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Abstract. We determine all orbits of isometric actions on CP2, HP2, and

OP2 that are covered by spheres and represent nontrivial classes in the cor-

responding homotopy groups. As new examples we find orbits that represent

generators of π5(HP2) ≈ Z2 and π11(OP2) ≈ Z24. These orbits are the quater-

nionic and octonionic analogues of the quadric z2
1 + z2

2 + z2
3 = 0 in CP2.

Introduction

It is a classical problem to represent elements of the homotopy groups πk(M)
of a compact manifold M by geometrically nice maps. In this paper we consider
the projective planes CP2, HP2, and OP2. It is well-known that projective lines
represent generators of the first nontrivial groups π2(CP2), π4(HP2), π8(OP2). Any
projective line is the cut locus of a point p and this cut locus is an isolated singular
orbit of the action of the isotropy group at p. Therefore, it is natural to ask whether
there are other orbits O of isometric actions such that there exists a covering map
Sk → O which represents a nontrivial element in πk(CP2), πk(HP2), πk(OP2).

Theorem. Any such orbit O is up to congruence one of the following:

• A projective line in CP2, HP2, or OP2.
• The quadric z2

1+z2
2+z2

3 = 0 in CP2 or the analogous orbits in HP2 and OP2.
These orbits SC , SH , and SO are diffeomorphic to S2, S5, and S11. They
represent twice a generator of π2(CP2) ≈ Z, the generator of π5(HP2) ≈ Z2,
and a generator of π11(OP2) ≈ Z24.

The important part of the theorem is that the orbits SH and SO generate π5(HP2)
and π11(OP2). This result is interesting in the following two respects: First, the
orbits SH and SO are isolated singular orbits and hence minimal submanifolds (in
contrast to the quadric, however, they are not stable minimal, see Ohnita’s clas-
sification [11]). Second, the well-known fact that the quadric represents twice a
generator of π2(CP2) ≈ H2(CP2) is usually considered to be a homological result
rather than a homotopical one because of its homological generalizations in alge-
braic geometry. Our approach, on the other hand, shows how this fact generalizes
to HP2 and OP2 in a purely homotopical way (note that H5(HP2) and H11(OP2)
vanish): We deform parametrizations of the orbits SC , SH , and SO by geodesic
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retractions to maps with values in the projective lines CP1, HP1, OP1 and obtain
suspensions of the Hopf fibrations S1 → RP1, S3 → CP1, and S7 → HP1. These
suspensions are known to represent twice a generator of π2(CP1), the generator of
π5(HP1), and a generator of π11(OP1).

It is a striking fact that the geodesic deformations actually yield maps whose
homotopy classes can be determined. This obviously requires a carefully arranged
calculation, which finally appears to be rather short. More sophisticated arguments
that worked well in the case of HP2 failed to resolve whether the orbit SO represents
a generator of π11(OP2) or three times a generator. The explicit homotopy that
we supply yields the most precise information possible, since it determines which
of the eight generators of π11(OP2) the orbit SO represents.

1. Deformation of parametrizations of the orbits SC , SH, and SO

The orbits SC , SH , and SO can be described in the following unified way: They
are the sets of points with maximal distance to RP2 ⊂ CP2, CP2 ⊂ HP2, and
HP2 ⊂ OP2, respectively. In this section we parametrize these orbits and deform
the parametrizations to maps with values in projective lines. In order to do this we
use the Veronese-Jordan models of the projective planes.

We first describe these models. Let H = C ⊕ Cj denote the quaternions and
O = H ⊕He the octonions with multiplication

(u1 + v1e) · (u2 + v2e) = u1u2 − v̄2v1 + (v2u1 + v1ū2)e

and conjugation u+ve 7→ ū−ve. We equip the hermitian 3×3-matrices HermC(3),
HermH(3), and HermO(3) with the Jordan product X ◦ Y = 1

2 (XY + Y X). The
submanifolds of idempotent elements with trace 1 in these Jordan algebras are
diffeomorphic to the projective planes CP2, HP2, OP2. In the first two cases the
diffeomorphisms are given by the classical Veronese embeddings of CP2 and HP2,
i.e., by the maps

C3 ⊃ S5 −→ HermC(3), z 7→ zz̄t,

H3 ⊃ S11−→ HermH(3), u 7→ uūt.

