
SimplePHPBlog Language Documentation - Page 1

SimplePHPBlog
Translation / Language Documentation and
Guidelines

Updated: Saturday, September 09, 2006

SimplePHPBlog Language Documentation - Page 2

Introduction
Thanks to many users around the world, SimplePHPBlog has become an
international flavor. Submitted languages from countries west to east and north
to south have expanded the user base substantially. One problem with getting
these language files is maintenance. It can take hours to update the languages
with each release. This documentation will help to alleviate that pressure,
allowing our users base who can submit language updates to expand, allowing
more time for the core developers to fix bugs and add new features.

Folder Structure
All translation files are kept in the root folder called languages. This folder must
always be located in the root or the language files will not be found by the setup
or install routines.

Each language or language-variant has its own folder. No files reside in the
languages folder directly. The folder name should not include spaces, instead
using the underscore character instead to keep with unix based file naming
standards.

In each language folder, there are two files minimum: id.txt and strings.php.
Id.txt contains the name of the language file as it will be shown to the user in the
interface for the blog configuration. This file is a single line with no line feeds or
carriage returns. The strings.php file is the location where all code in
SimplePHPBlog goes to get its translation. That file is explained below. This is
also the file that must be submitted when a language file is updated for inclusion
in the releases.

How Can I Tell If My Language File matches the English one?
It would be a very tedious process if you had to figure out which translation items
needed to be moved from the English file to your local translation. For this
reason we have a utility available in every release of SimplePHPBlog. When you
are logged into your blog, open the page called http://yourdomain/languages.php.
Then pick the language files you want to compare and click Submit.

You will then be provided a listing of all files in the blog, showing any language
items that may be missing (basically that one file has it but the other does not).

SimplePHPBlog Language Documentation - Page 3

In the example above, the archives section is missing title, showall and
menu_moderation. This is a good example of how the languages work:
menu_moderation is a global variable in the file, so it won’t be in the area marked
by “case ‘archives’.” It is somewhere else in the file. However, title and showall
should both by included, therefore archives might look like:

case 'archives': // New for 0.4.8

$lang_string['title'] = "Archives";
 $lang_string['showall'] = "Show All";
break;

See the section below on Global, Limited and Specific strings to know where to
look for each of these items; menu_moderation above is an example of a global
string (it’s not in archives) where title and showall are examples of specific
strings.

Strings.php
The strings.php file is broken down into several sections that allow for individual
areas of SimplePHPBlog to reference specific screens. The file is a regular PHP
file, so it must ALWAYS start with <?PHP and end with ?>. Otherwise the file
won’t work.

Name, Description, Editors, Compatible Version
The first few lines of the translation are for explaining who last updated the
file and the versions that are compatible with them. These are comments
in the code, therefore they must all be prefixed with // like the following
example:

// English Language File
// (c) 2004 Alexander Palmo, apalmo <at> bigevilbrain <dot> com

SimplePHPBlog Language Documentation - Page 4

// Simple PHP Version: 0.4.9
// Language Version: 0.4.9.0

This introduction section can contain whatever text you wish as it has no
bearing of how the translation file works.
Function name and global variables
Do not edit this section. It is required for the file to properly run.

Language Codes and ISO Character Sets
Your local server needs to know how this language is to be presented to
the user. This section defines how it will look. If you do not understand
what this means you will need to research more before creating a new
language file – if you are editing an existing file, leave it as is.

$lang_string[‘language’]: used internally in the blog software. This should
match your language name.

$lang_string[‘locale’]: This is an array of all of the locale codes that your
server will use to properly display the language. You can put as many as
required in the array. The most common use is that Unix and Windows
have different locale entries (two letter vs three letter).

$lang_string[‘rss_locale’]: The locale used for the rss feed only.

The html_charset and php_charset are defined so the server knows how
to display the specific characters. From Wikipedia: “A character
encoding or character set (sometimes referred to as code page) consists
of a code that pairs a sequence of characters from a given set with
something else, such as a sequence of natural numbers, octets or
electrical pulses, in order to facilitate the storage of text in computers and
the transmission of text through telecommunication networks. Common
examples include Morse code, which encodes letters of the Latin alphabet
as series of long and short depressions of a telegraph key; and ASCII,
which encodes letters, numerals, and other symbols, both as integers and
as 7-bit binary versions of those integers, generally extended with an extra
zero-bit to facilitate storage in 8-bit bytes (octets).”

The line starting with setlocale must be included as is in order for the file
to work properly.

Global vs. Limited Strings vs. Specific Strings
The strings.php file has three types of strings that allow for different usage
in the blog:

Global Strings

SimplePHPBlog Language Documentation - Page 5

These are at the top of the file after the charset/locale lines and can
be used anywhere in the blog regardless of the page/screen.
These are mostly used for button and menu translation.

Limited Strings
Limited strings are those that are not required globally, but are
needed in more than one place. An example section might look like:

if ($page == 'add' || $page == 'add_static' || $page == 'comments' ||
$page == 'add_block') {
 $lang_string['label_subject'] = "Subject:";
 $lang_string['label_insert'] = "Insert Special:";
 $lang_string['btn_bold'] = " b ";
 $lang_string['btn_italic'] = " i ";
}

Specific Strings
Strings only used in one screen/page are assigned within a case
area in the php file. For example, if you are looking to add a
translation line to the archives block, you would look for a section
that starts with:

case 'archives':

and ends with:

break;

Everything that is in between is specific to the archives.php file.

Other Guidelines:
We try to follow guidelines when creating these files and they are pretty common
to most development people, but not necessarily to those of you who wish to edit
these files and have very little technical experience. Here is a short list of items
to watch out for:

1) Left alignment: Follow the way the existing English file is laid out. Start
of a block is always the most left of any text (for example: case). The
$lang_string is indented from that, and the break; lines up with the start of
the block.

2) Long strings / paragraphs: You can press enter on a long line of text
before you end it to make the line visible without scrolling, etc. As long as
the ending quotes and semicolon are at the end of the line,
SimplePHPBlog won’t care.

3) Naming the language: Make the name in the id.txt as generic as
possible. Do not include the version in the name. That information goes in
the block at the beginning of the strings.php file.

4) Submitting Translations: Submit all translations to Sourceforge in the
Patches section. We get too many emails per day to recognize all the
translations and bug fixes that come that way.

SimplePHPBlog Language Documentation - Page 6

5) Button Translation: For text that is on a button, make sure that instead of
using an actual space in the text, use instead.

Again, we’d like to that everyone who submits translations, and we are most
appreciative of the sentiment. We could do more translations ourselves, but the
results you get from an automated translation engine like Google or Babelfish are
questionable at best. You all make this a better piece of software ☺.

The SimplePHPBlog Development Team

