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Abstract 

The capacity of a freeway is traditionally considered as a constant value in traffic engineering. In reality, capacities vary 
according to external conditions such as dry or wet road surfaces, daylight or darkness, and to the prevailing travel purpose of 
drivers on the freeway. Even under constant external conditions different capacities can be observed on freeways because of 
variations in driver behaviors. A capacity in this sense is no longer a constant value. Empirical analyses of traffic flow 
patterns show that this type of capacity can be treated as Weibull distributed. Using the distribution function of capacities, the 
probability of traffic breakdowns and thus the reliability of the freeway can be estimated. Up to now stochastic capacities 
have been mainly analyzed at specific points which are considered as bottlenecks. The stochastic relationship between the 
adjacent bottlenecks has not been taken into account. Furthermore, if a long segment of a freeway without clearly defined 
bottlenecks is analyzed, no methods are available for estimating the distributed capacities of several combined bottlenecks 
along a freeway. This paper introduces a concept dealing with the stochastic interpretation of capacity and breakdown 
probability within a larger freeway network. The stochastic methodology presented delivers a theoretical average capacity and 
the probability of breakdowns for freeway segments with different lengths. The methodology can also be used to identify the 
effects of consecutive freeway segments and bottlenecks such as on-ramps, off-ramps, and weaving areas with different 
characteristics. Using the proposed method, it is possible to determine the probability distribution function of breaking down 
from free flow into congested flow for a freeway segment as a function of the average volume or density. Using the 
methodology presented in this paper, the risk of disturbance of traffic flow along a freeway segment or within a freeway 
network can be analyzed.  
 
© 2013 The Authors. Published by Elsevier B.V.  
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1. Introduction 

Capacities of freeways are traditionally considered as constant values in traffic engineering guidelines around 
the world, for example in Highway Capacity Manual (Transportation Research Board, 2000), hereafter referred 
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to as HCM. Treating capacities as constant values was questioned by many researchers such as Ponzlet (1996) 
who demonstrated that capacities vary according to external conditions such as dry or wet road surfaces, daylight 
or darkness, and on the prevailing purpose of the freeway (long distance or metropolitan commuter traffic). 
Several authors affirmed that even under constant external conditions, different capacities can be observed on 
freeways (Elefteriadou et al., 1995; Minderhoud et al., 1997; Persaud et al., 1998; Kuehne and Anstett, 1999; 
Lorenz and Elefteriadou, 2000; Okamura et al., 2000; Dong and Mahmassani, 2009a). Most of these authors only 
observed traffic breakdowns at different flow volumes to demonstrate the variability of flows preceding a 
breakdown.  

A theoretical concept for a stochastic capacity analysis was proposed by Brilon et al. (2005) based on ideas 
from Minderhoud et al. (1997) and Toorenburg (1986). This approach has meanwhile been applied in a couple of 
circumstances. Dong and Mahmasani (2009a/b) used this concept to improve travel time predictions for route 
choice models with real-time traveller information. Elefteriadou et al. (2009) applied probabilities for flow 
breakdown on freeways to develop pro-active ramp metering strategies. Brilon et al. (2010) furnished a program 
system for large scale freeway network performance assessment applying the stochastic capacity concept.  

Thus, the stochastic understanding of capacity and the corresponding concept for the reliability of freeways 
becomes an important topic in the area of theoretical freeway capacity analysis including application in practice. 
Here capacity is understood as the traffic volume below which the traffic is free (fluent) and above which the 
flow breaks down into a congested (stop-and-go or even standing) traffic condition. The capacity in this sense is 
not a constant value. Empirical analysis of traffic flow patterns shows that this type of pre-breakdown capacity 
can be treated as Weibull distributed with a nearly constant shape parameter representing the variance. The 
distribution of pre-breakdown capacity can be identified using the so-called product limit method (PLM) or by 
maximum likelihood estimation techniques. Using the distribution function of pre-breakdown capacities, the 
probability of traffic breakdowns and thus the reliability of the freeway can be estimated. 