The octonionic case is due to Jordan [10] (see also [2], [5], [6], or [15]).
For technical reasons we apply the affine transformation X 7→ 2X − 1l to the

spaces HermC(3), HermH(3), and HermO(3). This transformation maps the sub-
manifolds of idempotent elements with trace 1 bijectively to the submanifolds of
matrices with trace −1 whose square is the identity matrix 1l. For convenience we
still denote the latter submanifolds by CP2, HP2, and OP2.
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The following embeddings turn out to be parametrizations of the orbits SC , SH ,
and SO :

ιC : S2 ↪→ CP2, x =
(

x1
x2
x3

)
7→ −xxt +

( 0 −x3 x2
x3 0 −x1

−x2 x1 0

)
i(1)

ιH : S5 ↪→ HP2, z =
(

z1
z2
z3

)
7→ −zz̄t +

( 0 −z̄3 z̄2
z̄3 0 −z̄1

−z̄2 z̄1 0

)
j(2)

ιO : S11 ↪→ OP2, u =
(

u1
u2
u3

)
7→ −uūt +

( 0 −ū3 ū2
ū3 0 −ū1

−ū2 ū1 0

)
e(3)

It is straightforward to check that the embedding S2 ↪→ CP2 yields a parametriza-
tion of the quadric that is given by the equation z2

1 + z2
2 + z2

3 = 0 in the standard
description of CP2. Note that this equation is not well-defined on HP2 and OP2.

Theorem 1. The embeddings above represent twice a generator of π2(CP2) ≈ Z,
the generator of π5(HP2) ≈ Z2, and a generator of π11(OP2) ≈ Z24, respectively.

Proof. The embedding ιO : S11 ↪→ OP2 does not meet the point

p0 =
(

1 0 0
0 −1 0
0 0 −1

)
.

Therefore, we can compose it with the geodesic retraction from OP2 r {p0} to the
cut locus of p0. This geodesic retraction is given by the formula( ξ1 w̄3 w2

w3 ξ2 w̄1
w̄2 w1 ξ3

)
7→ 1

1−ξ1

( ξ1−1 0 0
0 ξ2−ξ3 2w̄1
0 2w1 ξ3−ξ2

)
.

The cut locus of p0 can be identified with the unit sphere S8 in R × H2 by means
of the embedding

S8 ↪→ OP2,
(

ζ
v1
v2

)
7→

(−1 0 0
0 ζ v1+v2e
0 v̄1−v2e −ζ

)
.(4)

All in all, the composition of the embedding ιO with the retraction yields the map

S11 → S8,
(

u1
u2
u3

)
7→ − 1

1+|u1|2

( |u2|2−|u3|2
2u2ū3
2ū1

)
.(5)

In order to figure the meaning of this map note that the Hopf fibration S7 → S4

can be given by the formula (
u2
u3

)
7→

( |u2|2−|u3|2
2u2ū3

)
.(6)

One can now check that the map given in (5) is (up to sign) the fourth suspension
of the map given in (6). It is known [8] that the fourth suspension of the Hopf
fibration S7 → S4 generates π11(S8) ≈ π11(OP2). �

We now show that the embeddings above actually are parametrizations of the
orbits SC , SH , and SO . In order to do this we have to describe the actions on CP2,
HP2, and OP2 that leave the totally geodesic subspaces RP2 ⊂ CP2, CP2 ⊂ HP2,
and HP2 ⊂ OP2 invariant. These are actions of the groups SO(3)× Z2, U(3), and
Sp(3)×Z2 Sp(1), respectively. For convenience of notation we restrict to the latter
action (the other two cases can be treated completely analogously or alternatively
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be carried out in the standard models of CP2 and HP2). The explicit description
of this action was given by Yokota [9]. It is based on the following identification:

HermH(3)⊕H3 → HermO(3),

Q⊕
(

u1
u2
u3

)
7→ Q+

( 0 −ū3 ū2
ū3 0 −ū1

−ū2 ū1 0

)
e.

