
A NOTE ON GENERA

Abstract. This note is to be considered expository. We present a topolog-

ically motivated survey of the Witten genus, which includes an attempt to
overcome a common looseness (or inaccuracy) in the scattered literature on

genera or more specifically on the Witten genus. This note is by no means

complete, but work in progress.
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1. Graded rings

We start with the definition of a graded ring, which for topologists should slightly
differ from the definition of a graded ring that for example an algebraic geometrist
uses. This is because of certain subtleties which matter in topology, but are just
not visible in algebraic geometry.

Definition 1.1. A graded ring R∗ is a collection {Mi}i∈Z of modules Mi, called
the homogeneous pieces of R∗, together with a (graded) multiplication

Mi ×Mj −→Mi+j .

Elements of Mi are said to be of degree i. The addition in R∗ is the usual addition
of sequences.

Notation 1.2. We will denote our graded rings ambiguously by

R∗ =
⊕
i∈Z

Mi and R∗ =
∏
i∈Z

Mi.

Both are common notations for graded rings, although the first is even more
common than the second. Note that in the context of graded rings the objects
representing both notations are in fact isomorphic, since in both cases the collection
of homogeneous pieces is the same. This is of course false in the category of rings,
as one quickly recognizes when comparing the underlying sets.

As an explanation for our definition we offer the following reason.
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Remark 1.3. The algebraic geometry definition of a graded ring, being the direct
sum of some collection of modules, is, as noted above, slightly inconvenient for
topologists. One example of such inconvenience being the following. Cohomology
theories should take value in the category of graded rings. On the other hand, a
cohomology ring is the direct product of all cohomology groups.

While this discrepancy is not visible as long as one only deals with, say, finite
complexes, one actually runs into subtleties, once one wants to calculate the coho-
mology of an infinite complex such as CP∞ (cf. Appendix A). Now the direct sum
and the direct product will no longer coincide and one has to decide whether the
cohomology of CP∞ should be a polynomial ring or a power series ring.

There is a natural way to go from the category of graded rings to the category
of rings. Consider the forgetful functor

{graded Rings} forgetful−→ {Rings}
which sends a graded ring R∗ to the direct product

∏
i∈ZMi of its homogeneous

pieces. This is sometimes referred to as the (honest) ring underlying R∗.

Remark 1.4. We hope that our reasons for understanding genera as homomor-
phisms of graded rings becomes more clear along the following sections. In these
sections we will talk about (topological) morphisms of ring spectra, which on homo-
topy groups reproduce certain genera. In this context it is only natural to consider
genera as homomorphisms of graded rings, as the homotopy groups of spectra nat-
urally have this structure.

2. Genera

In the common literature such as e.g. [HBJ92] a genus is described as a ring
homomorphism

ϕ : Ω∗ −→ R

from a cobordism ring Ω∗ into some ring R. This deserves a to be made a little
more precise. The domain of this ring homomorphism is obviously a graded ring,
whereas the codomain can be any ring. The natural way to make sense of the term
’ring homomorphism’ is to consider the (honest) ring underlying the cobordism
ring.

The upshot of this section is that we want to emphasize is that this definition
throws away a certain piece of information which might have been superfluous back
in the days this definition was proposed, but can turn out be useful in modern
topology.

Let us offer a slightly modified version of this definition.

Definition 2.1. A genus is a degree preserving homomorphism of graded rings

ϕ∗ : ΩG∗ −→ R∗

from some cobordism ring, classifying cobordism classes of compact manifolds with
G-structure on their tangent bundle, to some graded ring R∗.

A very good question is ’How do the established genera fit into this context?’.
The easy answer is, by turning the codomain R into a graded ring R∗. We do so
in the most naive way

ϕ∗ : ΩG∗ −→ R∗ := R[u±],
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where the formal variable u is given some (suitable) degree and the map is required
to be degree preserving.

Employing the canonical isomorphisms R ∼= R · ui for all i ∈ Z one can also win
back the ’original’ morphism by considering the following composition

ϕ : ΩG∗ −→ R∗ =



...
R
R
R
R
...


+−→ R.

This should be considered to ”undo” turning R into a graded ring by forgetting the
grading and identifying all copies of R.

We hope that the following sections shed some light on the usefulness of this
point of view.

Rational genera. If the codomain R∗ does not contain additive torsion (i.e. none
of the Mi has torsion), then ϕ∗ is of course determined by its rationalization

ϕQ
∗ : ΩG∗ ⊗Z Q −→ R∗.