Stochastic pre-breakdown capacity has mainly been analysed at specific points along the freeway which are 
considered as bottlenecks. The stochastic relationship between the adjacent bottlenecks cannot be taken into 
account. Furthermore, if a long segment of a freeway without clearly defined bottlenecks is analysed, no methods 
are available for estimating the distributed pre-breakdown capacities of combined bottlenecks along a freeway. 
Thus, a stochastic capacity analysis in a freeway network consisting of several freeway segments and series of 
bottlenecks has not been possible. In order to overcome this problem, this paper introduces a model dealing with 
a stochastic interpretation of pre-breakdown capacity and breakdown probability in a freeway network with long 
freeway segments and series of bottlenecks. 

The model is based on the theory of continuity. Using the fundamental relationship of traffic flow (volume = 
density  speed), the probability distribution function of breakdowns from free flow into congested flow at a given 
traffic density can be estimated if the probability distribution function of the pre-breakdown capacity and the 
probability distribution function of the pre-breakdown critical speed is given. The distribution function of 
breakdowns as a function of the pre-breakdown traffic density can be estimated numerically for an arbitrarily 
distributed pre-breakdown capacity and pre-breakdown critical speed.  

Similar to the derivation of a theoretical transformation between bottleneck-point-related breakdown 
probabilities for different interval durations, a transformation between link-related breakdown probabilities for 
different lengths of freeway segments can be constructed. It can be seen that the average pre-breakdown capacity 
and the probability of breakdowns are functions of the length L of the freeway segment under consideration. The 
average pre-breakdown capacity of the freeway segment decreases with an increasing length of the freeway 
segment under consideration. This decrease is not linear.  

In Section 2, a summary of the stochastic capacity analysis at a point considered as a bottleneck is presented. 
In Section 3, the bottleneck-point-related model of stochastic capacity is extended to link-related models for 
freeway segments. In Section 4, an approach for estimating reliability of large freeway networks over a longer 
period is presented. Finally, the main findings and results of the paper are presented in Section 5.  
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2. Bottleneck-point-related model of stochastic capacities 

2.1. Pre-breakdown capacity for an isolated bottleneck 

Corresponding to Transportation Research Board (2000), the capacity of a freeway is defined as the maximum 
flow volume that can be expected at a traffic facility under prevailing roadway, traffic, and control conditions. 
That is, the maximum flow volume could also be defined as the flow volume below which the performance of the 
facility is acceptable and above which normal operation is no longer possible. The transition between normal 
operation and non-acceptable flow conditions is called ‘breakdown’. On a freeway, breakdowns occur when the 
average speed falls below an acceptable speed level and the traffic becomes congested. These transitions usually 
cause a rather sudden speed reduction.  

Based on this definition, the capacity is no longer a constant value. The demand flow volume that causes 
breakdowns varies in real traffic depending on driver behaviour in conjunction with specific local conditions on 
the freeway. The breakdown flow volumes, i.e., the pre-breakdown capacities, are random variables. Thus, it is 
necessary to investigate the pre-breakdown capacity distribution function. Unfortunately, the pre-breakdown 
capacity itself cannot be easily measured directly in the field. Measurements on freeways deliver only pairs of 
values of traffic flow volumes and average speeds during predetermined intervals. According to the definition of 
pre-breakdown capacity, the observed flow volume will be below the pre-breakdown capacity if the average 
speed is above a certain threshold value (e.g., about 70 km/h). When the average speed is lower than this 
threshold value, the traffic flow is called congested. Thus, the flow volume must have exceeded the pre-
breakdown capacity during the time between two such intervals. Higher flow volumes are less likely to be 
measured in the field since a breakdown is likely to have happened before. Both effects make it difficult to 
estimate the pre-breakdown capacity distribution function, which is defined as: 

 )()( qcPqFc   (1) 

where  Fc(q) = pre-breakdown capacity distribution function [-] 
c = pre-breakdown capacity [veh/h] 
q  = variable = flow volume [veh/h] 

A practicable method for estimating Fc(q) was first presented by van Toorenburg (1986) and discussed by 
Minderhoud et al. (1997) and extended by Brilon et al. (2005). The method is based on the theory of lifetime 
analysis and renewal theory.  