Straightforward calculations show that the Jordan product is given by

(Q⊕ u) ◦ (Q⊕ u) =
(
Q2 − uūt + |u|21l

)
⊕

(
(trQ)u−Qu

)
and that OP2 is identified with the set

{Q⊕ u | Q2 − uūt + |u|21l = 1l, Qu = −u, trQ = −1}.

Now Sp(3)× Sp(1) acts by automorphisms on the Jordan algebra HermH(3)⊕H3

and hence by isometries on OP2 in the following way:

(A, q) · (Q⊕ u) = AQĀt ⊕Auq̄.

The kernel of this action is isomorphic to Z2 and the orbit space is a closed interval.
In order to give a more detailed description of the orbit space we use the geodesic

γ(t) =
(

cos 2t 0 0
0 − cos 2t 0
0 0 −1

)
⊕

(
0
0

sin 2t

)
.(7)

The orbit through γ(0) = p0 is the totally geodesic subspace HP2 ⊂ OP2. It is
easy to see that γ intersects this orbit and hence all orbits perpendicularly (by
Clairault’s theorem the velocity vectors of a geodesic have a constant inner product
with a Killing field). The isotropy groups of γ(t) for t ∈ ]0, π

4 [ are isomorphic
to Sp(1)3. Finally,

γ(π
4 ) = ιO

(
0
0
1

)
.(8)

It is easy to see that the embedding ιO is equivariant with respect to the Sp(3) ×
Sp(1)-action and hence ιO parametrizes the orbit through γ(π

4 ).

Remark 1.1. The compositions of the Hopf fibrations S2 → RP2 and S5 → CP2

with the inclusion maps RP2 ↪→ CP2 and CP2 ↪→ HP2 are null-homotopic. This
follows immediately from the commutative diagram

S2 −−−−→ S5 −−−−→ S11y y y
RP2 −−−−→ CP2 −−−−→ HP2.

In contrast, the composition of the Hopf fibration S11 → HP2 with the inclusion
map HP2 ↪→ OP2 represents a generator or the third power of a generator of
π11(OP2).

Remark 1.2. Suppose that CP2, HP2, and OP2 are equipped with the standard
metrics for which the sectional curvature varies between 1 and 4. The orbit SC

inherits a metric with constant curvature 2. The orbits SH and SO inherit the
unique metrics for which

S1
1/2 → SH → CP2

1/
√

2 and S3
1/2 → SO → HP2

1/
√

2
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are Riemannian fibrations. Here, the fibers are euclidean spheres with radius 1
2 and

the base spaces are projective planes with diameter π
2
√

2
. The sectional curvature

of the metrics on SH and SO ranges from 1 to 5 and we have

vol(SC) = 2 · vol(S2
1/2), vol(SH) = 4 · vol(S5

1/2), vol(SO) = 16 · vol(S11
1/2).

The metric on SO ≈ S11 is the up to scaling unique metric that comes by submersion
from a biinvariant metric on Sp(3).

Remark 1.3. The embeddings ιC , ιH , and ιO are harmonic with respect to any
SO(3)×Z2, SU(3)×U(1), and Sp(3)×Sp(1)-invariant metric on S2, S5, and S11. It
is not difficult to check that the equivariance of the embeddings enforces the tension
field to vanish. Note that the second suspension of the Hopf fibration S3 → S2 and
the fourth suspension of the Hopf fibration S7 → S4 are harmonic maps if the
suspension is done suitably [14]. Hence, the compositions of these maps with the
totally geodesic inclusions HP1 ↪→ HP2 and OP1 ↪→ OP2 yield other harmonic
representatives of the generators of π5(HP2) and π11(OP2).

