
Preamble. This is a reprint of the article:

M. Schulze Darup and M. Mönnigmann. Approximate explicit NMPC with guar-
anteed stability ensured by a simple auxiliary controller. In Proc. of the 2012
IEEE Multi-Conference on Systems and Control, pp. 270–275, 2012.

The digital object identifier (DOI) of the original article is:

10.1109/ISIC.2012.6398279

text

Approximate explicit NMPC with guaranteed stability
ensured by a simple auxiliary controller

Moritz Schulze Darup† and M. Mönnigmann†

Abstract

We investigate two methods for the calculation of suboptimal explicit solutions to non-
linear MPC problems and show that these two methods can be combined for guaranteed
stability and good performance. The first method calculates an explicit piecewise constant
(PWC) control law and a corresponding positively invariant set that is represented by a
hyperrectangular partition in the state space. The explicit PWC law provides a subopti-
mal solution to the nonlinear MPC problem, but asymptotical stability of the closed-loop
system can be guaranteed. A second explicit controller is constructed by solving the non-
linear MPC problem for a representative set of initial conditions and interpolating these
pointwise solutions nonlinearly. Note that the PWC law provides feasible initial solutions
to the nonlinear MPC problem and therefore can be used to speed up the construction
of the second controller significantly. The PWC control law and the explicit nonlinear
control law can be combined for guaranteed asymptotical stability (by virtue of the PWC
control law) and good performance (from the nonlinear control law). We claim the hybrid
controller is an interesting alternative, because its domain of attraction is typically larger
than that of the nonlinear controller alone.

1 Introduction

Explicit model predictive control [1,2,10] may be an alternative to model predictive control
if receding horizon optimization problems cannot be solved online. Exact explicit solutions
can in general only be calculated for linear or piecewise linear systems, linear constraints
and linear or quadratic cost functions. Approximate, or more specifically, suboptimal
explicit control laws can also be calculated, however, for nonlinear systems and linear or
quadratic cost functions with several approaches. For one, it is an option to approximate
the nonlinear system by a piecewise linear system and to apply the exact methods that
exist for this system class. Secondly, one can attempt to extend approaches for solving

† M. Schulze Darup and M. Mönnigmann are with Automatic Control and Systems Theory, De-
partment of Mechanical Engineering, Ruhr-Universität Bochum, 44801 Bochum, Germany. E-mail:
moritz.schulzedarup@rub.de.

1

http://dx.doi.org/10.1007/s10898-013-0099-1

multiparametric linear and quadratic programs to multiparametric nonlinear systems [5].
Thirdly, the calculation of explicit control laws is related to the calculation of positive and
control invariant sets. In the present paper we explore a method of the third kind, which
is an extension of an earlier approach presented by the authors [9]. See [8, 11] for other
contributions of this type. We point out the differences between our previous work and
the approach presented here in Sect. 3 (see last paragraph before 3.1). The relation to [8]
and [11] is explained at the beginning of Sect. 5.

The paper is organized as follows. After an introduction of the system and problem
class in Sect. 2, reachable sets are used in Sect. 3 to construct a piecewise constant
(PWC) control law over a hyperrectangular partition of the state space. The resulting
control law guarantees asymptotic stability of an equilibrium of the closed loop system for
a finite subset of the state space around this equilibrium. Moreover, as stated in Sect. 4,
the PWC control law provides a feasible solution for the nonlinear MPC problem for any
initial condition in the constructed positively invariant set. This is exploited in Sec. 5,
where the nonlinear MPC problem is solved for initial conditions chosen on a state space
grid, and a nonlinear control law is constructed by interpolation of the optimal solutions
for the grid points. This nonlinear control law typically provides a better performance
than the PWC control law from Sect. 3, but asymptotic stability of the closed loop
system can no longer be guaranteed without further measures. In Sect. 6 we show that
the two control laws can be combined, and, loosely speaking, we can decide at runtime
of the controller which one to select in order to retain both, the good performance of the
nonlinear control law, and the asymptotical stability guarantee of the PWC one. Since
this decision is made at runtime, we need not establish stability and attractivity of the
nonlinear control law before runtime, but the hybrid control law inherits the domain of
attraction from the PWC control law. Sections 7 and 8 present an example and state
conclusions, respectively.

