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Abstract

We compare two established and a new method for the calculation of spectral bounds
for Hessian matrices on hyperrectangles by applying them to a large collection of 1522
objective and constraint functions extracted from benchmark global optimization prob-
lems. Both the tightness of the spectral bounds and the computational effort of the three
methods, which apply to C2 functions ϕ : Rn → R that can be written as codelists, are
assessed. Specifically, we compare eigenvalue bounds obtained with the interval variant
of Gershgorin’s circle criterion [2, 8], Hertz and Rohn’s [9, 20] method for tight bounds
of interval matrices, and a recently proposed Hessian matrix eigenvalue arithmetic [16],
which deliberately avoids the computation of interval Hessians. The eigenvalue arithmetic
provides tighter, as tight, and less tight bounds than the interval variant of Gershgorin’s
circle criterion in about 15%, 61%, and 24% of the examples, respectively. Hertz and
Rohn’s method results in bounds that are always as tight as or tighter than those from
Gershgorin’s circle criterion, and as tight as or tighter than those from the eigenvalue
arithmetic in 96% of the cases. In 4% of the examples, the eigenvalue arithmetic results
in tighter bounds than Hertz and Rohn’s method. This result is surprising, since Hertz
and Rohn’s method provides tight bounds for interval matrices. The eigenvalue arithmetic
provides tighter bounds in these cases, since it is not based on interval matrices.

Keywords. eigenvalue bounds, spectral bounds, Hessian, interval matrix, global opti-
mization.

1 Introduction

We compare a recently proposed method [14] for the calculation of spectral bounds for
Hessian matrices on hyperrectangles to existing ones. We begin with a concise problem
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statement. Let ϕ : U ⊆ R
n → R be a twice continuously differentiable function on an

open set U ⊆ R
n and let B = [x1, x1]×· · ·× [xn, xn] be a closed hyperrectangle in U . The

problem of interest reads as follows.

Find λ ∈ R, λ ∈ R such that

λ ≤ λ ≤ λ for all eigenvalues λ of all matrices H ∈ H(ϕ,B),
(1)

where H(ϕ,B) is the set of Hessian matrices of ϕ on B

H(ϕ,B) =
{

∇2ϕ(x) |x ∈ B
}

. (2)

A bound λ (resp. λ) is called tight if there exists at least one matrix H in the matrix set
with an eigenvalue λ = λ (resp. λ = λ). Note that the bounds λ, λ in (1) may or may not
be tight.

Problem (1) appears in various applications. It is crucial, for example, to establish
the convexity of nonlinear functions in nonlinear optimization, since methods for solving
nonconvex optimization problems are much less efficient than those for their convex coun-
terparts. If (1) results in λ ≥ 0 then ϕ is convex on the interior of the hyperrectangle B
[4, 19]. If, in contrast, λ < 0 results from (1), then ϕ(x) may or may not be convex on B,
but

ϕ̆(x) = ϕ(x)− 1

2
λ

n
∑

i=1

(xi − xi) (xi − xi) (3)

is a convex function that underestimates ϕ on B and coincides with ϕ at the vertices of
B [3,11,12]. Underestimators of this type are employed in nonconvex global optimization
to bound the global minimum from below. Essentially, B is bisected into smaller and
smaller hyperrectangles B̃ in these approaches to obtain tighter and tighter convex under-
estimators. This requires solving (1) repeatedly for different domains B̃ ⊂ B but the same
function ϕ. As a result, a considerable fraction of the total computational time is spent
on the calculation of convex underestimators [1]. Consequently, fast methods for solving
(1) are of interest in this field. Problem (1) also arises in automatic control and systems
theory. We refer to [15] for a simple example, where eigenvalue bounds for Hessian matrix
sets are used to prove the positive or negative invariance of regions in the state space of
nonlinear dynamical systems.