Remark 1.4. The actions of SO(3)×Z2 on CP2, U(3) on HP2, and Sp(3)×Z2 Sp(1)
on OP2 have also been studied recently in [1], which deals with the diffeomorphisms
CP2/Z2 ≈ S4, HP2/U(1) ≈ S7, and OP2/Sp(1) ≈ S13 and their generalizations.

2. The classification

In this section we determine all orbits of isometric actions on the projective planes
CP2, HP2, and OP2 that are covered by spheres and represent nontrivial elements
in the corresponding homotopy groups. It suffices to consider actions of connected
closed subgroups of the isometry group for this problem. Moreover, we use the
following fact: If two subgroups are conjugate by some element ψ in the isometry
group then the isometry ψ maps each orbit of the first subgroup isometrically to
an orbit of the second subgroup. Therefore, we can choose a fixed representative
for any conjugacy class of subgroups. We will in particular do this for the maximal
connected subgroups.

It is well-known that the identity components of the isometry groups of the
projective planes are PSU(3), Sp(3)/{±1l}, and F4, respectively. For convenience
we work with SU(3) and Sp(3) instead of PSU(3) and Sp(3)/{±1l}. The maximal
connected subgroups of SU(3), Sp(3), and F4 with rank ≥ 2 in the last two cases
are the following (see [4], [12]):

SU(3) U(2) SO(3)
Sp(3) Sp(1)× Sp(2) U(3) SO(3)× SO(3)
F4 Spin(9) Sp(3)×Z2 Sp(1) SU(3)×Z3 SU(3) G2 × SO(3)

The first maximal subgroup in each case is the isotropy group of a point p0 in
the corresponding projective plane. The isotropy group acts transitively on the
distance spheres to the point p0 and the distance spheres finally collapse to the cut
locus of p0, i.e., to a projective line. Since inclusions of spheres of lower dimension
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into spheres of higher dimension are always null-homotopic, the only homotopically
nontrivial orbit for any subgroup of the isotropy group is the cut locus of p0 itself.

The actions of SO(3) on CP2, U(3) on HP2, and Sp(3) ×Z2 Sp(1) on OP2 were
explicitely given in the previous section. We first consider actions of subgroups of
Sp(3)× Sp(1) on OP2 and any homotopically nontrivial orbit that is covered by a
sphere. The dimension of this orbit is ≥ 8. Hence, it cannot be contained in HP2.
If the orbit is contained in SO ≈ S11, it has to be identical with SO . If the orbit
is neither contained in HP2 nor in SO , the isotropy group of any point in the orbit
is isomorphic to a subgroup of the principal isotropy group of the Sp(3) × Sp(1)-
action, i.e., to a subgroup of Sp(1)3. It follows from the classification of transitive
actions on spheres (see [3], p. 179) that this can only happen if the dimension of the
orbit is ≤ 7, a contradiction. Analogous arguments apply to actions of subgroups
of U(3) on HP2 and of subgroups of SO(3) on CP2 and show that SC and SH are
the only relevant orbits of these actions.

Finally, subgroups of SO(3)×SO(3), SU(3)×Z3 SU(3), and G2×SO(3) can only
act transitively on spheres of dimension ≤ 2, ≤ 5, and ≤ 6, respectively. Thus they
do not contribute any orbit that is relevant to our problem and we have finished
the classification.

Remark 2.1. The isometry groups of the projective planes are maximal compact
subgroups of the projective motion groups. In the classification nothing changes if
one considers actions of subgroups of the projective motion groups instead of iso-
metric actions. The reason is a well-known theorem of Montgomery: If a connected
Lie group acts transitively on a compact manifold with finite fundamental group (in
our case the orbit in question) then a compact subgroup acts transitively as well.

