “outliers”, and 𝑧) are in dollars. The gray and white

colors (in a table) group rows that share the same values in the first

column across all 𝜀 values to improve readability. The columns for

non-outliers and outliers are determined using a box plot method

that helps us to identify the range of generated noises. Non-outlier

noise values fall within the range (𝑄1 − 1.5 · 𝐼𝑄𝑅,𝑄3 + 1.5 · 𝐼𝑄𝑅),
where 𝑄1 is the first quartile, 𝑄3 is the third quartile, and 𝐼𝑄𝑅 is

the interquartile range (the difference between the third and first

quartiles). Outlier noise values 𝑁 fall outside this range: For them,

either (1) 𝑁 < 𝑄1 − 1.5 · 𝐼𝑄𝑅 or (2) 𝑁 > 𝑄3 + 1.5 · 𝐼𝑄𝑅 holds. In

our analysis, we denote outliers as the tuple (𝑁𝑚𝑖𝑛, 𝑁𝑚𝑎𝑥 ), where
𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥 are the minimum and maximum of outliers.

Parameter 𝑝𝑟 . The out-of-bounds probability 𝑝𝑟 denotes the
probability that the generated noise falls outside the range (−𝑧, 𝑧).
To ensure that the additional costs for users are not too high, 𝑝𝑟

should be small. But which values of 𝑝𝑟 are “small enough”? We

evaluate the generated noise for 𝑝𝑟 ∈ {10−3, 10−5, 10−7}. The re-
sults in Table 6 show that as 𝑝𝑟 decreases, the corresponding relative

error 𝑅𝐸 and noise bound 𝑧 increase. This means that to achieve

the same privacy level (𝜀-DP) with a smaller 𝑝𝑟 , the generated noise

is higher. This also means that the smaller 𝑝𝑟 , the higher the av-

erage additional cost to users. While this might suggest that the

solution is to use a higher 𝑝𝑟 , i.e., 𝑝𝑟 = 10
−3
, the situation is a bit

more complicated. This is because one should also consider that the

generated noise really falls in the range (−𝑧, 𝑧) to rule out the case

that individual users have unrealistically high costs. But regarding

this, the results show that for smaller 𝑝𝑟 the probability that the

generated noise falls in the range (−𝑧, 𝑧) is higher. In particular, the

table shows that for 𝑝𝑟 = 10
−7

and 𝑝𝑟 = 10
−5

the noises (including

outliers) are within the range (−𝑧, 𝑧), while for 𝑝𝑟 = 10
−3

some

𝑝𝑟 𝜀 RE non-outliers outliers z

0.001 0.1 69.1 (-28.0, 27.3) (-66.5, 65.1) 69.1

0.001 0.5 13.8 (-5.6, 5.7) (-12.2, 15.3) 13.8

0.001 1 6.9 (-2.7, 2.8) (-4.7, 7.2) 6.9

0.001 5 1.4 (-0.6, 0.6) (-1.7, 2.7) 1.4

1e-05 0.1 115.1 (-26.6, 27.4) (-61.3, 61.8) 115.1

1e-05 0.5 23.0 (-5.3, 5.3) (-12.4, 15.2) 23.0

1e-05 1 11.5 (-2.8, 2.8) (-10.9, 7.0) 11.5

1e-05 5 2.3 (-0.6, 0.5) (-1.2, 1.9) 2.3

1e-07 0.1 161.2 (-26.3, 24.5) (-67.4, 70.2) 161.2

1e-07 0.5 32.2 (-6.0, 6.0) (-12.8, 11.3) 32.2

1e-07 1 16.1 (-2.8, 2.9) (-7.4, 8.2) 16.1

1e-07 5 3.2 (-0.5, 0.6) (-1.3, 1.2) 3.2

Table 6: 𝑑-privacy: impact of 𝑝𝑟 on the generated noise

𝑤𝑚𝑖𝑛 𝜀 RE non-outliers outliers z

1 0.1 69.1 (-26.4, 25.1) (-59.9, 66.2) 69.1

1 0.5 13.8 (-5.6, 5.6) (-17.2, 11.7) 13.8

1 1 6.9 (-2.6, 2.7) (-6.2, 5.8) 6.9

1 5 1.4 (-0.6, 0.6) (-1.4, 1.2) 1.4

5 0.1 13.8 (-26.7, 26.3) (-58.4, 85.4) 69.1

5 0.5 2.8 (-5.6, 5.6) (-21.5, 10.0) 13.8

5 1 1.4 (-2.9, 2.9) (-7.2, 5.9) 6.9

5 5 0.3 (-0.6, 0.6) (-1.3, 1.6) 1.4

10 0.1 6.9 (-28.6, 28.4) (-67.2, 64.1) 69.1

10 0.5 1.4 (-5.4, 5.6) (-12.1, 11.2) 13.8

10 1 0.7 (-2.6, 2.6) (-9.4, 6.8) 6.9

10 5 0.1 (-0.6, 0.6) (-1.3, 1.2) 1.4

Table 7: 𝑑-privacy: impact of𝑤𝑚𝑖𝑛 on the generated noise

outlier noises are outside of (−𝑧, 𝑧). Thus, the parameter 𝑝𝑟 should

be chosen carefully to achieve a balance between a small additional

cost and a high probability of staying within the desired noise range.

Parameter𝑤𝑚𝑖𝑛 . The minimum possible wallet balance𝑤𝑚𝑖𝑛

is directly defined by the ETC pricing scheme. For our analysis, we

consider𝑤𝑚𝑖𝑛 ∈ {1, 5, 10}. Table 7 reveals that as𝑤𝑚𝑖𝑛 increases,

the corresponding 𝑅𝐸 decreases for the same epsilon values. This

indicates that the additional cost due to noise addition, relative

to 𝑤𝑚𝑖𝑛 , becomes smaller for the same level of privacy (𝜀-DP).

Note that the actual noise bound 𝑧 remains the same, because an

increase in𝑤𝑚𝑖𝑛 is compensated by a decrease in 𝑅𝐸 (cp. Eq. (7)).