Even if the codomain contains torsion, much of the information of ϕ is captured by
its rationalization. In particular, given a rational genus

ϕQ
∗ : ΩG∗ ⊗Z Q −→ R∗ ⊗Z Q

as usual we have

• a logarithm

logϕ(x) :=
∑
i>0

ϕ(CP 2i)

i+ 1
· xi+1

• a Hirzebruch characteristic series

Qϕ(x) =
x

expϕ(x)

with expϕ(x) being the exponential of the genus and the inverse of the
logarithm logϕ(x).
• a characteristic class

Qϕ(c1(Luniv)) ∈ H2(BU(1), R0 ⊗Q)

given by evaluating the Hirzebruch characteristic series on the first Chern
class of the universal bundle over BU(1).

This characteristic class gives rise to other characteristic classes, e.g. for
the sum L1 ⊕ · · · ⊕ Lk of line bundles (note that by the splitting principle
any bundle has such presentation)∏

i

Qϕ(c1(Li)).

One can thus easily evaluate rational genera on a (cobordism class of a) compact,
differentiable, oriented 4n-dim manifold via

ϕ∗(M) =

〈
n∏
i=1

Qϕ(c1(Li)), [M ]

〉
,
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i.e. evaluating the n-fold product of Q on the fundamental class [M ] of M . The
Li are the summands of the decomposition of the complexified tangent bundle
TM ⊗ C via the splitting principle. The evaluation of the product is the same as
the evaluation on the highest cohomology class, since all other pair to zero.

Remark 2.2. Note that, in order to keep notation simple, we suppress the ∗-index
of ϕ∗, whenever ϕ∗ itself occurs as index.

3. Modular forms

Let Mell be the moduli stack of elliptic curves and ω be the invertible sheaf on
Mell locally given by the invertible sheaf of differential 1-forms p∗Ω

1
E for an elliptic

curve p : E −→ S and some base scheme S.
One usually denotes by

MF alg∗ := H0(Mell, ω
⊗∗) :=

⊕
k

H0(Mell, ω
⊗k)

the (graded) ring of modular forms. In the relevant literature the graded ring

MF alg∗ is usually denoted by just MF∗. We choose to decorate this ring with the
further index alg in order to emphasize that the grading is algebraic in the sense
that the weight k is an algebraic one.

It is well known that there are only modular forms of even weight, i.e.

MF alg2k+1 = H0(Mell, ω
⊗2k+1) = 0.

Another well known fact is that

MF alg∗
∼= Z[E4, E6,∆]/(E3

4 − E2
6 − 1728∆)

where the E2k are Eisenstein series of weight 2k, normalized such that their q-
expansion have only integral coefficients and starts with 1. For some arithmetic
group Γ ⊆ SL2(Z) these Eisenstein series are defined by

E2k(τ) =
∑

γ∈(P∩Γ)\Γ

12k

∣∣γ
=

1

2

∑
(c,d)=1
c,d∈Z

1

(cτ + d)2k

= 1 +
4k

−B2k

∑
n≥1

σ2k−1(n)qn.

Here P is the minimal/maximal parabolic subgroup of the full modular group
SL2(Z), as usual (c, d) denotes the gcd of c and d and σm(n) is the sum

∑
d|n d

m

of m-th powers of the positive divisors d of n. The notation fn
∣∣γ denotes

fn
∣∣γ(x) = j(x, γ)−nf(γ.x)

where j denotes the factor of automorphy for Γ.
Considering a different normalization

G2k(τ) =
−B2k

4k
· E2k
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of those Eisenstein series, one realizes that the coefficients in their q-expansions

G2k(τ) =
−B2k

2k
+
∑
i≥1

σ2k−1(i)qi

remain integral except for the constant one (which is still rational though). In
this normalization the Eisenstein series have the further property that they are
normalized eigenfunctions for Hecke operators.

Algebraic weight vs. topological weight. As mentioned above the ring of
modular forms is commonly graded via the algebraic weight of modular forms. In
this section we would like to provide arguments for the introduction of a different,
i.e. topological, grading. In short we argue that the invertible sheaf ω itself deserves
to be of degree 2 and hence define

MF top2∗ := MF alg∗ .

This grading will be much more suitable to our perspective that genera are degree
preserving homomorphism of graded rings.

