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A stabilizing control scheme for linear
systems on controlled invariant sets

Moritz Schulze Darup† and Martin Mönnigmann†

Abstract

We present a new stabilizing control scheme for linear discrete-time systems with input
and state constraints. Essentially, we seek a controller that is able to steer all initial states
within a controlled invariant set towards the origin without violating the constraints. The
control law builds on a predictive control scheme. We show that a prediction horizon of
n steps, where n denotes the dimension of the system, is sufficient to solve the described
control task. The proposed controller is related to but different from established feed-
back laws associated with λ-contractive sets. In fact, the new control scheme successfully
stabilizes systems, where classical λ-contractive control laws fail.
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1 Introduction

The design of stabilizing feedback laws is an important task in control theory. For linear
unconstrained systems

x(k + 1) = Ax(k) +B u(k), x(0) = x0, (1)

where A ∈ R
n×n and B ∈ R

n×m, stabilizing control laws can, for example, be system-
atically designed using linear quadratic regulation (LQR) [12] or pole-placement [15]. If
applicable, both procedures provide stabilizing controllers that steer every initial state
x0 ∈ R

n towards the origin. Here, we consider linear systems with input and state con-
straints of the form

u(k) ∈ U ⊂ R
m, x(k) ∈ X ⊂ R

n, ∀ k ∈ N, (2)
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where U and X are assumed to be convex and compact sets with the origin in their
interiors.

There exist various stabilizing control schemes that apply to the constrained case. Prob-
ably, the most popular approaches are minimum-time optimal control (see, e.g., [13]),
constrained LQR (see, e.g., [17]) and model predictive control (MPC) (see, e.g., [2, 14]).
All these controllers are capable of stabilizing every stabilizable state x0 ∈ X . However,
all aforementioned approaches are also computationally demanding.

In some applications, we are not primarily interested in stabilizing all stabilizable states
x0 ∈ X but in stabilizing states x0 in a given set C ⊆ X using simple control schemes (see,
e.g. [4, 8]). This task can easily be solved, if the set C is λ-contractive (see Def. 3) with
λ < 1. In this case, stabilizing control laws can be designed according to the procedures
presented in [4]. However, for the case λ = 1, i.e., if C is “only” controlled invariant, the
control schemes in [4] may fail to stabilize (1) (see, e.g., the example in Sect. 3.1).

In this paper, we present a new control scheme that is capable of stabilizing linear
constrained systems on controlled invariant sets. Before introducing the new controller,
we have to stress that, given a controlled invariant set C, one could always compute a
λ-contractive subset of C (with λ < 1) according to the procedure stated in [3] and sub-
sequently design a λ-contractive controller on this subset. However, the computation
is demanding and the description of the λ-contractive subset (and consequently the as-
sociated controller) may be unnecessarily complex compared to the original controlled
invariant set C (cp., e.g., C to the four λ-contractive polytopes in Fig. 2).

The approach presented here does not require to construct special subsets of C, but it
provides a stabilizing controller on any subset µ C = {µx |x ∈ C }, µ ∈ (0, 1) of a given
controlled invariant set C. In particular, µ may be chosen arbitrarily close to 1 resulting
in an arbitrarily close inner approximation of C. The proposed method differs from the
existing ones [3,4] in that it permits, roughly speaking, the controlled system to first move
away from the origin before moving towards it (where closeness to the origin is measured
with the Minkowski function of C). The existing methods, in contrast, use the assumed
λ-contractiveness to design a controller that forces the controlled system closer to the
origin by the factor λ in every time step, and therefore are more restrictive. The proposed
controller can be understood as a special MPC scheme with prediction horizon fixed to n,
where n denotes the dimension of the system.

We state notation and preliminaries in Sect. 2. The main result of the paper, i.e., the
design of stabilizing control laws for linear constrained systems on controlled invariant sets,
is presented in Sect. 3. Finally, we analyze a numerical example and state conclusions in
Sects. 4 and 5, respectively.

2 Notation and preliminaries

We denote matrices by capital letters, vectors and scalars by lowercase letters and sets
by calligraphic letters. Let A ∈ R

n×n and B ∈ R
n×m with n,m ∈ N. By BT , rk(B),

σmin(B) and σmax(B) denote the transpose, the rank, the smallest and the largest singular
value of B, respectively. Define Sν(A,B) := (A0B, A1B, . . . , Aν−1B) for ν ∈ N+, where
N+ := {i ∈ N | i > 0}. Moreover, let N[j,k] := {i ∈ N | j ≤ i ≤ k} and denote nonnegative
and positive reals with R0 and R+, respectively. By Bn(r) = {x ∈ R

n | ‖x‖2 ≤ r}, denote a
ball in R

n with radius r ∈ R+. For an arbitrary set C ⊂ R
n, let ∂C, int(C), and cl(C) refer to

the boundary, the interior, and the closure of the set C, respectively. Furthermore, for any
λ ∈ R, let λ C := {λx |x ∈ C}. A convex and compact set C ⊂ R

n with 0 ∈ int(C) is called
a C-set. Given a C-set C, the function ΨC : Rn → R0 with ΨC(x) := inf{λ ∈ R0 |x ∈ λ C}
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is called Minkowski function of C [5, p. 80]. We say a function α : R0 → R0 is of class K
if α is continuous, strictly increasing and α(0) = 0. Finally, let ̺ : Rn → R

m be a control
law (resp. feedback law). The state of the controlled system

x(k + 1) = Ax(k) +B ̺(x(k)), x(0) = x0, (3)

at time k ∈ N for initial condition x0 is denoted by ϕ(k, x0, ̺).