This suggests that pricing schemes with a larger minimum possible

wallet balance require less noise (relative to 𝑤𝑚𝑖𝑛), even though

the actual noise bound remains the same for all𝑤𝑚𝑖𝑛 .

A Note on Outliers. As previously mentioned, the “outliers”

and “non-outliers” columns in the tables are derived from the box

plot method. Our results show that a significant portion of the

generated noises, about 94%, comprises non-outliers. In contrast,

only a small portion, i.e., approximately 6%, consists of outliers.

This distribution occurs because the Laplace mechanism generates

smaller noises with a much higher probability.
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Summary of Results. While the out-of-bounds probability 𝑝𝑟

must be carefully chosen to achieve a reasonable privacy-cost trade-

off, the privacy level 𝜀 plays the most critical role. Tables 6 and 7 all

show that the higher 𝜀 is (corresponding to less privacy), the lower

the noise bound 𝑧 is. So TSPs should either set a desired privacy

level 𝜀 and then see howmuch noise is needed, or set a desired noise

bound 𝑧 and then see how much privacy can be achieved. Whether

or not there are acceptable combinations of 𝜀 and 𝑧 that satisfy both

a customer’s need for privacy and a small additional cost depends

on the pricing scheme and what additional costs users are willing

to pay. As mentioned above, the question of what users consider

an appropriate price for privacy is a separate line of research.

D DETAILS OF THE EXPONENTIAL

OBFUSCATION MECHANISM

In this appendix, we explain the exponential obfuscation mecha-

nism (Algorithm 1) in more detail, as well as Algorithms 7, 8, 9

and 10, which are sub-algorithms of Algorithm 1.

D.1 Algorithm exponential_obfuscation

Algorithm 1 takes as its input (𝑡𝑟𝑎𝑐𝑒 ∈ 𝑇𝑝 ,𝑇𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 ∈ [0, 1], 𝛼𝑠𝑖𝑚 ∈
[0, 1]) and outputs the obfuscated trace 𝑜𝑏𝑓 _𝑡𝑟𝑎𝑐𝑒 . We now explain

the algorithm in detail.

Step 1: Precomputation. We first calculate the maximum pos-

sible Euclidean distance and the maximum possible similarity dis-

tance with compute_max_dist (Algorithm 7) in line 2. Note that

the precomputation step needs only to be executed once, as long as

𝑇𝑝 stays the same.

Step 2: Score Calculation. Given an input trace 𝑡𝑟𝑎𝑐𝑒 , we now

compute the score of the input trace and every possible output trace

in lines 3 to 10, i.e., we calculate 𝑢 (𝑡𝑟𝑎𝑐𝑒, 𝑡𝑟𝑎𝑐𝑒 𝑗 ) for all 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝 .
We calculate 𝑢 (𝑡𝑟𝑎𝑐𝑒, 𝑡𝑟𝑎𝑐𝑒 𝑗 ) for a given 𝑡𝑟𝑎𝑐𝑒 𝑗 as follows: We first

compute the euclidean distance 𝑑𝑒𝑢𝑐𝑙 between the traces with com-

pute_euclidean (Algorithm 8). We also compute the similarity

distance 𝑑𝑠𝑖𝑚 between the traces with compute_similarity (Algo-

rithm 9). Afterwards we scale 𝑑𝑒𝑢𝑐𝑙 to the range [0, 1] by dividing it
by the maximum possible Euclidean distance (calculated in line 2).

We also scale 𝑑𝑠𝑖𝑚 to [0, 1] analogously. Afterwards we compute

the score 𝑢 (𝑡𝑟𝑎𝑐𝑒, 𝑡𝑟𝑎𝑐𝑒 𝑗 ) as

𝑠𝑐𝑜𝑟𝑒 := (𝑑′𝑠𝑖𝑚 · 𝛼𝑠𝑖𝑚 − 𝑑
′
𝑒𝑢𝑐𝑙
· 𝛼𝑒𝑢𝑐𝑙 ),

where 𝑑′
𝑒𝑢𝑐𝑙

and 𝑑′
𝑠𝑖𝑚

are the scaled versions of 𝑑𝑒𝑢𝑐𝑙 and 𝑑𝑠𝑖𝑚 . Note

that for a high score, the similarity distance should be high (which

indicated very different traces), while the Euclidean distance should

be small (which corresponds to small costs).

Step 3: Probability Calculation. Given the scores 𝑢 (𝑡𝑟𝑎𝑐𝑒,
𝑡𝑟𝑎𝑐𝑒 𝑗 ) for all 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝 , we calculate for each 𝑡𝑟𝑎𝑐𝑒 𝑗 the prob-
ability that 𝑡𝑟𝑎𝑐𝑒 𝑗 gets selected as output trace in lines 11 an 12.

According to the exponential mechanism, we calculate the the prob-

ability as specified in Eq. (5). We calculate the numerator of Eq. (5)

in line 11 and then apply normalization in line 12.

Step 4: Selection of Output Trace. Given for each 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝
the probability that the input trace 𝑡𝑟𝑎𝑐𝑒 gets mapped to 𝑡𝑟𝑎𝑐𝑒 𝑗

Algorithm 7 Compute Maximum Distances

Input: 𝑇𝑝
Output: 𝑚𝑎𝑥_𝑒𝑢𝑐𝑙,𝑚𝑎𝑥_𝑠𝑖𝑚

1: function compute_max_dist(𝑇𝑝 )

2: 𝑚𝑎𝑥_𝑒𝑢𝑐𝑙 ← 0

3: 𝑚𝑎𝑥_𝑠𝑖𝑚 ← 0

4: for all 𝑡𝑟𝑎𝑐𝑒𝑖 ∈ 𝑇𝑝 do

5: for all 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝 do

6: 𝑑𝑒𝑢𝑐𝑙 ← compute_euclidean(𝑡𝑟𝑎𝑐𝑒𝑖 , 𝑡𝑟𝑎𝑐𝑒 𝑗 )
7: 𝑑𝑠𝑖𝑚 ← compute_similarity(𝑡𝑟𝑎𝑐𝑒𝑖 , 𝑡𝑟𝑎𝑐𝑒 𝑗 )
8: if 𝑑𝑒𝑢𝑐𝑙 > 𝑚𝑎𝑥_𝑒𝑢𝑐𝑙 then