2 Problem statement and preliminaries

Consider a nonlinear discrete-time system of the form

x(k + 1) = f(x(k), u(k)) (1)

that is subject to state constraints x ∈ X ⊆ Rn and control constraints u ∈ U ⊆ Rm.

Assumption 1: The function f may be nonlinear and is assumed to be defined on at least
X ×U , twice continuously differentiable, and maps into Rn. The tuple (0, 0) ∈ int(X ×U)
is an equilibrium, i.e. f(0, 0) = 0. X and U are assumed to the compact. U is assumed to
be convex.

We seek an explicit control law g(x) according to Def. 1, which results in the closed
loop system

x(k + 1) = f(x(k), g(x(k))). (2)

Definition 1: We refer to a control law u = g(x) on a domain T as a feasible attractive
stable (FAS) controller of system (2), if

(a) g(0) = 0, x ∈ T implies g(x)∈ U (feasibility w.r.t. U),

(b) 0 ∈ int(T), T ⊆ X and T positive invariant (p.i.), i.e. x ∈ T implies f(x, g(x)) ∈ T
(feasibility w.r.t. X),

2

(c) x(0)∈T implies limk→∞ ‖x(k)‖ = 0 (attractivity, [12]),

(d) there exists a δ(ǫ) > 0, such that for each ǫ > 0 and for all x(0) with ‖x(0)‖ < δ(ǫ)
we have ‖x(k)‖ < ǫ for all k ≥ 0 (stability, [12]).

We use the cost function (3) of the following finite horizon (h ∈ N) optimal control
problem (FHOCP) to measure performance.

J∗(x0) = min
û(0),...,û(h−1)

ϕ0(x̂(h)) +

h−1
∑

i=0

l(x̂(i), û(i)) (3)

s.t. x̂(0) = x0,
x̂(i+ 1) = f(x̂(i), û(i)), ∀ i = 0, . . . , h− 1,

(x̂(i), û(i)) ∈ X × U , ∀ i = 0, . . . , h− 1,
x̂(h) ∈ T0,

(4)

where x̂(i) refers to the predicted state at time i that results for the control sequence
û(0), . . . , û(i − 1) and l : X × U → R and ϕ0 : X → R are positiv definite (p.d.).

Assumption 2: There exist a control law g0, a domain T0 and a cost ϕ0 such that g0 is a
FAS controller on T0 and ϕ0(x)− ϕ0(f(x, g0(x))) ≥ l(x, g0(x)) for all x ∈ T0.

According to [7], assumption 2 guarantees asymptotic stability of (2) with the optimal
control law

g∗(x) = û∗(0), (5)

where û∗(0) is the first element from the optimal control sequence û∗(0), . . . , û∗(h−1) that
results from solving (3), (4) for a feasible initial condition x0 = x. We denote the set of
feasible states, i.e. the set of x0 ∈ X that satisfy condition (4), by F . It is in general not
possible to calculate an exact explicit formula for g∗(x0) for all x0 ∈ F ⊆ X . We present
a simple but efficient method for calculating an approximation to (5) that is suboptimal
but guarantees asymptotic stability of (2) on a domain T̂ ⊆ F .

3 Piecewise constant controller with guaranteed stability

We first ignore performance and try to find a stabilizing controller ĝ(x) for (2) on a large
domain T̂ = Ti∗. Assume a controller has been found for a certain domain, say Ti−1, in
step i − 1 of our controller construction. In step i we then attempt to enlarge Ti−1 by
identifying a control law ĝi(x) on a set ∆Ti * Ti−1 such that ĝi(x) ∈ U and

f(x, ĝi(x)) ∈ int(Ti−1) for all x ∈ ∆Ti. (6)

This procedure can be repeated until no nonempty set ∆Ti∗+1 can be found in some step
i∗+ 1. It remains to be answered how to choose ∆Ti and ĝi(x). As for ĝi(x), we restrict
ourselves to piecewise constant (PWC) functions, i.e. ĝi(x) = ci for all x ∈ Ti \ Ti−1.
Subsets ∆Ti will be represented by hyperrectangles.