The construction of the ring spectrum tmf (or its periodic versions) of topolog-
ical modular forms is a consequence of the derived structure of the moduli stack of
elliptic curves, hence depends crucially on the construction of a sheaf, usually de-
noted by Otop, of E∞-ring spectra onMell. Evaluated on étale affines S = Spec(R)
overMell the sheaf Otop produces weakly even periodic E∞-ring spectra. These are
E∞-ring spectra E such that π∗E is concentrated in even degrees, i.e. π2k+1E = 0,
π2E is an invertible (i.e. locally free of rank one) π0E-module and the multiplication
maps

π2E ⊗π0E π2tE −→ π2t+2E

are isomorphisms. Note that locally the concept of weakly even periodic and even
periodic (π2E is a free π0E-module of rank one) of course coincide.

Let E be a weakly even periodic ring spectrum given by evaluating Otop on
some étale open S, then the E-cohomology of CP∞ is described in Appendix A.
Note that Spf(E0(CP∞)) is by construction of Otop isomorphic to the formal group
GE −→ S associated to the cohomology represented by E. The ring of functions of
GE is thus given by E0(CP∞). Let us denote by I the ideal sheaf on S defined by
those functions on GE vanishing of on the identity section. A common argument
shows that I/I2 is (isomorphic to) the (Zariski) cotangent space/sheaf (on S) of
GE at the identity section. On the other hand the natural maps

I/I2 −→ E−2 · x
∼=−→
can.

E−2 ∼= π2(E)

are isomorphisms.
An easy argument shows that the cotangent spaces of the elliptic curve CS and

the cotangent space/sheaf of the formal group Ĉ ∼= GE are isomorphic, in fact
coincide. Since the cotangent sheaf of CS is the sheaf of differential 1-forms and
we have ω defined to be the latter, we have thus shown that locally (i.e. on étale
opensS) the invertible sheaf ω is isomorphic to π2(E).

This argument is the reason to consider ω to be of topological degree 2 and is
the justification for the definition of

MF top2∗ := MF alg∗ := H0(Mell, ω
⊗∗).
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Since there are only modular forms of even algebraic weight, the topologically
graded ring of modular forms is concentrated in degrees, which are a multiple of 4,
i.e.

MF top4k = MF alg2k = H0(Mell, ω
⊗2k).

It is still correct, that

MF top∗
∼= Z[E4, E6,∆]/(E3

4 − E2
6 − 1728∆)

only the degrees of E4, E6 and ∆ are 8, 12 and 24 now. Note that these generators
are topologically realized by maps

S8 −→ tmf

S12 −→ tmf

and

S24 −→ tmf.

4. The Witten genus

There is a famous Hirzebruch characteristic series

QW (x, τ) = exp

∑
k≥1

2G2k(τ)

(2k)!
· x2k

 ,

representing a rational genus, that when evaluated as〈∏
i

QW (xi), [M ]
〉
∈ Q[[x]]

on a compact oriented manifold M of dimension 4k gives a rational power series.
This rational genus is called the (rational) Witten genus,

ϕQ
W : MSOQ

∗ −→
⊕
4k

Q[[q]].

Since rationalization is a ring homomorphism, we obtain a degree preserving ho-
momorphism

MSO∗

MSOQ
∗

⊕
4k Q[[q]].

ϕW

ϕQ
W

of graded rings. Since the bottom horizontal map is a (degree preserving) homomor-
phism of graded Q-algebras, the composition homomorphism will send all torsion
in MSO∗ to zero.

An important observation is that considering only the constant term −B2k

4k of the
q-expansion of the Eisenstein series instead of the Eisenstein series G2k themselves

yields the characteristic series of the Â-genus.

Thus by integrality of the Â-genus on Spin-manifolds and the integrality of the
(non-constant term) coefficients of the G2k we easily see that ϕW takes values in
integral power series when evaluated on Spin-manifolds.
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MSpin∗

MSO∗
⊕

4k Z[[q]]

MSOQ
∗

⊕
4k Q[[q]].

ϕW

ϕW

ϕQ
W

We slightly abuse notation by denoting the upper genus by ϕW as well. We will
also call this genus Witten genus. Let us also remark, that as before this morphism
will send all torsion to zero.

The way the characteristic series is given one would expect that the genus would
take values in another subring of

⊕
4k Z[[q]] namely in the (graded) ring MF∗ of

modular forms. Unfortunately, the Eisenstein series G2 is not a modular form,
but only a quasi-modular form (i.e. G2 does not transform quite as modular as
expected by a modular form).