2.1 Basic definitions and assumptions

We intend to design admissible control laws that comply with the input and state con-
straints.

Definition 1: Let X and U be the state and input constraints of system (1), let C ⊆ X
with 0 ∈ int(C) and let ̺ : C → R

m. We call ̺ an admissible control law for (1), if
(i) ̺(0) = 0,
(ii) Ax+B ̺(x) ∈ C for every x ∈ C,
(iii) ̺(x) ∈ U for every x ∈ C,

Note that (i) implies that the origin is an equilibrium of the controlled system (3).
Conditions (ii) and (iii) guarantee that the controlled system (3) satisfies the state and
input constraints. In fact, (ii) and (iii) imply ϕ(k, x0, ̺) ∈ C ⊆ X and ̺(ϕ(k, x0, ̺)) ∈ U
for every x0 ∈ C and every k ∈ N. We stress that admissibility of a control law ̺ : C → R

m

is always linked to the domain C of ̺. The notion of admissible control laws leads to the
definition of stabilizing control laws.

Definition 2: Let D ⊆ C ⊆ X with 0 ∈ int(D) and let ̺ : C → R
m be an admissible control

law for (1). Then, ̺ is called stabilizing control law for (1) on D, if
(i) the equilibrium 0 of (3) is asymptotically stable.
(ii) the set D is a subset of the domain of attraction, i.e., limk→∞ ϕ(k, x0, ̺) = 0 for

every x0 ∈ D.

It remains to recall the definitions of λ-contractive and controlled invariant C-sets.

Definition 3: Let C ⊆ X with 0 ∈ int(C) and let λ ∈ [0, 1]. C is called λ-contractive, if, for
every x ∈ C, there exists a u ∈ U such that

Ax+B u ∈ λ C. (4)

For the special case λ = 1, a λ-contractive set C is also called controlled invariant.

The stabilizing control laws described in Sects. 2.2 and 3 build on the solution of op-
timization problems. We will frequently make use of the expressions introduced in the
following definition.

Definition 4: Consider the optimization problem

min
z

f(z, ξ) s.t. g(z, ξ) ≤ 0, h(z, ξ) = 0, (5)

with variables z ∈ R
a and parameters ξ ∈ R

b, where f : Ra × R
b → R, g : Ra × R

b → R
c,

h : Ra×R
b → R

d and a, b, c, d ∈ N+. We call ẑ ∈ R
a feasible for (5) at ξ, if g(ẑ, ξ) ≤ 0 and

h(ẑ, ξ) = 0. The problem (5) is said to be feasible at ξ, if there exists at least one feasible
ẑ ∈ R

a for (5) at ξ. We call z∗ ∈ R
a optimal for (5) at ξ, if z∗ ∈ R

a is feasible for (5) at
ξ and if there does not exists any feasible ẑ 6= z∗ for (5) at ξ such that f(ẑ, ξ)<f(z∗, ξ).
We call f(z∗, ξ) the solution to (5) at ξ.
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Finally, we make the following assumptions throughout the paper.

Assumption 1: X ⊂ R
n and U ⊂ R

m are C-sets, rk(B) = m, and rk(Sn(A,B)) = n,
where m,n ∈ N+.

Note that rk(Sn(A,B)) = n implies that the pair (A,B) is controllable [9]. Further note
that rk(B) = m implies n ≥ m and B u = 0 only if u = 0 [10, pp. 13-14].

2.2 Established results for λ-contractive sets

We briefly recall known results for λ-contractive C-sets. We begin by collecting some
important properties of Minkowski functions (cf. [5, Prop. 3.12] and [16, Lem. 2.28]).

Lemma 1: Let C ⊂ R
n be a C-set and let ΨC be the associated Minkowski function. Let

x ∈ R
n, λ ∈ R0 and let r, r ∈ R+ be such that Bn(r) ⊆ C ⊆ Bn(r). Then

(i) ΨC is convex on R
n,

(ii) 0 ≤ ΨC(x) < ∞,
(iii) ΨC(x) ≤ λ if and only if x ∈ λ C,
(iv) r−1‖x‖2 ≤ ΨC(x) ≤ r−1‖x‖2.

The following lemma, which immediately follows from Def. 3 (cf. [4, Thm. 3.3] and
the subsequent discussion in [4]), guarantees the existence of an admissible control law
associated with λ-contractive sets.