9: 𝑚𝑎𝑥_𝑒𝑢𝑐𝑙 ← 𝑑𝑒𝑢𝑐𝑙
10: end if

11: if 𝑑𝑠𝑖𝑚 > 𝑚𝑎𝑥_𝑠𝑖𝑚 then

12: 𝑚𝑎𝑥_𝑠𝑖𝑚 ← 𝑑𝑠𝑖𝑚
13: end if

14: end for

15: end for

16: return𝑚𝑎𝑥_𝑒𝑢𝑐𝑙,𝑚𝑎𝑥_𝑠𝑖𝑚

17: end function

Algorithm 8 Compute Euclidean Distance

Input: 𝑡𝑟𝑎𝑐𝑒1 ∈ 𝑇𝑝 , 𝑡𝑟𝑎𝑐𝑒2 ∈ 𝑇𝑝
Output: 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡

1: function compute_euclidean(𝑡𝑟𝑎𝑐𝑒1, 𝑡𝑟𝑎𝑐𝑒2)

2: 𝑤1← get_balance(𝑡𝑟𝑎𝑐𝑒1)
3: 𝑤2← get_balance(𝑡𝑟𝑎𝑐𝑒2)
4: 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡 ← |𝑤1 −𝑤2 |
5: return 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡

6: end function

as output trace, we now just need to draw an output trace accord-

ing to this probability distribution. Thus, we sample in line 13 an

output trace 𝑜𝑏𝑓 _𝑡𝑟𝑎𝑐𝑒 using the previously calculated probability

distribution. Finally, we output 𝑜𝑏𝑓 _𝑡𝑟𝑎𝑐𝑒 as obfuscated trace for

𝑡𝑟𝑎𝑐𝑒 .

Depending on whether the user sends a trace or a wallet balance

to the TSP at the end of a billing period, he now may need to

calculate the balance of the obfuscated trace afterwards.

D.2 Algorithm compute_max_dist

In Algorithm 7 we calculate the maximum possible Euclidean dis-

tance and the maximum possible similarity distance for a given set

of traces 𝑇𝑝 . To achieve that, we simply iterate over all possible

pairs of traces, calculate the Euclidean distance and the sensitiv-

ity distance and check whether they are larger than are currently

maximum. The algorithm outputs the maximum possible Euclidean

distance as𝑚𝑎𝑥_𝑒𝑢𝑐𝑙 and the maximum possible similarity distance

as𝑚𝑎𝑥_𝑠𝑖𝑚.

D.3 Algorithm compute_euclidean

Algorithm 8 takes as input two traces, 𝑡𝑟𝑎𝑐𝑒1 and 𝑡𝑟𝑎𝑐𝑒2, and out-

puts the Euclidean distance between them. To achieve this, the algo-

rithm uses the function get_balance to retrieve the corresponding
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Algorithm 9 Compute Similarity Distance

Input: 𝑡𝑟𝑎𝑐𝑒1 ∈ 𝑇𝑝 , 𝑡𝑟𝑎𝑐𝑒2 ∈ 𝑇𝑝
Output: 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡

1: function compute_similarity(𝑡𝑟𝑎𝑐𝑒1, 𝑡𝑟𝑎𝑐𝑒2)

2: 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 ← 0

3: for all (𝑠 𝑗 , 𝑓𝑗 ) ∈ 𝑡𝑟𝑎𝑐𝑒1 and (𝑠 𝑗 , 𝑓 ′𝑗 ) ∈ 𝑡𝑟𝑎𝑐𝑒2 do
4: if 𝑓𝑗 ≠ 0 and 𝑓 ′

𝑗
≠ 0 then

5: 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 ← 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 + (𝑓𝑗 − 𝑓 ′𝑗 )
2

6: else if 𝑓𝑗 ≠ 0 and 𝑓 ′
𝑗
== 0 then

7: 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 ← 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 + (𝑓𝑗 )2 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦2
8: else if 𝑓𝑗 == 0 and 𝑓 ′

𝑗
≠ 0 then

9: 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 ← 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 + (𝑓 ′
𝑗
)2 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦2

10: end if

11: end for

12: 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 ←
√
𝑠𝑖𝑚_𝑑𝑖𝑠𝑡

13: return 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡

14: end function

Algorithm 10 Compute Probabilities

Input: 𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒, 𝜀,Δ
Output: 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏

1: function compute_prob(𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒, 𝜀,Δ)
2: Declare 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏 [|𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒 |]
3: for all 𝑠𝑐𝑜𝑟𝑒𝑖 ∈ 𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒 do
4: 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏 [𝑖] ← 𝑒 (𝜀 ·𝑠𝑐𝑜𝑟𝑒𝑖 )/(2·Δ)

5: end for

6: return 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏

7: end function

wallet balances, denoted as 𝑤1 and 𝑤2. It then computes the Eu-

clidean distance as |𝑤1−𝑤2 | and stores the result in 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡 .

D.4 Algorithm compute_similarity

Algorithm 9 takes two traces, 𝑡𝑟𝑎𝑐𝑒1 and 𝑡𝑟𝑎𝑐𝑒2, as input and com-

putes the similarity distance between them, denoted as 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 .

To calculate this distance, the algorithm compares both the toll

stations visited and their respective frequencies in the two traces.