Lifetime distributions are often estimated by measurements of limited durations. Thus, the lifetimes of 
individuals in the population which exceed the duration of the measurement cannot be measured. It is only 
possible to state that these lifetimes are longer than the duration of the measurement. This information is valuable. 
Those data are called ‘censored data’ (cf., e.g., Lawless, 2003). The ‘uncensored data’ are directly measured 
lifetimes. 

If a traffic breakdown is considered as a failure event, the method of lifetime data analysis can be used to 
estimate the pre-breakdown capacity c, which is the analogue of the lifetime t. Thus, the ‘censored data’ are the 
measurements where the capacity c is greater than the observed traffic demand q. The ‘uncensored data’ are 
directly observed pre-breakdown capacities.  

The theory of lifetime data analysis can be used to estimate distribution functions based on samples that 
include censored data. A non-parametric method to estimate lifetime function is the so-called ‘product limit 
method’ (PLM) (Kaplan and Meier, 1958). This method can also be adapted for estimating the pre-breakdown 
capacity distribution function. For details of the method, readers are referred to Brilon et al. (2005). 

The PLM does not need a specific type of distribution function. However, if the type of the distribution is 
given, then the parameters of the distribution can be estimated by the method of maximum likelihood. Here it is 
necessary to know the mathematical type of the distribution function Fc(q). By comparing different types of 
functions based on the maximum value of the likelihood function, the Weibull distribution turned out to be the 
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function that best fitted the observations on all freeway segments under investigation. The Weibull distribution 
function for the pre-breakdown capacity c can be expressed as 

   c
cq

c ecqPqF
/1)()(    for q ≥ 0  (2) 

where 
c = shape parameter of the Weibull distribution [-] 
c = scale parameter of the Weibull distribution [-] 
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c

c

q

cc eqFcqPqS



 









 )(1)()(   for  q ≥ 0  (3) 

is called the survival function which describes the probability that the random variable q is larger than a given 
threshold c. 

The mean value of the Weibull distribution is 
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and the variance is 
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The median value of the distribution is 

   cc
ccmedianc   /1/1 693.0)5.0ln(     (6) 

In Figure 1, two examples are illustrated for the pre-breakdown capacity distributions estimated from the PLM 
and the corresponding Weibull distribution. It can be seen that the Weibull distribution fits very well into the 
PLM estimation. 

 
Figure 1 – Estimated pre-breakdown capacity distribution functions for two freeways (each direction) and three lane freeways according to 
PLM (5-minute intervals and dry roadway conditions, Source Brilon and Zurlinden, 2003). 

The shape parameter c in the Weibull distribution ranges from 9 to 15 with an average of 13 for German 
motorways. This magnitude applies both to two-lane freeways (each direction) and to there-lane freeways. This 
average value is recommended for all types of freeway as a constant (Brilon et al., 2005) in order to ease 
mathematical derivations. This value, in the subsequent context, is used as an example to demonstrate 
consequences of this parameter c on other characteristic variables.  
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Considering the shape parameter c as a constant, we can transform the pre-breakdown capacity distribution 
function for different interval durations  (Brilon et al., 2005). According to Eq. (1), we define Fc,5(q) as the 
probability of a breakdown during = 5 minutes at flow volume q. Hence, p5,nbr = 1 – Fc,5(q) is the probability of 
no breakdown occurring in this interval. Assuming an independence between breakdowns in succeeding intervals 
within an hour (60 minutes = 12 · 5 minutes) yields  

    12
5,

12
,5,60 )(1 qFPP cnbrnbr     (7) 

Using the Weibull distribution, i.e., Eq. (2), yields 
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and 
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which is again a Weibull distribution with an unchanged shape parameter c and a scale parameter  c ,60 = r c,5, 
where r = 12(-1/c).  In general we have the transformation 
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where T is the duration of the output interval and  the is duration (cf. Brilon et al., 2005) of the input interval. 
The expectation E(c) indicates the mean value of capacities under the condition that the traffic is not broken 

down. In reality, the expectation E(c), i.e., the mean values of the pre-breakdown capacity estimated from the 
PLM, cannot be achieved because the traffic flow would already break down at lower flows than E(c) with a 
certain probability.  