Lemma 2: Let λ ∈ [0, 1] and let C ⊆ X be a λ-contractive C-set. Then, there exists an
admissible control law ̺ : C → R

m for (1), such that

ΨC(Ax+B ̺(x)) ≤ λΨC(x) (6)

for every x ∈ C.

For λ < 1, relation (6) guarantees that every state x ∈ C can be moved closer to the
origin within one time step (where closeness to the origin is measured by the Minkowski
function value). In other words, for λ < 1, Lem. 2 guarantees the existence of a stabilizing
control law for (1) on C. To specify this control law, consider the optimization problem

min
u(0),x(1)

ΨC(x(1)) + ΨC(ξ) (7)

s.t. x(1) = Aξ +B u(0),
ΨC(x(1)) ≤ 1,
ΨU (u(0)) ≤ 1,

with variables1 z = (u(0)T x(1)T )T ∈ R
m+n and parameters ξ ∈ X . Note that ξ will later

be identified with the current state of the system in order to design a feedback law. We
summarize some important properties of (7) in the following remark.

Remark 1: For every ξ ∈ R
n, (7) is a finite-dimensional convex optimization problem

[6, pp. 136–137], due to convexity of the Minkowski functions ΨC and ΨU (see Lem. 1 (i)),
since the equality constraints are linear, and since level sets of convex functions describe
convex sets [1, Lem. 3.1.2]. Moreover, if C is a λ-contractive C-set (with λ ∈ [0, 1]), (7)
is feasible at every ξ ∈ C, since the existence of a û(0) ∈ U (i.e., ΨU(u(0)) ≤ 1) such that

1 Note that the variable x(1) can easily be eliminated from (7), since it is uniquely determined by u(0)
and ξ. We include it, however, for better readability.
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x̂(1) = Aξ + B û(0) ∈ C (i.e., ΨC(x(1)) ≤ 1) is guaranteed for every ξ ∈ C by definition
of λ-contractive sets (see Def. 3). Finally, for polytopic sets U and C, (7) can be written
as a multiparametric linear program which can be solved efficiently (see, e.g., [6, p. 146]
and [11]).

If C is a λ-contractive C-set with λ < 1, a stabilizing control law ̺ : C → R
m for (1) on

D = C is given by
̺(x) = u∗(0) = ( Im 0 ) z∗, (8)

where z∗ = (u∗(0)T x∗(1)T )T is optimal for (7) at the current state ξ = x (cf. [4, Thm. 3.3]
and [5, p. 139]). To see this, first note that (8) is an admissible control law for (1) due to the
constraints in (7), due to feasibility of (7) for every ξ ∈ C (see Rem. 1), and since ̺(0) = 0
can be guaranteed based on rk(B) = m (see Assum. 1). Moreover, it is straightforward to
show that the function v : C → R0, where v(x) refers to the solution to (7) at ξ = x, is a
Lyapunov function of the controlled system (3). In fact, there exist functions2 α, β, γ of
class K such that

α(‖ϕ(k, x0, ̺)‖2) ≤ v(ϕ(k, x0, ̺)) ≤ β(‖ϕ(k, x0, ̺)‖2), (9)

v(ϕ(k + 1, x0, ̺)) ≤ v(ϕ(k, x0, ̺))− γ(‖ϕ(k, x0, ̺)‖2) (10)

for every x0 ∈ D = C and all k ∈ N.

3 Stabilizing controlled invariant sets

In this section, we present a new method for the systematic design of stabilizing control
laws for (1) on controlled invariant sets. We first motivate the new approach by showing
that the controller defined by (7) and (8) in Sect. 2.2 may fail for controlled invariant sets
that are not λ-contractive for any λ ∈ [0, 1).

3.1 Motivating example

Consider system (1) with A =
(

0 1
1 0

)

and B =
(

1
2

)

and constraints X = {x ∈ R
2 | |x1| ≤

5, |x2| ≤ 5} and U = {u ∈ R | |u|≤ 1}. We show that C = X is controlled invariant but not
λ-contractive for any λ ∈ [0, 1) in Sect. 4. We first ignore this result and attempt to apply
the controller from Sect. 2.2. Specifically, we consider the initial state x0 = (−3 3 )T ∈ C
and try to steer x0 to the origin. We claim without giving details that solving (7) for
ξ = x0 yields u∗(0) = 0 and x∗(1) = ( 3 − 3 )T . (See the dash-dotted one-step reachable
set in Fig. 1 for a geometrical motivation of this solution.) Thus, the application of control
law (8) results in

ϕ(1, x0, ̺) = Ax0 +B ̺(x0) = Ax0 +B u∗(0) = x∗(1).

Solving (7) again for ξ = ϕ(1, x0, ̺) yields u∗(0) = 0 and x∗(1) = (−3 3 )T . Obviously,
ϕ(2, x0, ̺) = x0. In fact, the trajectory of the controlled system (3) enters a limit cycle
between the states x0 and ( 3 −3 )T and consequently never reaches the origin (see Fig. 1).