3. Intersections and Hopf fibrations

As we have seen in Section 1, the singular orbits SC , SH , and SO are the sets
of points with maximal distance to RP2 ⊂ CP2, CP2 ⊂ HP2, and HP2 ⊂ OP2.
This leads to the question whether the Hopf fibrations S2 → RP2, S5 → CP2, and
S11 → HP2 occur geometrically in CP2, HP2, and OP2.

Theorem 2. The intersection of the cut locus of a point p ∈ OP2 with the singular
orbit HP2 consists of a quaternionic projective line if p ∈ HP2 and of a unique
point π(p) otherwise. The induced map π ◦ ιO : S11 → HP2 is the Hopf fibration.
The fiber π−1(q) is a totally geodesic S3 in OP2 given by the intersection of the cut
locus of q with SO . The intersection of the cut locus of an arbitrary point p ∈ OP2

with the singular orbit SO is diffeomorphic to S3 if p 6∈ SO and consists of just one
point if p ∈ SO , namely, of the antipode of p in SO .

Proof. It is easy to see from (4) that the cut locus of the point p0 ∈ OP2 consists
precisely of the points p ∈ OP2 with (1l+ p0) ◦ (1l+ p) = 0. This shows that a point
p2 ∈ OP2 is in the cut locus of a point p1 ∈ OP2 if and only if (1l+p1)◦(1l+p2) = 0,
since this relation is invariant under the automorphism group F4 of the Jordan
algebra HermO(3).
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Because of the Sp(3)×Sp(1)-invariance of HP2 and SO we just have to compute
the intersections of these orbits with the cut loci of points on the geodesic segment
γ : [0, π

4 ] → OP2 given in (7). We parametrize HP2 and SO by the equivariant
maps hH : S11 → HP2, u 7→ (2uūt − 1l) ⊕ 0 and ιO : S11 → OP2, u 7→ (−uūt) ⊕ u.
A point hH(u) in HP2 is contained in the cut locus of γ(t) if and only if

(1l + γ(t)) ◦
(
uūt ⊕ 0

)
= 0.

Straigthforward computations show that for t = 0 this condition is equivalent to
u1 = 0, which defines a quaternionic projective line. For 0 < t ≤ π

4 the condition
is equivalent to u1 = u2 = 0, |u3| = 1, which defines a single point. It follows from
(8) and the equivariance of ιO that π ◦ ιO is the Hopf fibration.

A point in the orbit SO is contained in the cut locus of γ(t) if and only if

(1l + γ(t)) ◦
(
(1l− uūt)⊕ u

)
= 0.

For t ∈ [0, π
4 ] this condition is equivalent to

|u1|2 = 1− tan2 t, u2 = 0, and u3 = − tan t.

For t = 0 this becomes |u1|2 = 1, u2 = u3 = 0, which is the Hopf fiber h−1
H (γ(0)).

Using the isometric identification of the cut locus of p0 with S8
1/2 given in (4)

we see that the intersection of SO with the cut locus of p0 = γ(0) is a totally
geodesic S3

1/2. �

Remark 3.1. To projective geometers the orbits SC , SH , and SO are known as
the sets of absolute points of the planar polarities [13]. It is also known that the
intersections of SC , SH , and SO with generic lines are diffeomorphic to S0, S1, and
S3, respectively. In CP2 this fact is a special consequence of Bezout’s theorem
and it can easily be used to prove that the quadric represents twice a generator
of π2(CP2). At this point a natural question arises: Is it possible to prove that
SH and SO generate π5(HP2) and π11(OP2) from the intersection behaviour of
these orbits with projective lines? In combination with our deformation such an
argument could provide a unified geometric proof for the fact that the suspensions
of the Hopf fibrations S3 → S2 and S7 → S4 generate the stable homotopy groups
πn+1(Sn) and πn+3(Sn).
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