2.2. Sequences of bottleneck points 

In general, the survival function for an isolated point i which is treated as a bottleneck is 
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Now we look at successive sub-segments along the freeway where each sub-segment is treated as one bottleneck 
point. If we look at this chain of bottleneck points simultaneously, the survival functions for n combined 
bottleneck points is 
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This equation describes the probability that no breakdown occurs at any of the n bottleneck points. The 
combined survival functions can be used for defining reliability of a network under consideration. Here we 
assume that the distribution functions and thus the survival functions at different bottlenecks are independent of 
each other. This assumption is not critical if the bottlenecks are located far enough from each other.   
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Traffic reliability is an important factor for assessments of the performance of highway segments and systems. 
In this context, the term ‘reliability’ mainly refers to the variability of travel times. However, several definitions 
can be found in the literature. A comprehensive outline of these definitions is given by Shaw (2003). Here, traffic 
reliability is assessed by analysing the probability that at critical bottlenecks along a freeway link the traffic flow 
is not congested. However, the stochastic relationship between the adjacent bottlenecks cannot be taken into 
account. 

Generally, the flow volumes qi at different bottlenecks can have different values. For the special case that all 
qi= q, for example along a single freeway segment, we obtain 
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However, the resulting distribution function Fc,n(q)=1-Sc,n(q) is no longer a Weibull function as long as c and c 
are specific for each bottleneck i. But it always has a Weibull-like shape. 

Normally, the shape parameters c can be considered as constant for all bottlenecks (Brilon et al., 2005). That 
is c,i =c and 
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This combined survival function and the corresponding distribution function has the same shape parameter c 
as for the single bottlenecks. As mentioned above we consider here the stochastic processes at different 
bottlenecks as independent of each other. This assumption is not always realistic. For two closely adjacent sub-
segments, the stochastic processes are expected to be highly dependent on each other. For statistically dependent 
single bottlenecks the shape parameter has in general a smaller value, that is, the combined distribution has a 
larger variance (cf. Section 3). 

The scale parameter c of the corresponding distribution function Fc,n(q)=1-Sc,n(q) is 
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For a homogeneous freeway segment one can assume additionally c,i =c and thus, 
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is the capacity reduction factor for n consecutive identical bottlenecks.  
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3. Link-related model of stochastic capacities 

3.1. Pre-breakdown capacity of a single freeway segment 

According to the PLM described in the previous section, the distribution function of pre-breakdown capacities 
at a single bottleneck point can be estimated. The PLM for capacity estimation can also be applied to traffic 
densities k instead of traffic volumes q. Unfortunately, the density cannot easily be observed in the field. 
However, for a homogeneous freeway segment under steady-state condition, the distribution function of the 
critical density kc (pre-breakdown) corresponds to the distribution function of the pre-breakdown capacity c. The 
fundamental relationship of traffic flow q = k  v, is also valid for q = c; thus c = kc  vc or kc = c / vc where kc and 
vc are the corresponding critical density and critical speed at pre-breakdown capacity c. Therefore, the 
distribution function of the critical density Fkc(k) can be estimated if the distribution function of the pre-
breakdown capacity Fc(q) and the probability distribution function of the critical speed Fvc(v) is given. That is, 
the density-related (link-related) probability distribution function of breakdowns for a freeway segment, 
Pbr(kc≤k) = Fkc(k), can be transformed from the flow-related (bottleneck-point-related) probability distribution 
function of breakdowns at an isolated bottleneck, Pbr(c≤q) = Fc(q). The density-related distribution function of 
breakdowns then is 
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The flow-related pre-breakdown capacity function Fc(q) is assumed to be a Weibull function (cf. Section 2). 
Here, any reasonable distributions for the critical speed vc can be used. For simplicity and in order to ease the 
derivation we assume the critical speed vc to be Weibull distributed as an approximation. This assumption seems 
to be more reasonable than the usual assumption of a Normal distribution for speeds since Weibull is only 
defined for positive values. Moreover, Weibull reveals significant probabilities only for a narrow range of speed 
values with a rather sharp lower limit which seems to be an important attribute especially for the critical speed. 
Thus, 
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Using a constant critical speed vc, the transformation can be carried out analytically. The resulting density-
related distribution function Fkc(k) is also a Weibull distribution. That is, 
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The density-related distribution function Fkc(k) can only be estimated numerically for a arbitrarily distributed 
critical speed vc. Using a mean value for the critical speed vc = 80 km/h and a standard deviation (vc) = 5 km/h 
which are common in reality, we have the parameter for a Weibull distributed critical speed vc = 82 km/h and vc 
= 20. Using c = 4532 veh/h (from the example freeway, Figure 1a) and c = 13 for a two-lane freeway segment, 
Eq. (20) yields a Weibull-like but not exactly a Weibull distribution. This distribution can be approximated to a 
Weibull distribution with the parameter kc = 57 veh/km and kc = 10.7 (cf. Figure 2a). For a three-lane freeway 
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segment with c = 7170 veh/h (from the example freeway, Figure 1b) and c = 13 Eq. (20) yields a Weibull-like 
distribution with parameters kc = 89 veh/km and kc = 10.7 (cf. Figure 2b).  