However, it is possible to steer x0 towards the origin. The choices u(0) = 1 and u(1) =
−1 result in x(1) = ( 4 − 1 )T and x(2) = (−2 2 )T . Clearly, the trajectory has moved
closer to the origin (see Fig. 1). Continuing with u(2) = u(4) = 1 and u(3) = u(5) = −1
finally yields x(6) = ( 0.0 0.0 )T .

2 Consider, e.g., α(z) = 1
rx

z, β(z) = 1+λ

r
x

z, and γ(z) = 1−λ2

rx
z, where rx and rx are as in Prop. 1. Note

that γ is of class K since λ < 1.
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The example shows the method summarized in Sect. 2 does in general not result in
a stabilizing control law on controlled invariant sets. The initial state x0 used in the
example can, however, be steered towards the origin. It remains to answer the question
whether there exists a simple stabilizing control law similar to (8) that applies to controlled
invariant sets.

50−5

5

0

−5

x1

x
2

x0

Figure 1: Trajectories of the example for the initial condition x0 = (−3 3 )T . The
ranges −5 ≤ x1, x2 ≤ 5 correspond to the set X = C. The dashed line connects the
states of the limit cycle that results for the controller from (8) (see Sect. 2.2). The
solid line connects the states that result for u(0) = 1 and u(1) = −1. The dash-dotted
line represents the set of states that can be reached from x0 in one step for u(0) ∈ U .
The dotted rectangles refer to level sets of the Minkowski function ΨC(x).

3.2 Stabilizing control scheme with n-step prediction

Consider the optimization problem

min
u(0),...,u(n−1),
x(0),...,x(n)

f(z, ξ) (11)

s.t. x(0) = ξ,
x(k + 1) = Ax(k) +B u(k),
ΨC(x(k + 1)) ≤ 1,
ΨU(u(k)) ≤ 1,







k ∈ N[0,n−1]

with variables3

z = (u(0)T. . . u(n− 1)T x(0)T. . . x(n)T )T∈ R
(m+n+1)n,

3 Variables x(0), . . . , x(n) can be easily eliminated from (11) with the same argument as in footnote 1.
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parameters ξ ∈ X , and the objective function

f(z, ξ) = wΨC(x(n)) +
∑n−1

k=0 ΨC(x(k)), (12)

where w ∈ R+ denotes a weight. Note that (11) differs from (7) in that it includes n pre-
diction steps instead of one, where n refers to the system dimension. Moreover, in contrast
to (7), the Minkowski function value of the last step is weighted by w in (12). However,
the optimization problems (7) and (11) are similar in terms of the traits summarized in
Rem. 1. In fact, (11) is also convex and feasible for every ξ ∈ C. In addition, (11) can also
be written as a multiparametric linear program for polytopic sets U and C.

The following proposition states the main result of the paper. Basically, it provides a
method for the design of stabilizing control laws on controlled invariant sets. Note that
there is no assumption on λ-contractivity.

Proposition 1: Let C ⊆ X be a controlled invariant C-set and let µ ∈ (0, 1) be arbitrary.
Then, there exists a stabilizing control law for (1) on D = µ C, which can be constructed
as follows. Let ru, rx, rx ∈ R+ be such that

Bm(ru) ⊆ U , Bn(rx) ⊆ C ⊆ Bn(rx) (13)

and
rx ≥

√
nσmax(Sn(A,B)) ru. (14)

Define

λ̃ := 1− σmin(Sn(A,B))
ru
rx

min

{

1

µ
− 1, 1

}

(15)

and choose w ∈ R+ such that

(

2− λ̃

1− λ̃

1

max(µ, 1− µ)
− 1

)

(n− 1) < w < ∞. (16)

Then, ̺ : C → R
m with

̺(x) = u∗(0) = ( Im 0 ) z∗, (17)

where z∗ = (u∗(0)T , . . . , u∗(n − 1)T , x∗(0)T , . . . , x∗(n)T )T is optimal for (11) at ξ = x, is
a stabilizing control law for (1) on D = µ C.

Proposition 1 can be used to design stabilizing control laws for (1) on D = µ C for every
µ ∈ (0, 1). It is necessary to exclude ∂C (i.e., µ = 1), since there may be unstabilizable
states on the boundary of controlled invariant sets. In fact, revisiting the motivating
example in Sect. 3.1, it is easy to show that the initial states x0 = (−5 5 )T ∈ ∂C and
x0 = (5 − 5 )T ∈ ∂C cannot be asymptotically stabilized, since they cannot be steered
closer to the origin using any admissible control law. To see this, note that for both initial
states x0, the successor Ax0+B u violates the state constraints X = C for every u ∈ U\{0}.
However, for the only admissible choice u = 0 ∈ U , we obtain Ax0 + B u = Ax0 = −x0,
i.e., we enter a limit cycle between the states (−5 5 )T and ( 5 − 5 )T .