Problem (1) is commonly solved in two steps: (i) The interval Hessian matrix is calcu-
lated. (ii) One out of several existing methods that provide bounds on the eigenvalues of
symmetric interval matrices [2, 9, 20] is applied. Interval Hessian matrices can efficiently
be computed by combining interval arithmetics (IA for short; see, e.g., [17]) and automatic
differentiation (AD for short; see, e.g., [7,18]). This results in intervals [∇2ϕ

ij
,∇2ϕij ] ⊂ R,

i = 1, . . . , n, j = 1, . . . , n, such that
(

∇2ϕ(x)
)

ij
∈ [∇2ϕ

ij
,∇2ϕij] (4)

for all x ∈ B, where ∇2ϕ
ij
= ∇2ϕ

ji
and ∇2ϕij = ∇2ϕji due to symmetry of ∇2ϕ(x). We

refer to the set of matrices

HIA(ϕ,B) =
{

H ∈ R
n×n

∣

∣

∣Hij ∈ [∇2ϕ
ij
,∇2ϕij], H = HT

}

(5)

as the interval Hessian of ϕ on B. After calculating HIA(ϕ,B), the spectral bounds can
be found by solving the following problem.

Find λ ∈ R, λ ∈ R such that

λ ≤ λ ≤ λ for all eigenvalues λ of all matrices H ∈ HIA(ϕ,B).
(6)
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The calculation of HIA(ϕ,B) requires O(n2)N(ϕ) operations if the forward mode of auto-
matic differentiation [7] is used, where N(ϕ) denotes the number of operations needed to
evaluate ϕ at a point in its domain. With the backward mode of automatic differentiation,
this complexity can be reduced to O(n)N(ϕ) [7].

There exist a number of approaches to solving (6). Assuming the interval Hessian
HIA(ϕ,B) is available, the computational complexity of these methods varies between
O(n2) for the interval variant of Gershgorin’s circle criterion [2,8] and O(2n n3) for Hertz
and Rohn’s method [9, 20], which provides tight spectral bounds for HIA(ϕ,B) (see Sect.
2.1 and 2.3 for details). However, since H(ϕ,B) ⊆ HIA(ϕ,B), problem (6) is conservative
compared to the original problem (1). In [16], we introduced a method for solving (1) that
does not require the interval Hessian HIA(ϕ,B) and therefore avoids the conservatism
inherent in (6). The major advantage of this method is the low computational complexity,
which was shown to be of order O(n)N(ϕ) [16]. Note that the total numerical effort of
the approaches mentioned before is the sum of the complexity for calculating HIA(ϕ,B)
and solving (6). At least O(n)N(ϕ) + O(n2) operations are needed in these cases, and
implementations based on forward mode automatic differentiation and Gershgorin’s circle
criterion require O(n2)N(ϕ) +O(n2) operations.

It is the purpose of this paper to compare spectral bounds obtained with the recently
proposed method [16] to those calculated by applying Gershgorin’s circle criterion and
Hertz and Rohn’s method to the interval Hessian. Since the motivation for developing
a new method was the application of Hessian eigenvalue bounds in global optimization,
we apply the three compared methods to a large set of test functions generated from
a collection of benchmark global optimization problems. Specifically, we extract 1522
objective and constraint functions from the COCONUT collection [22]. For each function,
we randomly generate 100 hyperrectangles in its domain and compute the associated lower
and upper eigenvalue bounds with the three methods. We compare both the resulting
spectral bounds and the number of operations required by each of the approaches.

After introducing some notation in the remainder of this section, the three methods are
summarized in Sect. 2. The central benchmark, which constitutes the main result of the
paper, is stated in Sect. 3. Finally, conclusions are given in Sect. 4.

Notation. Pairs of lower and upper bounds such as λ ≤ λ ≤ λ are denoted by intervals,
i.e. λ ∈ [λ, λ] ⊂ R, for short. Intervals [a, a] are further abbreviated by [a] := [a, a]. Interval
equality [a] = [b] is understood as a = b and a = b. Calculations with intervals are carried
out with standard interval arithmetics rules, which are collected in Fact 1 without proof
(see, e.g., [17]).

Fact 1: (basic interval arithmetics)
Let [a] and [b] be intervals and a ∈ [a], b ∈ [b] and c ∈ R be arbitrary real numbers.

Then

a+ b ∈ [a] + [b] := [a+ b, a+ b], (7)

a b ∈ [a] [b] := [min
(

a b, a b, a b, a b
)

,max
(

a b, a b, a b, a b
)

]. (8)

1/b ∈ 1/[b] := [1/b, 1/b] (9)

a+ c ∈ [a] + c := [a+ c, a+ c] (10)

c a ∈ c [a] :=

{

[c a, c a] if c ≥ 0
[c a, c a] if c < 0,

(11)

where 0 /∈ [b, b] is assumed (9). Furthermore, the power of natural numbers m ∈ N, the
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square root, the exponential and the natural logarithm of an interval are defined as follows.

am ∈ [am] :=







[am, am] if a > 0 or m odd
[am, am] if a < 0 and m even
[0,max (−a, a)m] if 0 ∈ [a] and m even

(12)

√
a ∈

[

√

[a]
]

:= [
√
a,
√
a], (13)

exp(a) ∈ [exp([a])] := [exp(a), exp(a)], (14)

ln(a) ∈ [ln([a])] := [ln a, ln a], (15)

where a ≥ 0 are assumed in (13) and (15), respectively.