The presented approach is related to but different from the algorithms described in [3]
and [9]. In contrast to [9] and to methods for the construction of invariant sets [3], we
do not use step sets here. Hence, there is no need to specify the number of steps for a
recursive step set construction, rendering this algorithmic tuning parameter of the earlier
approaches obsolete. Moreover, the complexity of the state space partition is reduced by
avoiding step sets. As a further extension of [9], we give a concise proof of the stability
of the proposed controller. Stability of the controller was already claimed but not proved
in [9].

3

3.1 PWC control law defined on a hyperrectangle-tree

The search for the PWC control law relies on bisecting X into a set of hyperrectangles,
which can conveniently be represented by a binary tree (cf. Figs. 1 and 2).

(0, 1)

(1, 1)

(2, 1)∗ (2, 2)∗

(3, 3)

(4, 5) (4, 6)

(3, 4)

(1, 2)∗

(2, 3)

(3, 5)

(4, 9) (4, 10)

(3, 6)

(2, 4)

Figure 1: Sample binary tree of depth d = 4 with nodes (δ, β). Underlined green leaf
nodes refer to hyperrectangles that are members of a sample target set Ti (cf. set
M̂ in Sect. 3). Green nodes labeled with an asterisk constitute the most compact
representation of Ti (cf. set M∗ in Sect. 4). Red nodes refer to the complementary
set X \ Ti.

Consider an arbitrary closed hyperrectangle B = [b1, b1]×· · ·×[bn, bn] ⊂ Rn. By bisection
we refer to the operation that divides B into two closed hyperrectangles by splitting the
interval of largest width bi− bi of B into two intervals of equal length. Recursive bisection
results in a hierarchy of hyperrectangles that partition B. Figures 1 and 2 illustrate that
every hyperrectangle ⊞δβB can uniquely be identified with the depth δ of its node in the
tree and the position β of the node in its level.

⊞1,2X

⊞2,1X⊞2,1X

⊞2,2X⊞2,4X⊞3,4X

⊞3,6X

⊞4,5X

⊞4,6X

⊞4,9X

⊞4,10X

Figure 2: Hyperrectangular state space partitions that correspond to the binary tree
in Fig. 1. Every hyperrectangle ⊞δβX uniquely corresponds to its node (δ, β). The
partition on the left belongs to the leaf node representation (underlined nodes in Fig.
1). The more compact partition on the right corresponds to the nodes labeled with
an asterisk in Fig. 1.

Here, we assume X is a hyperrectangle, i.e. X = [x1]×· · ·× [xn] with [xi] = [xi, xi] ⊂ R.
This assumption is merely added for convenience. It is straight forward to extend our
approach to compact X that can be represented or approximated by a union of pairwise
disjoint hyperrectangles.

Starting with ⊞0,1X = X , the hyperrectangles ⊞δβX serve as candidates for the en-
largement ∆Ti of the current controller domain. Similarly, candidate control actions are

4

selected from a finite set {⊡1U , . . . ,⊡rU} of grid points ⊡jU , which we assume to be sorted
in ascending order of l(0,⊡jU). While X has to be partitioned into hyperrectangles, it
suffices to discretize U with a grid of points. This technical detail is important for the
performance of the method; see Remark 1 below.

To check whether a hyperrectangle ⊞δβX belongs to the controller domain, we need to
analyse sets of the form

{f(x, u) |x ∈ ⊞δβX , u = ⊡jU} , (7)

which we denote by f(⊞δβX ,⊡jU) for short. It is in general difficult, if not impossible, to
calculate sets of type (7). It suffices, however, to calculate supersets

P(f(⊞δβX ,⊡jU)) ⊇ f(⊞δβX ,⊡jU) (8)

instead, where the operator P is only required to fulfill the monotonicity property

B1 ⊆ B2, B3 ⊆ B4 ⇒ P(f(B1,B3)) ⊆P(f(B2,B4)) (9)

for all admissible hyperrectangles B1, B2, B3 and B4. The operator P can be implemented
with, for example, interval arithmetic (IA) [3, 6] or DC-programming [8]. We use interval
arithmetic in the present paper.