We denote a trace as

𝑡𝑟𝑎𝑐𝑒 = {(𝑠1, 𝑓1), (𝑠2, 𝑓2), . . . , (𝑠𝑙 , 𝑓𝑙 )},
where each tuple (𝑠𝑖 , 𝑓𝑖 ) represents a toll station 𝑠𝑖 and its corre-

sponding frequency 𝑓𝑖 . A frequency 𝑓𝑖 = 0 in the tuple (𝑠𝑖 , 𝑓𝑖 ) ∈
𝑡𝑟𝑎𝑐𝑒 indicates that the toll station 𝑠𝑖 has not been visited at all. In

general, the Similarity distance between two points 𝑃 = (𝑥1, 𝑦1, 𝑧1, . . .)
and 𝑄 = (𝑥2, 𝑦2, 𝑧2, . . .) in an 𝑛-dimensional space is given by:

𝑑 (𝑃,𝑄) =
√︃
(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 + . . .

For each tuple (𝑠 𝑗 , 𝑓𝑗 ) ∈ 𝑡𝑟𝑎𝑐𝑒1 and (𝑠 𝑗 , 𝑓 ′𝑗 ) ∈ 𝑡𝑟𝑎𝑐𝑒2, the algorithm
checks if both 𝑓𝑗 and 𝑓

′
𝑗
are non-zero. If so, it computes the distance

as 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 = 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 + (𝑓𝑗 − 𝑓 ′𝑗 )
2
. Note that 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡 is initialized

to zero.

If the frequency of one trace is zero, while it non-zero in the other

trace, an additional “penalty” is added. This reflects the intuition

that traces that differ in terms of the toll stations visited cause more

uncertainty than those that differ only in frequency values. Note

that the penalty value can also be set to zero.

Finally, the algorithm takes the root of the final distance and

returns the result as the output.

Remark 5 (On choosing the penalty value). Choosing an appropri-

ate penalty value depends on what one assumes the background

knowledge of the attacker to be. We differentiate two cases:

(1) We assume that the attacker knows which toll stations a

user visited during the billing period, for example because

he knows the home and work address of the user. Therefore,

we only want to hide how often the user has passed the toll

stations.

(2) We assume that the attacker does not possess such back-

ground knowledge and thus also want to hide which toll

stations where visited during the billing period.

If (1) is the case, the penalty value should set very high. In that

case, the obfuscation mechanism likely selects an output trace that

visits the same toll station as the input trace, just with different

frequencies. If (2) is the case, the penalty should be set to 0. In that

case, the obfuscation algorithm ignores whether the output trace

has the same visited toll stations as the input trace.

Note that we use 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 0 since we assume that the attacker

does not have this kind of background knowledge.

D.5 Algorithm compute_prob

Algorithm 10 takes as input the list of scores 𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒 , the pa-

rameter 𝜀, and the sensitivity Δ, and it outputs a list 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏 of

probabilities. For each 𝑠𝑐𝑜𝑟𝑒𝑖 in 𝑎𝑟𝑟_𝑠𝑐𝑜𝑟𝑒 , the algorithm computes

the corresponding probability as 𝑒 (𝜀 ·𝑠𝑐𝑜𝑟𝑒𝑖 )/(2·Δ) (according to the

exponential mechanism, cp. the numerator in Eq. (5)) and stores

it in the list 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏. Finally, the algorithm returns 𝑎𝑟𝑟_𝑝𝑟𝑜𝑏 as

output.

E FURTHER EVALUATION OF 𝑑-PRIVACY

In this appendix, we present the results for thewallet recovery attack
alone (Step 2 of our evaluation of 𝑑-privacy in Section 5.1).

Brisbane. In Fig. 4a the results for Brisbane are depicted. Overall,
they are pretty similar to the results of the complete deobfuscation

attack (cp. Fig. 1a). When taking a closer look, the success rates

in the complete deobfuscation attack are a bit lower (or equal)

than for the wallet recovery attack alone. This is because many

wallet balances have different traces they could belong to (although

some wallet balances only have on trace), so the adversary has to

additionally figure out the correct trace.

Melbourne. For the wallet recovery attack onMelbourne, Fig. 4b

shows a trend similar to Fig. 4a, but with a notable difference:

the overall success rate is higher compared to the Brisbane case

study. For 𝜀 ∈ {0.5, 1}, the difference is very small because the

success rates remains close to zero for all wallet balances as well.

The only considerable difference is for 𝜀 = 5, where the success

rate can be >10% even for high wallet balances. This is because

the precomputed ranges of deobfuscated wallet balances have less

overlapping in the Melbourne case study (cp. Section 4.1.3) and the

small noise (𝑧 = 1.38) that is added for 𝜀 = 5 is not enough to span

many wallet balances.
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Figure 4: 𝑑-privacy: Each graph shows the success rate of the wallet recovery attack w.r.t a certain 𝜀 and corresponding 𝑅𝐸, 𝑧. On

the x-axis, each range (in dollars) includes all possible obfuscated wallets (𝑤𝑜 ), linked with a certain original wallet (𝑤 ). For

example, the first x-axis value on the lower left graph (Brisbane with 𝜀 = 5) depicts the wallet with balance $1.72. For this wallet,

the obfuscated wallet balances fall into the range [$0.34, $3.1]. On the y-axis the success rate of the attack is shown, i.e., the

percentage of successful wallet recoveries. (Brisbane and Melbourne case study)
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F FURTHER EVALUATION OF THE

EXPONENTIAL MECHANISM

Herewe further evaluate the exponential mechanism using different

weights for euclidean distance and similarity distance. While we

looked at (𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 = 0.25) in Section 5.2, we will now

also consider (𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0) and (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5).

F.1 Parameters (𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0)
The privacy analysis for Brisbane and Melbourne can be found in

Fig. 5. The cost analysis for Brisbane can be found in Table 8 and

the one for Melbourne in Table 9.

F.2 Parameters (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5)
The privacy analysis for Brisbane and Melbourne can be found in

Fig. 6. The cost analysis for Brisbane can be found in Table 10 and

the one for Melbourne in Table 11.

F.3 Privacy and Cost Analysis

When considering privacy, Figs. 5 and 6 do not differ much from

Fig. 2, as all provide pretty low success rates.

When comparing the cost (Tables 3, 4, 8, 9, 10 and 11,), it can be

seen that the higher 𝛼𝑠𝑖𝑚 is, the higher the average costs are. This

is due to the fact that when using a higher 𝛼𝑠𝑖𝑚 , obfuscated traces

are favored that differ from the original trace in terms of the toll

stations visited, and therefore also have a different wallet balance

than the original trace.