By a slight abuse of notation we denote both a real interval [x] = [x, x] ⊂ R and a
hyperrectangle [x] = [x, x] = [x1, x1] × · · · × [xn, xn] ⊂ R

n, n ≥ 2 by a lower case letter
surrounded by brackets. As a generalization of Eqs. (12)–(15), interval extensions of
functions f(x), f : U ⊆ R

n → R, n ≥ 1, are denoted by [f([x])]. We denote gradients and
the Hessian matrices of a function f : U ⊆ R

n → R by ∇f(x) and ∇2f(x), respectively,
if they exist. Whenever ∇f

i
, ∇f i ∈ R, i = 1, . . . , n are known, then these bounds

define an interval vector denoted by [∇f ] = [∇f ,∇f ]. Lower and upper bounds ∇2f
ij
,

∇2f ij ∈ R, i = 1, . . . , n and j = 1, . . . , n define an interval matrix of the type (5), which

is denoted by [∇2f ] = [∇2f ,∇2f ]. Interval vectors and matrices are added component by
component. The multiplication of an interval vector or matrix by an interval is understood

componentwise. Finally, let e(i) ∈ R
n be defined by e

(i)
j = δij , where δij is Kronecker’s δ,

and let Z denote the zero matrix of dimension n× n.

2 Numerical calculation of eigenvalue bounds of Hessian

matrices on hyperrectangles

In this section we introduce the methods for the calculation of eigenvalue bounds that are
applied to the collection of test cases in Sect. 3. We give only a short introduction, since
these methods have been explained in detail elsewhere [2, 8, 9, 14,16].

The compared methods have in common that they are based on a codelist. A codelist
results if a function ϕ is broken down into a sequence of elementary unary and binary op-
erations. More specifically, let ϕ : U ⊆ R

n → R denote a twice continuously differentiable
function. Assume ϕ can be evaluated at an arbitrary point x ∈ U by carrying out a finite
sequence of operations of the form

y1 = x1
...

yn = xn
yn+1 = Φn+1(y1, . . . , yn)
yn+2 = Φn+2(y1, . . . , yn, yn+1)

...
yn+t = Φn+t(y1, . . . , yn, yn+1, . . . , yn+t−1)

ϕ = yn+t

(16)

where each Φn+k, k = 1, . . . , t, represents one of the elementary operations listed in the first
column of Tab. 1. The codelist lines yk for the example ϕ(x1, x2, x3) = exp(x1−2x22+3x33)
are given in the second column in (17) below. The interval extension of a function ϕ can
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be evaluated by replacing the operations in each line of (16) by their interval variants
listed in Fact 1. For the example this results in replacing the yk from the second column
by the [yk] from the third column of (17).

Table 1: Rules for the calculation of yk, [yk], [y′k] and [y′′k ] in the k-th line of the
codelist (16). [y′k] refers to the interval gradient of line k with respect to x. The
operations Φk shown here have been selected more or less arbitrarily to accommodate
a reasonably large collection of examples ϕ treated in Sect. 3. The list of Φk can easily
be extended [16].

op Φk yk [yk] [y′k] [y′′k ]

var xk [xk] [e(k), e(k)] [Z,Z]

add yi + yj [yi] + [yj ] [y′i] + [y′j ] [y′′i ] + [y′′j ]
mul yi yj [yi] [yj] [yi] [y

′

j ] + [yj] [y
′

i] [yi] [y
′′

j ] + [yj] [y
′′

i ] + [y′i] [y
′

j ]
T + [y′j ] [y

′

i]
T

addConst yi + c [yi] + [c, c] [y′i] [y′′i ]
mulByConst c yi c [yi] c [y′i] c [y′′i ]
powNat ymi [yi]

m m [yi]
m−1 [y′i] m [yi]

m−2 ((m− 1) ([y′i] [y
′

i]
T ) + [yi] [y

′′

i ])

oneOver 1/yi 1/[yi] −[yk]2 [y′i] [yk]
2 (2 [yk] ([y

′

i] [y
′

i]
T )− [y′′j ])

square y2i [yi]
2 2 [yi] [y

′

i] 2 ([y′i] [y
′

i]
T + [yi] [y

′′

i ])
cube y3i [yi]