Assuming that P(f(⊞δβX ,⊡jU)) is available, the current controller domain Ti−1 can
be enlarged by identifying a hyperrectangle ⊞δβX which is not yet subset of Ti−1 and for
which there exists a control action ĝδβ = ⊡jU such that

P(f(⊞δβX , ĝδβ)) ⊆ int(Ti−1). (10)

Algorithm 1: Computation of PWC controller. Figure 3 illustrates the resulting PWC
control law for the example discussed in Sect. 7.

Input: box X = [x, x], input candidates ⊡1U , . . . ,⊡rU , terminal set T0 and maximal
depth d

Output: final step i∗ = i− 1, final domain T̂ = Ti∗, member nodes M̂ and PWC
controller values ĝδβ

1 set step i = 1, member nodes M̂ = ∅, candidate nodes C = {(0, 1)} (root node) and
next candidates C+ = ∅.

2 pick (δ, β) out of candidates C and remove (δ, β) from C.

3 if ⊞δβX ⊆ T0 then add (δ, β) to members M̂.
4 else

5 for j = 1 to r do

6 if P(f(⊞δβX ,⊡jU)) ⊆ int(Ti−1) then
7 set ĝδβ = ⊡jU and Ti = Ti−1 ∪⊞δβX and increase i by 1.

8 add (δ, β) to M̂, add C+ to C, set C+ = ∅ and goto line 2.

9 if δ < d then

10 bisect, i.e. add nodes (δ + 1, 2β) and (δ + 1, 2β + 1) to C.

11 else add (δ, β) to next candidates C+.

12 if C is empty then terminate algorithm
else goto line 2.

Algorithm 1 formalizes the procedure for calculating the desired PWC control law and
the associated domain. In Alg. 1, Ti denotes the controller domain after step i, and ĝδβ

5

is the constant value of the control law on the hyperrectangle ⊞δβX associated with node

(δ, β). The symbol M̂ denotes the set of all hyperrectangles for which a PWC control has
been found or which are in T0. Finally, the sets C and C+ contain candidate nodes which
will be investigated during the current and next step, respectively. Algorithm 1 results in
the control law

ĝ(x) =

{

g0(x) if x ∈ T0
ĝδβ if x /∈ T0, x ∈ ⊞δβX , (δ, β) ∈ M̂,

(11)

with the following properties.

Proposition 1: The PWC controller (11) is a FAS controller on T̂ according to Def. 1.

Proof. Constraint satisfaction and positive invariance hold by construction. Attractivity
is guaranteed because limk→∞ ‖x(k)‖ = 0 for all x(0) ∈ T0 according to assumption 2, and
since there exists a i ≤ i∗ < ∞ such that x(i) ∈ T0 for all x(0) ∈ T̂ \ T0. Finally, stability
holds, because we include the stable controller g0(x) on the domain T0. To verify this, first
note that Ass. 2 implies the existence of a function δ0(ǫ), which guarantees stability of g0
on T0 according to Def. 1. We may choose δ(ǫ) = min(δ0(ǫ), δ) > 0 in order to guarantee
stability of (2) using controller (11), where δ > 0 is selected such that for all ‖x‖2 ≤ δ we
have x ∈ T0. �

Algorithm 1 terminates the search for an appropriate control action whenever condition
(10) is satisfied for the first time (cf. lines 6–8 in Alg. 1). Performance requirements
could be included by analysing all input candidates ⊡1U , . . . ,⊡rU instead of stopping
after the first suitable one has been identified. We found, however, that this obvious
extension considerably increases the computational effort without significantly improving
the closed-loop performance (cf. [9]).