It can be proven that the shape parameter of the critical density kc only depends on the shape parameters c 
and vc. The parameter kc is independent of the scale parameters kc, c, and vc. In Table 1 the parameters kc 

resulting from different combinations of kc and kc values are illustrated. Because the shape parameters c and 
vc can be generally assumed to be constant values (e.g., c = 13 and vc = 20) for all types of freeway segments, 
the shape parameter for the critical density is also a constant (e.g., kc = 10.7).  
 

a) b) 
Figure 2 – Numerically estimated distribution function of critical densities (Fkc(k)) and its approximation as a Weibull distribution (Fkc(k)*), 
a) two-lane freeway segment, b) three-lane freeway segment 

Table 1 – Parameters kc resulting from different combinations of kc  and kc values 

 
This result can be verified by real world measurements. Regler (2004) conducted a field measurement using 

data from three-lane freeway segments. The median of the critical densities ranged from 70 to 90 veh/km with 
Weibull parameters kc = 8.4 through 13.2 and kc = 72 through 92 veh/km for the analysis of 5-minute intervals.  

As a result we can state that the distribution of critical densities kc is approximately Weibull distributed with a 
shape parameter kc=10.7. That is, 
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where cckc v/  , kc = 10.7, and cv is the mean value of the critical speed vc.  
This transformed distribution function is only valid for a length L of freeway segment which corresponds to 

the analysis interval  for the pre-breakdown capacity. For example, if the scale parameter c,5 for the pre-
breakdown capacity is obtained for 5-minute intervals, the resulting distribution function is only valid for a 
freeway segment of length L = cv  = 80 km/h  5/60 = 6.67 km. 

Similarly to the derivation of the theoretical transformation between bottleneck-point-related breakdown 
probabilities for different interval durations, a transformation between link-related breakdown probabilities for 
different lengths of freeway segments can be constructed. The probability function of breakdowns for a freeway 
segment of length L can be expressed as 
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with the scale parameter  
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Eq. (23) describes the probability that within a time interval of duration  no breakdown occurs on a freeway 
segment of length L. The parameter c, is the scale parameter of the Weibull distributed pre-breakdown 
capacities estimated in -minute intervals. 

For  = 5 min =1/12 h, cv =80 km/h, L = 6.67 km, and kc=10.7 we have  
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This equation can be transformed into 
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For two freeway segments of lengths L1 and L2 we obtain the relationship 
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This means e.g.: if the length L2 of the freeway segment is double the length of L1, the scale parameter kc of 
the density (and capacity) is reduced by the factor 7.10 2/1 = 0.937. 

a) b) 
Figure 3 – Scale parameter  as a function of the length of the freeway segment L, a) scale parameter kc,L for critical density kc, b) scale 
parameter c,L for the corresponding pre-breakdown capacity c. 
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Figure 3 shows the parameters kc,L and c,L which indicate the critical density and the corresponding pre-
breakdown capacity as a function of length L for a two-lane freeway segment. It can be seen that the scale 
parameter  for the critical density kc and the corresponding scale parameter  for the pre-breakdown capacity c 
of the freeway segments decrease with increasing length of the freeway segment.  