3 3 [yi]
2 [y′i] 3 [yi] (2 [y

′

i] [y
′

i]
T + [yi] [y

′′

i ])

sqrt
√
yi [

√

[yi]] 1/(2 [yk]) [y
′

i] 1/(2 [yk])([y
′′

i ] + 1/(−2 [yi]) ([y′i] [y′i]T ))
exp exp(yi) [exp([yi])] [yk] [y

′

i] [yk] ([y
′

i] [y
′

i]
T + [y′′i ])

ln ln(yi) [ln([yi])] 1/[yi] [y
′

i] 1/[yi] ([y
′′

i ]− 1/[yi] ([y
′

i] [y
′

i]
T ))

2.1 Interval Hessians, Hertz and Rohn’s method, and Gershgorin’s circle

criterion

Just as for the calculation of the interval extension of a function, a codelist can be extended
to calculate gradients ∇ϕ and Hessians ∇2ϕ and their interval extensions [∇ϕ] and [∇2ϕ]
by combining automatic differentiation (see, e.g., [7,18]) and interval arithmetics (see, e.g.,
[17]). The required results are summarized in the following algorithm, which summarizes
results from [7] (see also [5, 18]). We recall that Z denotes the zero matrix of dimension
n× n.

Algorithm 1: [5,7] Assume ϕ is twice continuously differentiable on U and can be written
as a codelist. Let B ⊂ U be a hyperrectangle. Then, for all x ∈ B, we have ϕ(x) ∈ [ϕ],
∇ϕ(x) ∈ [∇ϕ], and ∇2ϕ(x) ∈ [∇2ϕ], where [ϕ], [∇ϕ], and [∇2ϕ] are calculated by the
following algorithm.

1. For k = 1, . . . , n, set [yk] = [xk, xk], [y
′
k] = [e(k), e(k)], and set [y′′k ] = [Z,Z].

2. For k = n + 1, . . . , n + t, calculate [yk], [y
′
k] and [y′′k ] according to columns 3−5 of

Tab. 1, respectively.

3. Set [ϕ] = [yn+t], [∇ϕ] = [y′n+t], and [∇2ϕ] = [y′′n+t].

Algorithm 1 implements the forward mode of automatic differentiation. We state the
corresponding backward mode algorithm in the appendix for completeness and ease of
reference in the comparisons to follow. We refer to a codelist (16), that has been extended
by additional operations for the calculation of interval extensions or derivatives, as an
extended codelist for short. The codelist (16) and the extended codelist that results from
Alg. 1 are illustrated with an example.
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Example 1: (interval Hessian for exp(x1− 2x22+3x33)) Let B ⊂ R
3 be an arbitrary closed

hyperrectangle and consider ϕ : B → R, ϕ(x1, x2, x3) = exp(x1 − 2x22 + 3x33). Alg. 1
results in the following expressions for [yk], [y

′
k], and [y′′k ], which are first stated in a table

for brevity. The expressions for yk stated in (17) do not result from Alg. 1, but are given
for illustration of the codelist (16) of ϕ.

k yk [yk] [y′k] [y′′k ]

1 x1 [x1] ([1, 1], [0, 0], [0, 0])T [Z,Z]
2 x2 [x2] ([0, 0], [1, 1], [0, 0])T [Z,Z]
3 x3 [x3] ([0, 0], [0, 0], [1, 1])T [Z,Z]
4 y22 [y2]

2 2 [y2] [y
′

2] 2 ([y′2] [y
′

2]
T + [y2] [y

′′

2 ])
5 y33 [y3]

3 3 [y3]
2 [y′3] 3 [y3] (2 ([y

′

3] [y
′

3])
T + [y3] [y

′′

3 ])
6 −2 y4 −2 [y4] −2 [y′4] −2 [y′′4 ]
7 3 y5 3 [y5] 3 [y′5] 3 [y′′5 ]
8 y1 + y6 [y1] + [y6] [y′1] + [y′6] [y′′1 ] + [y′′6 ]
9 y7 + y8 [y7] + [y8] [y′7] + [y′8] [y′′7 ] + [y′′8 ]