PWC functions are not an obvious choice for the construction of a controller and a
feasible domain. Intuitively, one would expect a larger feasible set to result for more
flexible functions. Comments on this matter are collected in Remark 1 for ease of reference.

Remark 1: The inclusion test (10) is carried out in line 6 of Alg. 1. Together with (8)
this yields f(⊞δβX ,⊡jU) ⊆ int(Ti−1), which is the implementation of (6) for ∆Ti = ⊞δβX
and the constant control on ⊞δβX

ĝ(x) = ⊡jU for all x ∈ ⊞δβX . (12)

If we replace the constant control law (12) by a more flexible function g̃, we will in general
have to replace ĝδβ = ⊡jU in (10) by the overestimation P(g̃(⊞δβX)) ⊇ g̃(⊞δβX). The
inclusion test (10) therefore becomes

P(f(⊞δβX ,P(g̃(⊞δβX)))) ⊆ int(Ti−1). (13)

Applying the monotonicity property (8) to P(g̃(⊞δβX)) ⊇ g̃(⊞δβX) ⊇ ⊡jU yields

P(f(⊞δβX ,P(g̃(⊞δβX)))) ⊇ P(f(⊞δβX ,⊡jU)), (14)

where we assume ⊡jU ∈ ĝ(⊞δβX). The left hand side of (14) typically is a very conser-
vative overestimation of the right hand side. As a consequence, (10) can often be shown
to hold for ⊞δβX for which (13) does not hold due to its greater conservatism. For this
reason, a PWC controller typically results in a greater feasible area than a more flexible
controller. Note this remark also applies if a different technique than IA is used.

6

Figure 3 illustrates the PWC control law for the example discussed in Sect. 7. As a
preparation to Sect. 4 we state an appropriate cost function ϕ̂ for the computed PWC
controller (11):

ϕ̂(x) =

{

ϕ0(x) x ∈ T0
l(x, ĝ(x)) + ϕ̂(f(x, ĝ(x))) x ∈ T̂ \ T0.

(15)

This recursion yields a finite result for all x0 ∈ T̂ , since the set T0 is reached after at most
i∗ steps.

x1

x
2

ĝ
(x
)

10−1

1

0

−1

2

1

0

−1

−2

Figure 3: PWC control law ĝ(x) defined on 1214 hyperrectangles for the example from
Sect. 7. Colors indicate the value of u as shown in the bar on the right hand side.

4 Compact representation of the feasible set

We can use the PWC controller from Prop. 1 to generate feasible solutions to the FHOCP (3),
(4) by substituting the results T̂ , ĝ and ϕ̂ from the PWC controller construction for T0,
controller g0 and cost ϕ0, respectively. Then for every x0 = x̂(0) ∈ T̂ , the trajectory
x̂(i + 1) = f(x̂(i), û(i)), û(i) = ĝ(x̂(i)) with i = 0, . . . , h − 1 is a feasible solution to the
FHOCP (3), (4) for any h ∈ N. Since its construction involved the conservative operator
P, the domain T̂ of the PWC controller from Sect. 3 is an underestimation of the feasible
set of problem (3), (4), i.e. T̂ ⊆ F .

We anticipate that a more compact representation of the feasible set is useful to construct
an interpolated nonlinear control law. We can simplify the representation of T̂ by merging
state space hyperrectangles based on the following observation: If the hyperrectangles
associated with two sibling nodes (δ + 1, 2β) and (δ + 1, 2β + 1) are part of T̂ , then the
parent hyperrectangle ⊞δβX is also a member of T̂ . Formally, this aggregation of nodes

7

corresponds to solving the optimization problem

M∗ = argmin
M

|M| s.t.
⋃

(δ,β)∈M

⊞δβX =
⋃

(δ,β)∈M̂

⊞δβX . (16)

The resulting equivalent representation of T̂ is more compact since |M∗| ≤ |M̂|. Figure
4 visualizes the aggregation that results from Eq. (16) for the example from Sect. 7.

x1

x
2

10−1

1

0

−1

Figure 4: Underestimation of the feasible set (green) of the FHOCP (3), (4) for the
example from Sect. 7. The PWC controller domain is the same one as in Fig. 3. M∗

contains 207 nodes. The black ellipse represent the terminal set T0.