Analyzing the evaluation of characteristic classes given by the characteristic se-
ries Qϕ(x) on the fundamental class of the 4n-dimensional manifold one realizes
that the quasi-modular form G2 is tied to the square x2

i of the Chern roots of the

tangent bundle, or more precisely to the sum
∑2n
i=1 x

2
i of those (as one takes the

product of the QW (xi) over all i).
By definition this is the first Pontryagin class

p1(M) =

2n∑
i=1

x2
i

of (the tangent bundle of) the manifold M . Thus if p1 vanishes G2 would not appear

in the evaluation and thus the genus ϕW would actually take values in MF alg∗ .
Note that p1 is twice the generator of H4(BSpin,Z), which as a consequence

is commonly denoted by p1
2 . The structure on Spin-manifolds requiring p1

2 being
2-torsion is called a rational String-structure. Considering only such manifolds
hence yields

ΩQ−String
∗

MSpin∗ MF alg∗

MSO∗
⊕

4k Z[[q]]

MSOQ
∗

⊕
4k Q[[q]].

ϕW

ϕW

ϕW

ϕQ
W

There are two defects in considering MF alg∗ in this context. We cannot identify

MF alg∗ as graded subring of
⊕

4k Z[[q], i.e. the the dashed vertical arrow does
not exist. The second defect is that the genus ϕW cannot be a degree preserving
homomorphism of graded rings, since a 4k-dimensional manifold gets send to a
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modular form of algebraic weight 2k. Both defects are strong indicators that we
should use the ring MF top∗ instead. In fact,

ΩQ−String
∗

MSpin∗ MF top∗

MSO∗
⊕

4k Z[[q]]

MSOQ
∗

⊕
4k Q[[q]].

ϕW

ϕW

ϕW

ϕQ
W

commutes in the category of graded rings with degree preserving homomorphisms.

(Note that some people tend to denote ΩQ−String
∗ by MStrong∗.)

By work of [AHR10] we know that if we consider manifolds with actual String-
structures, i.e. the vanishing of p12 , then the genus ϕW lifts to the homotopy groups
of tmf .

MString∗

ΩQ−String
∗ π∗tmf

MSpin∗ MF top∗

MSO∗
⊕

4k Z[[q]]

MSOQ
∗

⊕
4k Q[[q]].

ϕW

ϕW edge
hom

ϕW

ϕW

ϕQ
W

Note that the map form the (graded ring of) homotopy groups of tmf to the graded
ring of modular forms is the edge homomorphism in the descent spectral sequence
calculating the homotopy groups of tmf .

At this level something new happens in that the Witten genus pics up torsion
information for the first time. More precisely, the homotopy groups of tmf contain
torsion at the primes 2 and 3, cf. [Bau08], and the map ϕW is (at least conjecturally)
surjective and thus pics up torsion information of MString∗. The diagram is still
commutative since the edge homomorphism forgets about all torsion.

It is indispensable to mention that the authors of [AHR10] show much more than
what we mentioned so far. In fact, they produce a map of E∞-ring spectra

MString −→ tmf

which realizes the Witten genus ϕW on homotopy groups.
.... say sth about Hill-Lawson topological q-expansion map from tmf to KO((q)).
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5. Complex vs. real/ rational genus

Note that the Witten genus is a priori a complex genus, that by work of [AHS01]
lifts to a map

MU〈6〉 −→ K((q))

from the Thom spectrum associated to the 6-th connected cover of BU to Tate
K-theory spectrum. The fact that its characteristic series contains at least square
powers of Chern roots, i.e. Pontryagin roots, turns it into a real genus and hence

MString MU〈6〉

K((q))

above factorization over MString. It turns out that rationally, real Tate K-theory,
i.e. Tate KO-theory KO((q)), is much closer to ⊕4kQ[[q]], than (complex) Tate
K-theory KU((q)) which has sort of too much rational information. In fact, it
turns out that the Witten genus also factors over KO((q)),

MString MU〈6〉

KO((q)) K((q)).
⊗C

Much of the information about the a priori complex Witten genus is contained in
the (real/ rational) genus

MString −→ KO((q)).