10 exp(y9) [exp([y9])] [y10] [y
′

9] [y10] ([y
′

9] [y
′

9]
T + [y′′9 ])

ϕ = y10 [ϕ] = [y10] [∇ϕ] = [y′10] [∇2ϕ] = [y′′10]

(17)

The codelist for ϕ of the form (16) results from rewriting the second column of (17) as
y1 = x1, y2 = x2, y3 = x3, y4 = y22, . . . , y10 = exp(y9), ϕ = y10. The extended codelist for
[y′′k ] can be constructed by carrying out the expressions for [yk], [y

′
k], and [y′′k ] and storing

the results line by line, i.e.,

[y1] = [x1] , [y′1] = ([1, 1], [0, 0], [0, 0])T, [y′′1 ] = [Z,Z],
...

...
...

[y10] = [exp([y9])] , [y′10] = [y10] [y
′
9], [y′′10] = [y10] ([y

′
9] [y

′
9]
T + [y′′9 ]),

(18)

where the interval Hessian [∇2ϕ] reads as [y′′10] in the codelist notation. Note that the
intermediate interval function values [yk] and the derivatives [y′k] are needed to calculate
[∇2ϕ], while the intermediate function values yk of the original codelist for ϕ are not.

After calculating the interval Hessian [∇2ϕ] with Alg. 1, the relaxed problem (6) can
be solved with a number of methods (see [10] for an overview). As pointed out in Sect. 1,
we choose Gershgorin’s circle criterion for its favorable computational complexity (see
Sect. 2.3). In addition, we apply Hertz and Rohn’s method, because it provides the tight
eigenvalue bounds that solve (6). The interval variant of Gershgorin’s circle criterion and
Hertz and Rohn’s method are summarized in the following two theorems.

Theorem 1 (interval Gershgorin [2,8]): Let [∇2ϕ
ij
,∇2ϕij ], i, j = 1, . . . , n be intervals that

define a symmetric interval matrix of the form (5). Then

λ = min
i∈{1,...,n}

∇2ϕ
ii
− ri , λ = max

i∈{1,...,n}
∇2ϕii + ri (19)

where the Gershgorin-radii ri are defined by ri =
∑n

j=1,j 6=imax(−∇2ϕ
ij
,∇2ϕij), solve

problem (6).

Theorem 2 (Hertz [9] and Rohn [20]): Let [∇2ϕ
ij
,∇2ϕij ], i, j = 1, . . . , n be intervals that

define a symmetric interval matrix of the form (5). Define the matrices S(k) ∈ R
n×2k for

k = 1, . . . , n recursively by

S(k) =

(

S(k−1) S(k−1)

1 . . . 1 −1 . . . −1

)

, S(1) =
(

1 −1
)

.
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Define the symmetric matrices L(k) ∈ R
n×n and U (k) ∈ R

n×n for k = 1, . . . , 2n−1 according
to

L
(k)
ij =

{

∇2ϕ
ij

if i = j or S
(n)
ik · S

(n)
jk = 1

∇2ϕij otherwise
, U

(k)
ij =

{

∇2ϕij if L
(k)
ij = ∇2ϕ

ij

∇2ϕ
ij

otherwise
.

Then
λ = min

k∈{1,...,2n−1}
λmin(L

(k)) , λ = max
k∈{1,...,2n−1}

λmax(U
(k)), (20)

where λmin(A) and λmax(A) denote the smallest and largest (real) eigenvalue of any sym-
metric real matrix A = AT , respectively, solve problem (6).

We briefly illustrate Thms. 1 and 2 by applying them to the sample function from
Example 1.

Example 2: (Gershgorin and Hertz/Rohn applied to exp(x1−2x22+3x33)) Without detailing
the calculations we claim that substituting B = [−0.3, 0.2] × [−0.1, 0.6] × [−0.4, 0.5] into
the extended codelist (18) yields

[∇2ϕ] = [y′′10] =





[0.298, 1.777] [−4.265, 0.7109] [0.000, 3.999]
[−4.265, 0.7109] [−7.109, 3.128] [−9.597, 1.599]
[0.000, 3.999] [−9.597, 1.599] [−12.795, 24.991]



 .