3.3 Formal proof of Proposition 1

The proof of Prop. 1 requires some preparation. Analogously to the argumentation in
Sect. 2.2, we first note that the control law ̺ : C → R

m as defined in Prop. 1 is an
admissible control law for (1). To prove that (17) is a stabilizing control law for (1) on
D = µ C, we will show that the solution to (11) is a Lyapunov function of the controlled
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system (3). We begin by collecting some statements about ru, rx, rx, λ̃, and w introduced in
Prop. 1. Obviously, since U and C are C-sets by assumption, there always exist appropriate
ru, rx, rx ∈ R+ such that relations (13) and (14) hold. Concerning λ̃ and w, we find the
bounds stated in Lem. 3. We omit the simple proof due to space limitations.

Lemma 3: Let λ̃ and w be as in (15) and (16), respectively. Then, λ̃ ∈ [0, 1) and w > n−1.

Note that, for the special case n = 1, the choice w = 1 is such that (16) holds. In this
case, the optimization problems (7) and (11) as well as the associated control laws (8) and
(17) become identical. In contrast, for any n > 1, we require w > 1 according to Lem. 3.

Lemma 4 provides a first characterization of the solution to (11). It basically states that
optimal variables for (11) at ξ ∈ C are always such that the states x∗(k), k ∈ N[0,n−1], are
not closer to the origin than x∗(n), where closeness to the origin is again measured by the
Minkowski function value.

Lemma 4: Let C ⊆ X be a controlled invariant C-set. Let ξ ∈ C be arbitrary and let
z∗ = (u∗(0)T , . . . , u∗(n− 1)T , x∗(0)T , . . . , x∗(n)T )T be optimal for (11) at ξ. Then,

ΨC(x
∗(n)) = min

k∈N[0,n]

ΨC(x
∗(k)). (18)

Proof. We show that, if (18) does not hold, there exists a feasible

ẑ = [û(0)T , . . . , û(n − 1)T , x̂(0)T , . . . , x̂(n)T ]T

for (11) at ξ such that
f(ẑ, ξ) < f(z∗, ξ), (19)

where f refers to the objective function (12) of (11). According to Def. 4, (19) implies
that z∗ is not optimal for (11) at ξ, which is a contradiction.

If (18) does not hold, there exists an s ∈ N[0,n−1] such that

ΨC(x
∗(s)) < ΨC(x

∗(n)) and (20)

ΨC(x
∗(s)) ≤ ΨC(x

∗(k)) for k ∈ N[0,n−1]. (21)

Thus, we find ΨC(x
∗(s)) ≤ ΨC(x

∗(0)) = ΨC(ξ), which in turn implies x∗(s) ∈ C according
to Lem. 1. Since C is controlled invariant, there exists an admissible control law ˆ̺ for (1)
that fulfills (6) with λ = 1. Applying this control law from time s yields

x̂(k) =

{

ϕ(k − s, x∗(s), ˆ̺) if k ≥ s
x∗(k) otherwise

(22)

for every k ∈ N[0,n] and

û(k) =

{

ˆ̺(ϕ(k − s, x∗(s), ˆ̺)) if k ≥ s
u∗(k) otherwise

(23)

for every k ∈ N[0,n−1]. Clearly, ẑ with x̂(k) and û(k) as in (22) and (23), respectively, is
feasible for (11) at ξ. It immediately follows from (6) with λ = 1 that

ΨC(x̂(k)) = ΨC(ϕ(k − s, x∗(s), ˆ̺)) ≤ ΨC(x
∗(s)) (24)

for every k ∈ N[s,n]. Thus, we find

f(ẑ, ξ) = wΨC(x̂(n)) +
∑n−1

k=0 ΨC(x̂(k))

≤ wΨC(x
∗(s)) +

∑n−1
k=s ΨC(x

∗(s)) +
∑s−1

k=0ΨC(x
∗(k))

≤ wΨC(x
∗(s)) +

∑n−1
k=s ΨC(x

∗(k)) +
∑s−1

k=0ΨC(x
∗(k))

< wΨC(x
∗(n)) +

∑n−1
k=0 ΨC(x

∗(k)) = f(z∗, ξ)
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where the second, third, and fourth relation hold due to (22) in combination with (24),
(21), and (20). In summary, we obtain the contradiction (19). �

In the remainder of this section, we will prove that the function v : C → R0, where

v(x) := f(z∗, ξ) (25)

for every x ∈ C and where z∗ solves (11) for ξ = x, is a Lyapunov function for the
controlled system (3). We will show that there exist functions α, β, γ of class K such that
relations (9) and (10) hold for every x0 ∈ D = µ C and all k ∈ N. A necessary condition
for (10) to hold is stated in Lem. 5.