G SIMILAR TRACE ATTACK

Instead of evaluating the success of an adversary based on whether

he can find the exact original trace, one could also consider a more

relaxed attack, where the adversary aims to find a trace that is

similar to the original trace. We call this a “similar trace attack”.

In this section, we first provide some details on how this similar

trace attack is executed, before providing the results. To be able

to evaluate the results, we compare an adversary that uses the

similar trace attack with an adversary that just guesses a random

trace. For the comparison with the random attacker, we describe

in Appendix G.1 how to obtain the average similarity of traces. In
Appendix G.2 we then provide the algorithms for the similar trace

attack. Finally, in Appendix G.3 we evaluate the similar trace attack.

G.1 Average Similarity Between Traces

In Algorithm 11, given a set of plausible traces 𝑇𝑝 , we calculate the

average similarity between the traces. For that, we iterate over all

possible pairs of traces and compute their similarity difference with

Algorithm 9. Afterwards we calculate the average 𝑎𝑣𝑔 over all the

differences.

G.2 Executing the Similar Trace Attack

We describe the similar trace attack for both 𝑑-privacy and the

exponential mechanism. Basically, both algorithms get an original

trace as input, then obfuscate the trace with the corresponding

obfuscation mechanism and afterwards try to deobfuscate it using

the corresponding deobfuscation algorithm. Then the similarity

distance between the original trace and the deobfuscated trace,

Algorithm 11 Compute Average Similarity Between Traces

Input: 𝑇𝑝
Output: 𝑎𝑣𝑔

1: function compute_average_similarity(𝑇𝑝 )

2: Initialize 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 as empty list

3: for all 𝑡𝑟𝑎𝑐𝑒𝑖 ∈ 𝑇𝑝 do

4: for all 𝑡𝑟𝑎𝑐𝑒 𝑗 ∈ 𝑇𝑝 do

5: 𝑑𝑠𝑖𝑚 ← compute_similarity(𝑡𝑟𝑎𝑐𝑒𝑖 , 𝑡𝑟𝑎𝑐𝑒 𝑗 )
6: Append 𝑑𝑠𝑖𝑚 to 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
7: end for

8: end for

9: 𝑎𝑣𝑔← average(𝑎𝑟𝑟_𝑑𝑠𝑖𝑚) \\Compute average of list

10: return 𝑎𝑣𝑔

11: end function

Algorithm 12 Relaxed Attack on one Trace for 𝑑-Privacy

Input: 𝑡𝑟𝑎𝑐𝑒 ∈ 𝑇𝑝 ,𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥 , 𝑅𝐸, 𝑝𝑟, 𝑛𝑢𝑚 ∈ N, 𝑙𝑖𝑠𝑡_𝑟𝑎𝑛𝑔𝑒𝑠
Output: 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
1: function metric_relaxed_atk(𝑡𝑟𝑎𝑐𝑒,𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥 , 𝑅𝐸, 𝑝𝑟,

𝑛𝑢𝑚, 𝑙𝑖𝑠𝑡_𝑟𝑎𝑛𝑔𝑒𝑠)

2: Initialize 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 as empty list

3: 𝑤 ← get_balance(𝑡𝑟𝑎𝑐𝑒)
4: for 𝑖 from 1 to 𝑛𝑢𝑚 do

5: 𝑜𝑏𝑓 _𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ← metric_obfuscation(𝑤,𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥 ,

𝑅𝐸, 𝑝𝑟 )
6: 𝑤𝑐 ← metric_wallet_recovery_attack(𝑜𝑏𝑓 _𝑏𝑎𝑙𝑎𝑛𝑐𝑒,
𝑙𝑖𝑠𝑡_𝑟𝑎𝑛𝑔𝑒𝑠)

7: 𝑑𝑒𝑜𝑏𝑓 _𝑡𝑟𝑎𝑐𝑒 ← tsd_attack(𝑤𝑐 )
8: 𝑑𝑠𝑖𝑚 ← compute_similarity(𝑡𝑟𝑎𝑐𝑒, 𝑑𝑒𝑜𝑏𝑓 _𝑡𝑟𝑎𝑐𝑒)
9: Append 𝑑𝑠𝑖𝑚 to 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
10: end for

11: return 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
12: end function

i.e., the attacker’s guess for the original trace, is calculated. This

procedure is repeated 𝑛𝑢𝑚 times to get a good estimate of the

attacker’s success.

The similar trace attack for 𝑑-privacy is depicted in Algorithm 12.

The similar trace attack for the exponential mechanism is depicted

in Algorithm 13.

G.3 Evaluating the Similar Trace Attack

We describe the results of the similar trace attack for both 𝑑-privacy

and the exponential mechanism.

G.3.1 Evaluation Approach.

𝑑-Privacy. Our evaluation of the similar trace attack for 𝑑-

privacy proceeds as follows:

(1) Fix parameters 𝑇𝑝 ,𝑤𝑚𝑖𝑛 ,𝑤𝑚𝑎𝑥 , 𝑅𝐸, 𝑝𝑟 , 𝑛𝑢𝑚.