Applying Thm. 1 yields the n = 3 Gershgorin radii r1 = 4.265 + 3.999 = 8.264, r2 =
4.265 + 9.597 = 13.862 and r3 = 3.999 + 9.597 = 13.596. Upon substitution into (19) the
spectral bounds

[λG] = [λG, λG] = [−12.795 − 13.596, 24.991 + 13.596] = [−26.391, 38.587] (21)

result, where the subscript G is short for Gershgorin. Hertz and Rohn’s method requires to
calculate 2 · 2n−1 = 2n = 8 vertex matrices L(1), . . . , L(4) and U (1), . . . , U (4) and the sign
matrix S(3) defined in Thm. 2. Equation (20) yields

[λH] = [λH, λH] = [λmin(L
(2)), λmax(U

(3))] = [−20.597, 29.603] (22)

with L(2) =





0.298 0.711 3.999
0.711 −7.109 −9.597
3.999 −9.597 −12.795



 and U (3) =





1.777 −4.265 3.999
−4.265 3.128 −9.597
3.999 −9.597 24.991



,

where the subscript H is short for Hertz and Rohn. We only list the matrices L(2) and U (3)

that are selected in the minimization and maximization in (20) and omit the remaining
six vertex matrices for brevity.

2.2 Eigenvalue arithmetic

We summarize the eigenvalue arithmetic in Alg. 2 and Tab. 2 and refer the reader to
[14,16] for details. Algorithm 2 implies that the eigenvalue arithmetic does not require the
interval Hessian, but interval gradients suffice. Some recurring calculations to be carried
out with the interval gradients can conveniently be summarized with the functions Λs and
Λt defined by

[Λs([a])] =

{ [

0,
∑n

i=1 max(a2i , a
2
i )
]

, if n > 1

[a]2 , if n = 1
(23)
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and

[Λt([a], [b])] =

{

[−β, β] +
∑n

i=1[ai, ai] [bi, bi], if n > 1
2 [a] [b], if n = 1

(24)

where β =

√

(
∑n

i=1 max(a2i , a
2
i ))(

∑n
i=1max(b2i , b

2
i )). We refer to [16] for a detailed discus-

sion of the meaning of [Λs([a])] and [Λt([a], [b])].

Table 2: Rules for the calculation of [λk] in the k-th line of the codelist (16). We
assume that [yi], [y′i] and [yj], [y′j] for all previous lines i ≤ k, j ≤ k have been
calculated according to the rules from Tab. 1 and can be reused in line k. Rules for yk
are repeated here for convenience. The functions [Λs]([a]) and [Λt]([a], [b]) are defined
in (23) and (24).

op Φk yk [λk]

var xk [0, 0]

add yi + yj [λi] + [λj ]
mul yi yj [yj ] [λi] + [yi] [λj ] + [Λt([y

′

i], [y
′

j ])]
addConst yi + c [λi]
mulByConst c yi c [λi]
powNat ymi m[yi]

m−2((m−1)[Λs([y
′

i])] + [yi] [λi])

oneOver 1/yi [yk]
2 (2 [yk] [Λs([y

′

i])]− [λi])
square y2i 2 ([Λs([y

′

i])] + [yi] [λi])
cube y3i 3 [yi] (2 [Λs([y

′

i])] + [yi] [λi])
sqrt

√
yi 1/(2 [yk])([λi] + 1/(−2 [yi])[Λs([y

′

i])])
exp exp(yi) [yk] ([Λs([y

′

i])] + [λi])
ln ln(yi) 1/[yi] ([λi]− 1/[yi] [Λs([y

′

i])])

Algorithm 2 (eigenvalue arithmetic [16]): Assume ϕ is twice continuously differentiable on
U and can be written as a codelist. Let B ⊂ U be a hyperrectangle. Then, for all x ∈ B,
we have ϕ(x) ∈ [ϕ], ∇ϕ(x) ∈ [∇ϕ], and λϕ ∈ [λϕ] for all eigenvalues of ∇2ϕ(x), where
[ϕ], [∇ϕ], and [λϕ] are calculated by the following algorithm.

1. For k = 1, . . . , n, set [yk] = [xk, xk], [y
′
k] = [e(k), e(k)], and set [λk] = [0, 0].

2. For k = n + 1, . . . , n + t, calculate [yk], [y
′
k] and [λk] according to columns 3 and 4

of Tab. 1 and column 3 of Tab. 2, respectively.