Now according to our above discussion and by work of Ando, Hopkins and Rezk,
this map factors over tmf

MString MU〈6〉

tmf

KO((q)) K((q)).
⊗C

Combining this with our diagram from above yields the totally commutative
diagram



10 A NOTE ON GENERA

MString∗ MU〈6〉∗

ΩQ−String
∗ π∗tmf

MSpin∗ MF top∗ π∗KO[[q]]

MSO∗
⊕

4k Z[[q]] R∗
⊕

2k Z[[q]] = K((q))∗

MSOQ
∗

⊕
4k Q[[q]]

⊕
4k Q[[q]]

⊕
2k Q[[q]] = K((q))Q∗

ϕW

ϕW
edge

ϕW
edge

(⊗C)∗

−⊗ Q
ϕW

−⊗ Q −⊗ Q

ϕQ
W

where R∗ is the usual graded ring describing the (eight periodic) homotopy of KO
adjoint a Laurent series variable q

R∗ =

{
Z((q)) if ∗ ≡ 0 (4)

Z/2((q)) if ∗ ≡ 1, 2 (8)

6. To be written: Thoughts on TAF related genera

This section has yet to be written. We want to further enlarge the above diagram
in any possible way to the level of TAF-spectra. This includes summarizing our
work on the analog of the map

tmf −→ K((q))

in the TAF-setting, i.e.
TAFn −→ TAFn−1((s1))

and its iterations

TAFn −→ TAFn−1((s1)) −→ · · · −→ TAF1((s1, . . . , sn−1)).

Maybe something on

TAFn −→ TAFn−1((s1)) −→ · · · −→ TAF3((s1, . . . , sn−3)) −→ tmfp((s1, . . . , sn−3, s)).

Further this section should include some thoughts on orientations of TAF, at least
on the level of homotopy. We mainly think about this in terms of characteristic
series.

M???∗

MString∗ π∗TAFn

(AFn)top∗ π∗TAFn−1((s1))

(AFn−1)top∗ [[s1]]

edge
hom

exp
edge
hom
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Note that the power series variable s1 of the graded ring (AFn−1)top∗ [[s1]] should
be given degree −1. Thus the graded ring has the form

(AFn)top∗ [[s1]] =



· · ·
(AFn)4 × (AFn)5 · s1 × (AFn)6 · s2

1 × (AFn)7 · s3
1 × · · · deg 4

(AFn)0 × (AFn)1 · s1 × (AFn)2 · s2
1 × (AFn)3 · s3

1 × · · · deg 0

(AFn)−4 × (AFn)−3 · s1 × (AFn)−2 · s2
1 × (AFn)−1 · s3

1 × · · · deg -4

· · ·
Note that these degrees are topological degrees, as indicated by the index ”top”,
algebraic degrees will as before be half the topological ones.

Appendix A. The cohomology of CP∞

Let E be a weakly periodic cohomology theory. The cohomology of CP∞ is the
following graded ring

E∗(CP∞) ∼= E∗[[x]]

=
∏
k

∏
i+j=k

Ei · xj

=


· · ·∏

i+j=2E
i · xj deg 2∏

i+j=0E
i · xj deg 0

· · ·

=



· · ·
E2 × E0 · x× E−2 · x2 × E−4 · x3 × · · · deg 2

E0 × E−2 · x× E−4 · x2 × E−6 · x3 × · · · deg 0

E−2 × E−4 · x× E−6 · x2 × E−8 · x3 × · · · deg -2

· · ·

References

[AHR10] Matthew Ando, Michael Hopkins, and Charles Rezk, Multiplicative orientations of ko-

theory and of the spectrum of topological modular forms, May 2010.
[AHS01] M. Ando, M. J. Hopkins, and N. P. Strickland, Elliptic spectra, the Witten genus

and the theorem of the cube, Invent. Math. 146 (2001), no. 3, 595–687. MR 1869850

(2002g:55009)
[Bau08] Tilman Bauer, Computation of the homotopy of the spectrum tmf, Groups, homotopy

and configuration spaces, Geom. Topol. Monogr., vol. 13, Geom. Topol. Publ., Coventry,

2008, pp. 11–40. MR 2508200 (2010h:55008)
[HBJ92] Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and modular forms,

Aspects of Mathematics, E20, Friedr. Vieweg & Sohn, Braunschweig, 1992, With ap-

pendices by Nils-Peter Skoruppa and by Paul Baum. MR 1189136 (94d:57001)


	1. Graded rings
	2. Genera
	3. Modular forms
	4. The Witten genus
	5. Complex vs. real/ rational genus
	6. To be written: Thoughts on TAF related genera
	Appendix A. The cohomology of CP
	References