Lemma 5: Let C ⊆ X be a controlled invariant C-set and let ̺ : C → R
m and v : C → R0

be defined as in Prop. 1 and Eq. (25), respectively. Then, for every x0 ∈ C, we have

v(ϕ(k + 1, x0, ̺)) ≤ v(ϕ(k, x0, ̺)). (26)

Proof. Initially note that ϕ(k, x0, ̺) ∈ C for every x0 ∈ C and every k ∈ N since ̺ is an
admissible control law on C. Now, let z∗ = (u∗(0)T . . . u∗(n − 1)T x∗(0)T . . . x∗(n)T )T be
optimal for (11) at ξ = ϕ(k, x0, ̺). We prove (26) by showing that there exists a feasible
ẑ = (û(0)T . . . û(n− 1)T x̂(0)T . . . x̂(n)T )T for (11) at ξ = ϕ(k + 1, x0, ̺) such that

f(ẑ, ϕ(k + 1, x0, ̺)) ≤ f(z∗, ϕ(k, x0, ̺)). (27)

Since C is a controlled invariant C-set, there exists an admissible control law ˆ̺ : C → R
m

for (1) such that (6) holds with λ = 1 for every x ∈ C. Now, let û(k) := u∗(k + 1)
for every k ∈ N[0,n−2] and û(n − 1) := ˆ̺(x∗(n)). Analogously, let x̂(k) := x∗(k + 1) for
every k ∈ N[0,n−1] and x̂(n) := Ax∗(n) + B ˆ̺(x∗(n)). Note that ẑ is feasible for (11) at
ϕ(k + 1, x0, ̺) = x∗(1). Evaluating (27) with f as in (12) yields

wΨC(Ax∗(n) + ˆ̺(x∗(n))) ≤ (w − 1)ΨC(x
∗(n)) + ΨC(x

∗(0)).

This relation holds, since ΨC(Ax∗(n) + ˆ̺(x∗(n))) ≤ ΨC(x
∗(n)) according to Eq. (6) and

since ΨC(x
∗(n)) ≤ ΨC(x

∗(0)) according to Lem. 4. �

The following lemma provides the key to prove Prop. 1. It basically provides an upper
bound for the solution to (11) at any point on a trajectory of the controlled system (3)
with initial condition x0 ∈ D = µ C.

Lemma 6: Let C ⊆ X be a controlled invariant C-set and let ̺ : C → R
m and v : C → R0

be defined as in Prop. 1 and Eq. (25), respectively. Let µ ∈ (0, 1), k ∈ N, and x0 ∈ D = µ C
be arbitrary and set ξ = ϕ(k, x0, ̺). Then,

v(ξ) ≤ (2n − 1 + λ̃w)ΨC(ξ), (28)

where λ̃ and w are defined as in Prop. 1.

Proof. First note that ξ = ϕ(k, x0, ̺) ∈ C for every x0 ∈ D = µ C since ̺ as defined
in (17) is admissible for (1). The proof consists of two parts that address the cases
ξ = ϕ(k, x0, ̺) ∈ µ C and ϕ(k, x0, ̺) ∈ C \ µ C, respectively. Throughout the proof, let ru,
rx and rx be as in Prop. 1.

Part I (ξ ∈ µ C). According to [?, Lem. 3.47], there exists a feasible ẑ = (û(0)T . . . û(n−
1)T x̂(0)T . . . x̂(n)T )T for (11) at ξ ∈ µ C such that ΨC(x̂(k)) ≤ 2ΨC(ξ) for every k ∈ N1,n−1

and such that
ΨC(x̂(n)) ≤ λ̃ΨC(ξ), (29)
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where λ̃ is defined as in Prop. 1. Taking x̂(0) = ξ into account and overestimating the
associated objective function value f(ẑ, ξ) (with f as in (12)) yields

f(ẑ, ξ) ≤ (λ̃w + 2 (n− 1) + 1)ΨC(ξ),

which proves (28).
Part II (ξ ∈ C \ µ C). First note that ξ = ϕ(k, x0, ̺) ∈ C \ µ C implies k ≥ 1 since

x0 = ϕ(0, x0, ̺) ∈ µ C by assumption. Furthermore, we have ΨC(x0) ≤ µ < ΨC(ξ)
according to Lem. 1 (iii), since x0 ∈ µ C and since ξ /∈ µ C. Finally, we obtain

v(ξ) ≤ v(ϕ(k − 1, x0, ̺)) ≤ · · · ≤ v(x0) (30)

according to Lem. 5. Since x0 ∈ µ C, we have

v(x0) ≤ (2n − 1 + λ̃w)ΨC(x0) (31)

according to the first part of this proof. Combining (30) and (31) and using ΨC(x0) <
ΨC(ξ) proves (28). �

Equation (29) states that any x0 ∈ D = µ C can be steered closer to the origin in n steps,
where closeness to the origin is measured by the Minkowski function value. It remains to
answer the question whether the optimum of (11) enforces a movement towards the origin.
Lemma 7 stated below implies that a contraction is always guaranteed. Note that this
result is not trivial. The motivating example in Sect. 3.1 shows that it may be necessary
to move away from the origin first. Such a detour implies an increase of some terms in the
objective function value (12). In fact, it is necessary to choose the weight w (see Eq. (16))
carefully in the objective function (12) to compensate for these effects.