5 Approximation of the optimal control law

An approximation of the optimal control law g∗(x) on T̂ is constructed using an established
idea (see e.g. [5], [8] or [11]): We solve the FHOCP for some points x0 ∈ T̂ on a grid
and interpolate solutions based on the solution at the grid points. However, in contrast
to [8] and [11], we benefit here from the fact that the PWC control law from Prop. 1
provides a feasible solution to the FHOCP (using T̂ , ĝ and ϕ̂), which can be used as a
feasible starting point for (3), (4). This proves to be very helpful, since (3), (4) is generally
nonconvex and we may fail to solve it if no good starting guess is known.

In principle, the presented approach is not restricted with respect to the choice of
supporting points and interpolation functions. We may, for example, think of vertices of
simplices as supporting points and piecewise affine interpolation functions. Furthermore,
nearest neighbor, natural neighbor or any other multivariate interpolation scheme could

8

be applied. Here, we use a n-linear interpolation1 (NLI) on the existing hyperrectangle
tree, which is similar to the approach suggested in [8, 11].

The procedure is as follows. Let M∗ be the condensed leaf node set described in Sect. 4.
For any hyperrectangle ⊞δβX , (δ, β) ∈ M∗, we solve the FHOCP (3), (4) for the vertices

{v1, . . . , v2n} = extr(⊞δβX).

This yields the optimal controls u∗(vj) at the vertices. The bilinear interpolation function
on the hyperrectangle ⊞δβX = [x, x] with x ∈ Rn, x ∈ Rn can then be defined as

g̃δβ(x)=
2n
∑

j=1

u∗(vj)
n
∏

i=1

1

xi − xi

{

xi − xi if (vj)i = xi
xi − xi if (vj)i = xi

.

We repeat this procedure for all other (δ, β) ∈ M∗. Note that the FHOCP associated with
a vertex is only solved once for each vertex vj . Further note that the resulting controller
is not guaranteed to be asymptotically stable without further measures. However, control
constraints are satisfied due to convexity of U , since the NLI control law represents a
convex combination of the optimal control actions at the vertices vj, and since u∗(vj) ∈ U
holds by construction.

x1

x
2

g̃
(x
)

10−1

1

0

−1

2

1

0

−1

−2

Figure 5: NLI controller g̃(x) for the example from Sect. 7. The control law is defined
based on the optimal control actions of the 505 vertices of the shown 282 hyperrect-
angles. Colors indicate the value of u as shown in the bar on the right hand side.

5.1 Refinement of the interpolated control law

The procedure stated above provides an NLI control law g̃(x), whose level of detail depends
on the structure of M∗. Obviously, it would be more reasonable to link the refinement of

1 Special cases of n-linear interpolations are the bilinear interpolation for n = 2 and the trilinear
interpolation for n = 3. Except for n = 1, the resulting interpolation is nonlinear.

9

g̃(x) to features of the optimal control law g∗(x) such as its slopes and curvatures. In this
context, we check whether the optimal control actions at the supporting points associated
with the next bisection step are in agreement with the interpolated values for these points
or not. In case of disagreement, we execute the bisection; otherwise we keep the current
representation (a similar heuristic is used in ([11])). Formally, we have to analyze those
vertices of the hyperrectangle of either child node (e.g. the right node), that are not
vertices of the current node hyperrectangle, i.e.

{v′1, . . . , v
′
2n−1} = extr(⊞δ+1,2βX) \ {v1, . . . , v2n}.