(2) Precomputation: Execute Algorithm 2:

𝑙𝑖𝑠𝑡_𝑟𝑎𝑛𝑔𝑒𝑠 ← precomputation_metric_attack(𝑊𝑝 , 𝑅𝐸)
to get the list of ranges 𝑙𝑖𝑠𝑡_𝑟𝑎𝑛𝑔𝑒𝑠

(3) For each 𝑡𝑟𝑎𝑐𝑒 ∈ 𝑇𝑝 , we execute Algorithm 12 to get a

list 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 . Algorithm 12 basically obfuscates the origi-

nal trace 𝑡𝑟𝑎𝑐𝑒 , then deobfuscates it again and calculates the
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Figure 5: Exponentialmechanism: Each graph shows the success rate of deobfuscation for 𝜀 ∈ {0.5, 1, 5} and for (𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0).
The tuples on the x-axis indicate (𝑖𝑑,𝑤𝑎𝑙𝑙𝑒𝑡) where 𝑖𝑑 distinguishes identical wallets with different traces. (Brisbane and

Melbourne case study).
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Figure 6: Exponential mechanism: Each graph shows the success rate of deobfuscation for 𝜀 ∈ {0.5, 1, 5} and for (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 =

0.5). The tuples on the x-axis indicate (𝑖𝑑,𝑤𝑎𝑙𝑙𝑒𝑡) where 𝑖𝑑 distinguishes identical wallets with different traces. (Brisbane and

Melbourne case study)
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𝜀 (id, wallet) non_outliers outliers

0.5 (0, 1.72) (1.5, 8.2) (0.0, 1.1)

0.5 (10, 5.11) (0.0, 4.9) N

0.5 (20, 6.12) (0.0, 4.4) N

0.5 (30, 7.08) (0.0, 4.4) (5.4, 5.4)

0.5 (40, 7.75) (0.0, 3.7) (4.3, 6.0)

0.5 (50, 8.14) (0.0, 3.6) (3.7, 6.4)

0.5 (60, 8.55) (0.0, 3.4) (3.6, 6.8)

0.5 (70, 8.9) (0.0, 4.4) (4.5, 7.2)

0.5 (80, 9.22) (0.0, 5.1) (5.8, 7.5)

0.5 (90, 9.57) (0.0, 6.4) (6.7, 7.9)

0.5 (100, 9.82) (0.0, 6.4) (6.6, 8.1)

(a) 𝜀 = 0.5

𝜀 (id, wallet) non_outliers outliers

1 (0, 1.72) (1.0, 8.2) (0.0, 0.0)

1 (10, 5.11) (0.0, 4.9) N

1 (20, 6.12) (0.0, 4.4) N

1 (30, 7.08) (0.0, 4.4) (5.4, 5.4)

1 (40, 7.75) (0.0, 3.7) (4.3, 6.0)

1 (50, 8.14) (0.0, 3.2) (3.6, 6.4)

1 (60, 8.55) (0.0, 2.9) (3.0, 6.8)

1 (70, 8.9) (0.0, 4.0) (4.3, 7.2)

1 (80, 9.22) (0.0, 4.7) (4.8, 7.5)

1 (90, 9.57) (0.0, 5.2) (5.5, 7.9)

1 (100, 9.82) (0.0, 6.6) (7.0, 8.1)

(b) 𝜀 = 1

𝜀 (id, wallet) non_outliers outliers

5 (0, 1.72) (0.0, 8.2) N

5 (10, 5.11) (0.0, 4.9) N

5 (20, 6.12) (0.0, 4.4) N

5 (30, 7.08) (0.0, 4.2) (4.4, 5.4)

5 (40, 7.75) (0.0, 3.7) (4.3, 6.0)

5 (50, 8.14) (0.0, 3.0) (3.0, 5.5)

5 (60, 8.55) (0.0, 2.7) (2.9, 6.8)

5 (70, 8.9) (0.0, 2.1) (2.3, 7.2)

5 (80, 9.22) (0.0, 2.6) (2.8, 7.5)

5 (90, 9.57) (0.0, 3.5) (3.7, 7.9)

5 (100, 9.82) (0.0, 4.1) (4.3, 8.1)

(c) 𝜀 = 5

Table 8: Exponential mechanism for Brisbane case study: Each row shows the cost (in dollars) w.r.t a wallet (associated with a

trace) and a fixed 𝜀, using (𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0). The id in (𝑖𝑑,𝑤𝑎𝑙𝑙𝑒𝑡) distinguishes identical wallets with different traces.

𝜀 (id, wallet) non_outliers outliers

0.5 (0, 1.92) (3.1, 8.1) (0.0, 1.9)

0.5 (26, 5.76) (0.0, 4.2) N

0.5 (52, 6.91) (0.0, 5.0) N

0.5 (78, 7.68) (0.0, 3.8) (4.6, 5.8)

0.5 (104, 8.06) (0.0, 3.1) (4.2, 6.1)

0.5 (130, 8.83) (0.0, 1.9) (2.7, 6.9)

0.5 (156, 9.21) (0.0, 3.1) (3.5, 7.3)

0.5 (182, 9.6) (0.0, 3.8) (4.6, 7.7)

0.5 (208, 9.98) (0.0, 5.0) (6.1, 8.1)

0.5 (234, 9.98) (0.0, 5.0) (6.1, 8.1)

0.5 (260, 9.98) (0.0, 4.2) (5.0, 8.1)

(a) 𝜀 = 0.5

𝜀 (id, wallet) non_outliers outliers

1 (0, 1.92) (1.1, 8.1) (0.0, 0.0)

1 (26, 5.76) (0.0, 4.2) N

1 (52, 6.91) (0.0, 5.0) N

1 (78, 7.68) (0.0, 3.8) (4.6, 5.8)

1 (104, 8.06) (0.0, 3.1) (4.2, 6.1)

1 (130, 8.83) (0.0, 1.9) (2.7, 6.9)

1 (156, 9.21) (0.0, 2.3) (3.1, 7.3)

1 (182, 9.6) (0.0, 2.7) (3.5, 7.7)

1 (208, 9.98) (0.0, 4.2) (5.0, 8.1)

1 (234, 9.98) (0.0, 4.2) (5.0, 8.1)

1 (260, 9.98) (0.0, 5.0) (6.1, 8.1)

(b) 𝜀 = 1

𝜀 (id, wallet) non_outliers outliers

5 (0, 1.92) (0.0, 8.1) N

5 (26, 5.76) (0.0, 4.2) N

5 (52, 6.91) (0.0, 5.0) N

5 (78, 7.68) (0.0, 3.8) (4.6, 4.6)

5 (104, 8.06) (0.0, 3.1) (4.2, 5.0)

5 (130, 8.83) (0.0, 1.9) (2.7, 6.9)

5 (156, 9.21) (0.0, 2.3) (3.1, 7.3)

5 (182, 9.6) (0.0, 0.8) (1.5, 7.7)

5 (208, 9.98) (0.0, 2.3) (3.1, 6.9)

5 (234, 9.98) (0.0, 2.3) (3.1, 8.1)

5 (260, 9.98) (0.0, 2.3) (3.1, 8.1)

(c) 𝜀 = 5

Table 9: Exponential mechanism for Melbourne case study: Each row shows the cost (in dollars) w.r.t a wallet (associated with a

trace) and a fixed 𝜀, using (𝛼𝑒𝑢𝑐𝑙 = 1, 𝛼𝑠𝑖𝑚 = 0). The id in (𝑖𝑑,𝑤𝑎𝑙𝑙𝑒𝑡) distinguishes identical wallets with different traces.