Lemma 7: Let C ⊆ X be a controlled invariant C-set. Let µ ∈ (0, 1), k ∈ N and x0 ∈ D =
µ C be arbitrary, set ξ = ϕ(k, x0, ̺) and let z∗ = (u∗(0)T . . . u∗(n − 1)T x∗(0)T . . . x∗(n)T )T

be optimal for (11) at ξ. Then,

ΨC(x
∗(n)) ≤ λ∗ΨC(ξ), (32)

where
λ∗ := λ̃+ (1− λ̃) max{µ, 1− µ} < 1 (33)

and where λ̃ is defined as in (15).

Proof. First note that we have λ∗ ∈ [0, 1) since µ ∈ (0, 1) and since λ̃ ∈ [0, 1) according to
Lem. 3. To prove (32), we assume

ΨC(x
∗(n)) > λ∗ΨC(ξ), (34)

and show that a contradiction results. We again have ξ = ϕ(k, x0, ̺) ∈ C with the same
reason as in the proof of Lem. 6. Thus, if (34) holds, we find

ΨC(x
∗(k)) ≥ ΨC(x

∗(n)) > λ∗ΨC(ξ), (35)

for every k ∈ N[0,n] according to Lem. 4. Overestimating v(ξ) = f(z∗, ξ) using (35) and
ΨC(x

∗(0)) = ΨC(ξ) yields

v(ξ) > ((w + n− 1)λ∗ + 1)ΨC(ξ). (36)

10



Note that the strict inequality in (36) follows for w > 0, which holds according to Lem. 3
since n ≥ 1. On the other hand, we obtain

v(ξ) ≤ (2n − 1 + λ̃w)ΨC(ξ) (37)

from Lem. 6. Clearly, the bounds (36) and (37) require 2n− 1+ λ̃ w > (w+ n− 1)λ∗ +1
or equivalently

2− λ∗

λ∗ − λ̃
(n− 1) > w. (38)

However, (38) contradicts (16). To see this, note that the l.h.s. in (16) and (38) are
equivalent. In fact, we find

2− λ∗

λ∗ − λ̃
=

2− λ̃

1− λ̃

1

max{µ, 1 − µ} − 1,

by definition of λ∗ in (33). �

Lemmas 6 and 7 finally allow to prove Prop. 1.

Proof of Prop. 1. First note that µ C is a C-set since C is a C-set by assumption and since
µ ∈ (0, 1). Thus, with regard to Def. 1, the control law ̺ : C → R

m as defined in (17) is
not only admissible for (1) on C but also on µ C. Consequently, it remains to show that
conditions (i) and (ii) in Def. 2 hold. Assume there exist functions α, β, γ of class K such
that (9) and (10) hold. Then, it is easy to prove conditions (i) and (ii) based on standard
arguments (see., e.g., [18, pp. 165-167 and p. 267]). In fact, the proof here is simpler than
in [18], since ϕ(k, x0, ̺) is bounded according to ϕ(k, x0, ̺) ∈ C ⊆ X for every k ∈ N and
every x0 ∈ µ C.

It remains to construct appropriate functions α, β, γ : R0 → R0. Let α(z) :=
1
rx

z,

β(z) :=
2n − 1 + λ̃ w

rx
z and γ(z) :=

1− λ∗

rx
z, (39)

where rx and rx satisfy the assumption in Prop. 1 and where λ̃, w and λ∗ are defined as
in (15), (16) and (33), respectively. Note that α, β and γ are of class K, since rx, rx, w ∈
R+, due to λ̃, λ∗ ∈ [0, 1) and since n ∈ N+. In the following, let x0 ∈ µ C and k ∈ N be
arbitrary but fixed and set ξ = ϕ(k, x0, ̺). To show (9), note that

ΨC(ξ) ≤ v(ξ) ≤ (2n − 1 + λ̃w)ΨC(ξ) (40)

due to nonnegativeness of ΨC (see Lem. 1) and according to Lem. 6, respectively. Based
on (40), we obtain

α(‖ξ‖2) =
‖ξ‖2
rx

≤ ΨC(ξ) ≤ v(ξ), (41)

where the first and the second relation hold by definition of α and according to Lem. 1,
respectively. Obviously, (41) proves the first relation in (9). Analogously, it can be shown
that the second relation in (9) holds for β as in (39).

To show (10), first note that, according to Lem. 2, there exists an admissible control
law ˆ̺ for (1) on C such that (6) holds with λ = 1. Now, let z∗ = (u∗(0)T . . . u∗(n −
1)T x∗(0)T . . . x∗(n)T )T be optimal for (11) at ξ. Set û(k) = u∗(k+1) for every k ∈ N[0,n−2]

and û(n−1) = ˆ̺(x∗(n)). Moreover, let x̂(k) = x∗(k+1) for every k ∈ N[0,n−1] and x̂(n) :=
Ax∗(n)+B ˆ̺(x∗(n)). Note that ΨC(x̂(n)) ≤ ΨC(x

∗(n)) according to (6). Further note that
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ẑ = (û(0)T . . . û(n− 1)T x̂(0)T . . . x̂(n)T )T is feasible for (11) at ϕ(1, ξ, ̺) = ϕ(k + 1, x0, ̺).
Thus, we obtain v(ϕ(1, ξ, ̺)) ≤ f(ẑ, ϕ(1, ξ, ̺)), where

f(ẑ, ϕ(1, ξ, ̺)) ≤ wΨC(x
∗(n)) +

∑n
k=1ΨC(x

∗(k))
= f(z∗, ξ) + ΨC(x

∗(n))−ΨC(ξ)
≤ f(z∗, ξ) + (λ∗ − 1)ΨC(ξ).