If the condition ‖g̃δβ(v
′
j)−u∗(v′j)‖∞ > ǫ holds for at least one of the 2n−1 bisection points

v′j, then a bisection is necessary. Note that a bisection modifies the structure of the leaf

node set M̃ associated to the approximation g̃(x), i.e. the node (δ, β) is replaced by the
child nodes (δ + 1, 2β − 1) and (δ + 1, 2β). The final dual mode control law g̃(x) reads

g̃(x) =

{

g0(x) if x ∈ T0
g̃δβ(x) if x /∈ T0, x ∈ ⊞δβX , (δ, β)∈M̃.

(17)

See Fig. 5 for an illustration.

6 Combining performance and stability

The last three sections dealt with the calculation of a suboptimal PWC controller with
guaranteed stability and the approximation of the optimal control law in terms by a
NLI controller. It remains to compare and combine these two controllers for guaranteed
stability and their best possible performance. While ĝ(x) guarantees stability but was
constructed without consideration of its performance, g̃(x) provides better performance
without guaranteed stability. Proposition 2 states an efficient combination of the two
controllers.

Proposition 2: The control law

g(x) =

{

g̃(x) if ϕ̃(x) ≤ ϕ̂(x)
ĝ(x) otherwise

(18)

with

ϕ̃(x) =

ϕ0(x) x ∈ T0
l(x, g̃(x)) + ϕ̃(f(x, g̃(x))) x ∈ T̂ \ T0
∞ x /∈ T̂

(19)

is a FAS controller on T̂ according to Def. 1.

Proof. Stability follows for the same reasons as in the proof of Prop. 1, i.e. because the
asymptotically stable control law g0(x) is applied on the domain T0. The PWC controller
ĝ(x) is feasible and attractive according to Prop. 1. It remains to prove that g(x) is
feasible and attractive, if the NLI controller g̃(x) is selected in (18). Selecting g̃(x) implies
ϕ̃(x) ≤ ϕ̂(x) by definition. Since ϕ̂(x) < ∞ for all x ∈ T̂ according to the comment below
(15), this implies ϕ̃(x) < ∞ for all x ∈ T̂ . By its definition (19) ϕ̃(x) can only be finite,
however, if the trajectory that results from g̃(x) remains in T̂ for all times and is driven
into T0 ⊆ T̂ in a finite time. This implies feasibility and attractivity. �

10

7 Numerical example

We apply the proposed approach to the nonlinear system x(k + 1) = f(x(k), u(k)) with

f1(x, u) = x1 + 0.1x2 + 0.1 (0.5 + 0.5x1)u
f2(x, u) = x2 + 0.1x1 + 0.1 (0.5 − 2.0x2)u

where X = [−1, 1]× [−1, 1] and U = [−2, 2]. The system is a discrete-time variant2 of the
continuous time system treated in [3], [4] and [11]. Obviously, (0, 0) is an equilibrium. We
claim without proof that g0(x) = −K x with K =

(

1.9198 1.9198
)

is a FAS control
law according to Def. 1 on T0 = {x ∈ Rn | ‖x‖2P ≤ α2} with

P =

(

5.9353 5.2774
5.2774 5.9353

)

and α = 0.2462.

We choose the prediction horizon h = 15, stage cost l(x, u) = ‖x‖2Q + ‖u‖2R with

Q =

(

0.05 0.00
0.00 0.05

)

and R = 0.1

and the terminal cost ϕ0(x) = ‖x‖2P . The maximal depth of the bisection tree in Alg. 1 is
set to d = 14. Furthermore, we define r = 17 input candidates with ⊡jU = −2+(j−1)·0.25
and j = 1, . . . , r. We set the tolerance to ǫ = 0.1 when computing the NLI controller.

x1

x
2

10−1

1

0

−1

Figure 6: Crosses mark random initial states x0 ∈ T̂ . Red and trajectories result
from the application of the PWC controller ĝ(x) and the combined controller from
Sect. 6, respectively. Blue trajectories are (locally) optimal solutions. Each trajectory
consists of 15 steps. Black ellipse marks T0.