 
For kc = 10.7 we have the capacity which can be expected conditional on no-breakdown occurring 

, cf. Eq. (4). For the example freeway segment of length L = 25 km, the expected 
capacity under no-breakdown condition is ca. 4000 · 0.89 = 3560 veh/h. 

3.2. Sequence of consecutive freeway segments 

The survival function for a single freeway segment j is 
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For  = 5 min =5/12 h, cjc vv , = 80 km/h, Lj= L = 6.67 km, and kc,j = kc = 10.7 we get  
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The survival function for m combined freeway segments then is 
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This equation describes the probability that in the interval of 5 minutes no breakdown occurs on any of the m 
freeway segments. The freeway segments can have different values of scale parameter capacity c (or kc), density 
k, and length L.  This can also be used for defining the reliability of a network. Here we assume again the 
distribution functions and thus also the survival functions at different freeway segments are independent of each 
other. Normally, for long freeway segments, this independence is given. 

4. Reliability analysis of large freeway networks over long time periods 

Using this approach for sequences of freeway segments the reliability of a larger freeway network can be 
estimated over a longer time period. All parameters used in this section are link-related parameters, that is, they 
are parameters for the freeway segments according to Section 3. However, these link-related parameters can be 
transformed from bottleneck-point-related parameters. 

The reliability of a larger freeway network can be defined as the probability that on any freeway segment 
within the network and at any time no breakdown occurs. According to this definition, the reliability can be 
expressed as the combined survival function of the pre-breakdown capacity over time and space.  

The survival function of the pre-breakdown capacity for a single freeway segment j over a time period i of 
duration Ti and a space-link of length Lj is (cf. Eqs. (10) and (23)) 
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For  = 5 min = 5/12 h, cijc vv ,  = 80 km/h, Lj = L  = 6.67 km, and kc,j = kc=10.7 we get  
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The survival function for m combined freeway segments and n intervals is 
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This equation describes the probability that in the time period of duration T = Ti and within a network of a 
total length L = Lj no breakdown occurs. The freeway segments j can have different values of scale parameter  
for capacity, density k, and length Lj for different time period Ti. According to this formulation, a quantitative 
assessment of the reliability in a large network over a long period can be conducted.  

5. Conclusions 

Using a theoretical approach a methodology for the assessment of reliability within a freeway network was 
introduced. The stochastic methodology presented allows for a derivation of a theoretical average pre-breakdown 
capacity and the probability of breakdowns for freeway segments with different lengths. This link-related 
methodology can also be used to identify the effects of consecutive freeway segments and bottlenecks such as on-
ramps, off-ramps, and weaving areas with different characteristics. As a result, the stochastic relationship 
between several adjacent bottlenecks can be taken into account. Furthermore, a long segment of a freeway 
without clearly defined bottlenecks can be analysed.  

Using this method it is possible to determine the probability distribution function of breakdowns from free 
flow condition into a congested flow condition for a freeway segment as a function of the average pre-breakdown 
density. This link-related probability distribution of breakdowns can be estimated by transforming the 
distribution function of pre-breakdown capacities measured at isolated bottleneck points. It turns out that the link-
related pre-breakdown capacity distribution (a Weibull-like distribution) has a smaller scale parameter and, thus, 
a lager variance than the bottleneck-point-related capacity distribution. 

Using the methodology presented in this paper, the risk of disturbance of traffic flow (breakdowns from free 
flow into congested flow) along a freeway segment and within a freeway network can be estimated and analysed. 
The reliability of a freeway network can be estimated quantitatively. The paper demonstrates basic probabilistic 
considerations which – for practical application – must be based on breakdown probability functions calibrated 
for the important parts of the network.  
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