(42)

The first relation in (42) holds by construction of x̂(k), k ∈ N[0,n]. The second relation
holds by definition of f in (12). Finally, the third relation is satisfied according to Lem. 7.
Now, by definition, we have v(ξ) = f(z∗, ξ). Thus, we infer

v(ϕ(1, ξ, ̺)) − v(ξ) ≤ (λ∗ − 1)ΨC(ξ). (43)

It is easy to prove (10) with (43) and γ as in (39). �
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Figure 2: The proposed control law and λ-contractive sets for the sample system
introduced in Sect. 3.1. The ranges −1 ≤ ̺(x) ≤ 1 and −5 ≤ x1, x2 ≤ 5 correspond
to the sets U and X = C, respectively. The solid, dashed, dash-dotted and dotted
polytopes mark tight outer approximations of the largest λ-contractive subsets of C
for λ ∈ {0.8, 0.85, 0.9, 0.95}, respectively. The colormap visualizes the contractive
control law introduced in Prop. 1 for the choice w = 708.

4 Numerical example

Consider the system described in Sect. 3.1 again. We anticipated that the C-set C = X is
controlled invariant but not λ-contractive for any λ ∈ [0, 1). To see this, first note that, for
every x ∈ C, we have Ax+B u ∈ C for the particular choice u = 0 ∈ U , i.e., C is controlled
invariant according to Def. 3. Now consider the point x = (−5 5 )T ∈ C and note that
(4) cannot be fulfilled since Ax+B u = (5 + u −5+ 2u )T /∈ λ C for any u ∈ [−1, 1] = U

12



and any λ ∈ [0, 1). Thus, C is not λ-contractive for any λ < 1. However, we may compute
λ-contractive subsets of C with the procedures stated in [3]. In Fig. 2, four tight outer
approximations of the largest λ-contractive subsets of C for λ ∈ {0.8, 0.85, 0.9, 0.95} are
illustrated. The approximation corresponds to the 50th element of the sequence in [3, Eq.
(3.1)] in all cases. Clearly, the λ-contractive subsets are harder to identify, more complex
and smaller than the controlled invariant set C.

In order to apply the control scheme presented in Prop. 1, we initially note that rx = 5,
rx =

√
2 · 5 and ru = 1 satisfy the relations (13) and (14), where σmax(S2(A,B)) = 3.

We now choose µ = 0.99 close to 1 and obtain λ̃ = 0.9986 and w > 707.1169 from (15)
and (16), respectively. Thus, w = 708 is a proper choice for the weight in (11). Note
that (11) can be written as a linear program due to the polyhedral constraints X and
U (see Rem. 1). Thus, the optimization problem (11) can be solved explicitly and the
associated control law (17) is known to be piecewise affine. The resulting control law ̺
is illustrated in Fig. 2. The first two steps of the closed-loop trajectory emanating from
x0 = (−3 3 )T are illustrated in Fig. 1 (see the states connected by the solid lines). In fact,
the trajectory of the controlled system is identical to the contractive trajectory already
discussed in Sect. 3.1. It can be seen from Fig. 1 that the trajectory initially leaves the
level set ΨC(x0) C = 0.6 C and returns to it in the second step. In fact, for the considered
initial state x0, it is impossible to steer the system to the interior of ΨC(x0) C without
afore leaving ΨC(x0) C.

The discussed example points out the crucial difference between classical λ-contractive
controllers (see Sect. 2.2) and the new control strategy presented in Sect. 3. Basically,
λ-contractive controllers try to minimize the distance to the origin in each time-step.
Consequently, the trajectory of the controlled system will never leave the set ΨC(x0) C.
In contrast, the new controller associated with controlled invariant sets allows for short-
time “excursions”, which are sometimes necessary to stabilize states within a controlled
invariant set.

5 Conclusion and outlook

We proved a proposition on the existence of stabilizing control laws for linear constrained
system on controlled invariant sets. More precisely, there exists, for any linear system
(1) with constraints (2) and controlled invariant C-set C, a stabilizing control law on µ C
for any µ ∈ (0, 1). The proof is constructive. The resulting control law is defined by a
convex receding horizon optimal control problem with horizon length equal to the system
dimension n. The optimal control problem can be written as a multiparametric linear
program if the sets U and C are polytopic.

Future work has to address the integration of the proposed controller into conventional
MPC schemes. In fact, the presented approach allows to consider controlled invariant sets
(which are not λ-contractive for any λ < 1) as terminal sets for MPC with guaranteed sta-
bility. A similar approach based on λ-contractive sets (with λ < 1) was recently published
in [7].
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