2 An Euler discretization with sample time ∆t = 0.1 s was applied to the continuous system presented
in [4].

11

Figures 3, 4 and 5 visualize the resulting PWC controller, the compact representation
of the feasible set, and the NLI control law, respectively. We compare the combined
controller and the PWC controller to the optimal solution that results from solving (3),
(4) for 500 randomly generated initial conditions x0 ∈ T̂ shown in Fig. 6. On average
cost function values of the combined controller are 4% higher than those of the optimal
solution. In contrast, the PWC controller results in an average increase of 103%. In total
we calculated 500 · h = 7500 propagation steps. In 100 out of these 7500 cases, the PWC
controller is used instead of the NLI controller to guarantee asymptotic stability.

The feasible set T̂ that results from our method is about 11% larger than the one that
results with a nonlinear controller alone [11] using the same bisection depth. We need 505
coefficients in the nonlinear controller (581 in [11]).

8 Conclusions

We presented a method for the computation of suboptimal explicit piecewise constant
(PWC) control laws for nonlinear discrete-time systems. While suboptimal, the PWC
control law provides a feasible solution to the FHOCP, which can be used to calculate
an explicit expression for a nonlinear approximation of the optimal control law. We then
combine the PWC control law and the nonlinear control law to obtain both guaranteed
stability with the former and good performance with the latter.

The approach was illustrated with a benchmark example [3, 4, 11]. Numerical experi-
ments show that the combined controller results in a suboptimality of about 4% for this
example. The PWC control is chosen in very few cases (< 2%) by the combined controller.
We were able to increase the area of the feasible set by about 11% compared to previous
approaches.

Future work has to address the application of the method to systems of higher dimen-
sion and technical relevant processes. Due to the exponential cost (with respect to n)
of bisection algorithms, the procedure is naturally not suitable for large-scale systems.
However, the authors believe that systems up to dimension n = 5 can benefit from the
results of the presented method.

References

[1] A. Bemporad, F. Borrelli, and M. Morari. Model predictive control based on linear
programming - The explicit solution. IEEE Transactions on Automatic Control,
47(12):1974–1985, 2002.

[2] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The explicit linear
quadratic regulator for constrained systems. Automatica, 38(1):3–20, 2002.

[3] J. M. Bravo, D. Limon, T. Alamo, and E. F. Camacho. On the computation of
invariant sets for constrained nonlinear systems: An interval arithmetic approach.
Automatica, 41(9):1583–1589, 2005.

[4] H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive control
scheme with guaranteed stability. Automatica, 34(10):1205–1217, 1998.

[5] T. A. Johansen. Approximate explicit receding horizon control of constrained non-
linear systems. Automatica, 40:293–300, 2004.

12

[6] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic
Publishers, 1996.

[7] D. Q. Mayne, J. B. Rawlings, C.V. Rao, and P. O. M. Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36:789–814, 2000.

[8] D. M. Raimondo, S. Riverso, C. N. Jones, and M. Morari. A robust explicit nonlinear
MPC controller with input-to-state stability guarantees. In Proc. of 18th IFAC World
Congress, 2011.

[9] M. Schulze Darup and M. Mönnigmann. Explicit feasibil initialization for nonlinear
MPC with guaranteed stability. In Proc. of 50th Conference on Decision and Control,
2011.

[10] M. M. Seron, G. C. Goodwin, and J. A. DeDona. Finitely parameterised implemen-
tation of receding horizon control for constrained linear systems. In Proc. of the 2002
American Control Conference, 2002.

[11] S. Summers, D. M. Raimondo, C. N. Jones, J. Lygeros, and M. Morari. Fast explicit
nonlinear model predictive control via multiresolution function approximation with
guaranteed stability. In Proc. of 8th IFAC Symposium on Nonlinear Control Systems,
2010.

[12] M. Vidyasagar. Nonlinear System Analysis. Society for Industrial Mathematics, 2002.

13

	Introduction
	Problem statement and preliminaries
	Piecewise constant controller with guaranteed stability
	PWC control law defined on a hyperrectangle-tree

	Compact representation of the feasible set
	Approximation of the optimal control law
	Refinement of the interpolated control law

	Combining performance and stability
	Numerical example
	Conclusions