𝜀 (id, wallet) non_outliers outliers

0.5 (0, 1.72) (1.5, 8.2) (0.0, 1.1)

0.5 (10, 5.11) (0.0, 4.9) N

0.5 (20, 6.12) (0.0, 4.4) N

0.5 (30, 7.08) (0.0, 4.4) (5.4, 5.4)

0.5 (40, 7.75) (0.0, 3.7) (4.3, 6.0)

0.5 (50, 8.14) (0.0, 3.6) (3.6, 6.4)

0.5 (60, 8.55) (0.0, 3.6) (4.0, 6.8)

0.5 (70, 8.9) (0.0, 4.8) (5.5, 7.2)

0.5 (80, 9.22) (0.0, 5.1) (5.8, 7.5)

0.5 (90, 9.57) (0.0, 6.1) (6.4, 7.9)

0.5 (100, 9.82) (0.0, 6.4) (6.6, 8.1)

(a) 𝜀 = 0.5

𝜀 (id, wallet) non_outliers outliers

1 (0, 1.72) (1.7, 8.2) (0.0, 1.5)

1 (10, 5.11) (0.0, 4.9) N

1 (20, 6.12) (0.0, 4.4) N

1 (30, 7.08) (0.0, 4.4) (5.4, 5.4)

1 (40, 7.75) (0.0, 3.7) (4.3, 6.0)

1 (50, 8.14) (0.0, 3.2) (3.6, 6.4)

1 (60, 8.55) (0.0, 3.4) (3.6, 6.8)

1 (70, 8.9) (0.0, 4.0) (4.3, 7.2)

1 (80, 9.22) (0.0, 4.8) (5.1, 7.5)

1 (90, 9.57) (0.0, 6.1) (6.4, 7.9)

1 (100, 9.82) (0.0, 5.7) (6.4, 8.1)

(b) 𝜀 = 1

𝜀 (id, wallet) non_outliers outliers

5 (0, 1.72) (0.0, 8.2) N

5 (10, 5.11) (0.0, 4.9) N

5 (20, 6.12) (0.0, 4.4) N

5 (30, 7.08) (0.0, 4.2) (4.4, 5.4)

5 (40, 7.75) (0.0, 3.7) (4.3, 6.0)

5 (50, 8.14) (0.0, 3.0) (3.2, 6.4)

5 (60, 8.55) (0.0, 2.7) (2.9, 6.8)

5 (70, 8.9) (0.0, 2.9) (3.0, 7.2)

5 (80, 9.22) (0.0, 3.5) (3.7, 7.5)

5 (90, 9.57) (0.0, 4.7) (5.0, 7.9)

5 (100, 9.82) (0.0, 5.4) (6.4, 8.1)

(c) 𝜀 = 5

Table 10: Exponential mechanism for Brisbane case study: Each row shows the cost (in dollars) w.r.t a wallet (associated with a

trace) and a fixed 𝜀, using (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5). The id in (𝑖𝑑,𝑤𝑎𝑙𝑙𝑒𝑡) distinguishes identical wallets with different traces.

similarity between the deobfuscated trace and the original trace. This is repeated 𝑛𝑢𝑚 times and the similarity after

each deobfuscation is stored in an element of 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 .
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𝜀 (id, wallet) non_outliers outliers

0.5 (0, 1.92) (1.1, 8.1) (0.0, 0.0)

0.5 (26, 5.76) (0.0, 4.2) N

0.5 (52, 6.91) (0.0, 5.0) N

0.5 (78, 7.68) (0.0, 3.8) (4.6, 5.8)

0.5 (104, 8.06) (0.0, 3.1) (4.2, 6.1)

0.5 (130, 8.83) (0.0, 1.9) (2.7, 6.9)

0.5 (156, 9.21) (0.0, 3.1) (3.5, 7.3)

0.5 (182, 9.6) (0.0, 3.8) (4.6, 7.7)

0.5 (208, 9.98) (0.0, 5.0) (6.1, 8.1)

0.5 (234, 9.98) (0.0, 5.0) (6.1, 8.1)

0.5 (260, 9.98) (0.0, 5.0) (6.1, 8.1)

(a) 𝜀 = 0.5

𝜀 (id, wallet) non_outliers outliers

1 (0, 1.92) (3.1, 8.1) (0.0, 1.9)

1 (26, 5.76) (0.0, 4.2) N

1 (52, 6.91) (0.0, 5.0) N

1 (78, 7.68) (0.0, 3.8) (4.6, 5.8)

1 (104, 8.06) (0.0, 3.1) (4.2, 6.1)

1 (130, 8.83) (0.4, 1.2) (0.0, 6.9)

1 (156, 9.21) (0.0, 2.3) (3.1, 7.3)

1 (182, 9.6) (0.0, 3.8) (4.6, 7.7)

1 (208, 9.98) (0.0, 4.2) (5.0, 8.1)

1 (234, 9.98) (0.0, 5.0) (6.1, 8.1)

1 (260, 9.98) (0.0, 5.0) (6.1, 8.1)

(b) 𝜀 = 1

𝜀 (id, wallet) non_outliers outliers

5 (0, 1.92) (1.1, 8.1) (0.0, 0.0)

5 (26, 5.76) (0.0, 4.2) N

5 (52, 6.91) (0.0, 5.0) N

5 (78, 7.68) (0.0, 3.8) (4.6, 5.8)

5 (104, 8.06) (0.0, 3.1) (4.2, 6.1)

5 (130, 8.83) (0.0, 1.9) (2.7, 6.9)

5 (156, 9.21) (0.0, 2.3) (3.1, 7.3)

5 (182, 9.6) (0.0, 2.7) (3.5, 7.7)

5 (208, 9.98) (0.0, 4.2) (5.0, 8.1)

5 (234, 9.98) (0.0, 4.2) (5.0, 8.1)

5 (260, 9.98) (0.0, 4.2) (5.0, 8.1)

(c) 𝜀 = 5

Table 11: Exponential mechanism for Melbourne case study: Each row shows the cost (in dollars) w.r.t a wallet (associated with

a trace) and a fixed 𝜀, using (𝛼𝑒𝑢𝑐𝑙 = 0.5, 𝛼𝑠𝑖𝑚 = 0.5). The id in (𝑖𝑑,𝑤𝑎𝑙𝑙𝑒𝑡) distinguishes identical wallets with different traces.

Algorithm 13 Relaxed Attack on one Trace for Exponential

Input: 𝑡𝑟𝑎𝑐𝑒 ∈ 𝑇𝑝 ,𝑇𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚, 𝑛𝑢𝑚 ∈ N, 𝑡𝑎𝑏𝑙𝑒
Output: 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
1: function exp_relaxed_atk(𝑡𝑟𝑎𝑐𝑒,𝑇𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚, 𝑛𝑢𝑚, 𝑡𝑎𝑏𝑙𝑒)

2: Initialize 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 as empty list

3: for 𝑖 from 1 to 𝑛𝑢𝑚 do

4: 𝑜𝑏𝑓 _𝑡𝑟𝑎𝑐𝑒 ← exponential_obfuscation(𝑡𝑟𝑎𝑐𝑒,𝑇𝑝 ,
𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚)

5: 𝑑𝑒𝑜𝑏𝑓 _𝑡𝑟𝑎𝑐𝑒 ← exp_attack(𝑜𝑏𝑓 _𝑡𝑟𝑎𝑐𝑒,𝑇𝑝 , 𝑡𝑎𝑏𝑙𝑒)
6: 𝑑𝑠𝑖𝑚 ← compute_similarity(𝑡𝑟𝑎𝑐𝑒, 𝑑𝑒𝑜𝑏𝑓 _𝑡𝑟𝑎𝑐𝑒)
7: Append 𝑑𝑠𝑖𝑚 to 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
8: end for

9: return 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚
10: end function

(4) The results are plotted in a graph, where each element on

the x-axis equals an original trace and the values of the

corresponding 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 are depicted as a box plot on the

y-axis.

We then compare the results of the similar trace attack with the av-

erage similarity between traces, i.e., an attacker that just randomly

guesses a trace.

Exponential Mechanism. Our evaluation of the similar trace

attack for the exponential mechanism proceeds as follows:

(1) Fix parameters 𝑇𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚 , 𝑛𝑢𝑚.

(2) Precomputation: Execute Algorithm 4 as

𝑡𝑎𝑏𝑙𝑒 ← precomputation_exp_attack(𝑇𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 , 𝛼𝑠𝑖𝑚)
to get the table 𝑡𝑎𝑏𝑙𝑒 with all probabilities

(3) For each 𝑡𝑟𝑎𝑐𝑒 ∈ 𝑇𝑝 , execute Algorithm 13(𝑡𝑟𝑎𝑐𝑒,𝑇𝑝 , 𝜀, 𝛼𝑒𝑢𝑐𝑙 ,

𝛼𝑠𝑖𝑚, 𝑛𝑢𝑚, 𝑡𝑎𝑏𝑙𝑒) to get a list 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 . Algorithm 13 basi-

cally obfuscates the original trace 𝑡𝑟𝑎𝑐𝑒 , then deobfuscates

it again and calculates the similarity between the deobfus-

cated trace and the original same. This is repeated 𝑛𝑢𝑚 times

and the similarity after each deobfuscation is stored in an

element of 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 .

(4) The results are plotted in a graph, where each element on

the x-axis equals an original trace and the values of the

corresponding 𝑎𝑟𝑟_𝑑𝑠𝑖𝑚 are depicted as a box plot on the

y-axis.

We then compare the results oft the similar trace attack with the av-

erage similarity between traces, i.e., an attacker that just randomly

guesses a trace.

G.3.2 Results. In Fig. 7 the results of 𝑛𝑢𝑚 = 1000 iterations of

the similar trace attack are depicted, in Fig. 7a for 𝑑-privacy and

in Fig. 7b for the exponential mechanism. For both mechanism it

can be seen that this attack does not fare much better than just

guessing a random trace. Since the red line inside each box plot that

depicts the median is in most cases close to the average similarity

between traces (depicted as blue line), the chance for an adversary

to recover a trace that is “similar” to the original trace is not much

better than just guessing the original trace. But more medians (for

both mechanism) are below the blue line, so the similar trace attack

seems to yield better results than just guessing — even if only a

little.

When comparing Fig. 7a and Fig. 7b in a bit more detail, it can be

seen that for 𝑑-privacy the achieved similarity seems to fluctuate

more and thus depends more on the input wallet, while for the

exponential mechanismmost input wallets yield a similar similarity.

This is consistent with the results from the “exact trace attack”,

which we considered in Section 5.
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(b) Exponential Mechanism with (𝛼𝑒𝑢𝑐𝑙 = 0.75, 𝛼𝑠𝑖𝑚 = 0.25)

Figure 7: Similar Trace Attack on the Brisbane Case Study: Each value on the x-axis depicts an original wallet, while the y-axis

depicts box plots of the similarity between the trace the attacker outputs and the original trace. For a comparison, the average

similarity between traces (obtained from Algorithm 11) is included as a blue line.
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