3. Set [ϕ] = [yn+t], [∇ϕ] = [y′n+t], and [λϕ] = [λn+t].

Algorithm 2 is illustrated with the sample function from Example 1 and 2.

Example 3: Let B and ϕ : B → R be as in Example 1. Applying Alg. 2 to ϕ results in
the expressions for [yk], [y

′
k], and [λk] listed in (25), which we state in a table for brevity.

Note that [yk] and [y′k] are equal to those in (17). These expressions are repeated here,
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since the [λk] depend on them.

k [yk] [y′k] [λk]

1 [x1] ([1, 1], [0, 0], [0, 0])T [0, 0]
2 [x2] ([0, 0], [1, 1], [0, 0])T [0, 0]
3 [x3] ([0, 0], [0, 0], [1, 1])T [0, 0]
4 [y2]

2 2 [y2] [y
′

2] 2 ([Λs([y
′

2])] + [y2] [λ2])
5 [y3]

3 3 [y3]
2 [y′3] 3 [y3] (2 [Λs([y

′

3])] + [y3] [λ3])
6 −2 [y4] −2 [y′4] −2 [λ4]
7 3 [y5] 3 [y′5] 3 [λ5]
8 [y1] + [y6] [y′1] + [y′6] [λ1] + [λ6]
9 [y7] + [y8] [y′7] + [y′8] [λ7] + [λ8]

10 [exp([y9])] [y10] [y
′

9] [y10] ([Λs([y
′

9])] + [λ9])
[ϕ] = [y10] [∇ϕ] = [y′10] [λϕ] = [λ10]

(25)

The extended codelist for [λϕ] results from evaluating and storing the expressions listed
in (25) line by line, i.e.,

[y1] = [x1] , [y′1] = ([1, 1], [0, 0], [0, 0])T, [λ1] = [0, 0],
...

...
...

[y10] = [exp([y9])] , [y′10] = [y10] [y
′
9], [λ10] = [y10] ([Λs([y

′
9])] + [λ9]).

(26)
Without detailing the calculations we claim that applying (26) to the particular hyperrect-
angle B = [−0.3, 0.2] × [−0.1, 0.6] × [−0.4, 0.5] from Example 2 results in

[λA] = [λϕ] = [−19.904, 37.004], (27)

where the subscript A is short for arithmetic.

By comparing the spectral bounds (21), (22) and (27), we find the relations λG < λH <
λA and λH < λA < λG for the discussed example. Note that the lower bound from the
eigenvalue arithmetic is tighter than the tight bound for the interval Hessian obtained with
Hertz and Rohn’s method. We recall this result may arise, because the interval Hessian
HIA is in general a superset of the actual matrix set H of interest defined in (2). Since the
eigenvalue arithmetic is not based on interval Hessians, it may result in tighter eigenvalue
bounds than the tight eigenvalue bounds for the interval Hessian.

We stress that the relations between λG, λH, λA and λH, λA, λG found in Examples
1–3 do not hold in general. It is the very point of Section 3 to analyze these relations for
a large collection of examples.

2.3 Computational complexities

The discussed methods do not only differ with respect to the tightness of the eigenvalue
bounds, but also with respect to computational cost. Calculating the interval Hessian
matrix with forward or backward mode automatic differentiation and applying Hertz and
Rohn’s method requires

O(n2)N(ϕ) +O(2nn3) or O(n)N(ϕ) +O(2nn3) (28)

operations [16], respectively, where N(ϕ) denotes the number of operations needed for the
evaluation of ϕ at a point. Calculating the interval Hessian with forward or backward
mode automatic differentiation and applying Gershgorin’s circle criterion takes

O(n2)N(ϕ) +O(n2) or O(n)N(ϕ) +O(n2) (29)
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operations [16], respectively. Calculating eigenvalue bounds with the arithmetic from [16]
does not involve the interval Hessian and requires

O(n)N(ϕ) (30)

operations [16]. Due to the O(2n n3) term in (28) the computational cost of Hertz and
Rohn’s grows drastically compared to (29) and (30). The complexities (29) and (30),
however, are very similar and a detailed comparison is necessary. We therefore compare
the numbers of operations associated with the eigenvalue arithmetic and the forward and
backward variants of the interval Hessian computation in combination with Gershgorin’s
circle criterion. These numbers are denoted by NA(ϕ), NG(ϕ) and NbG(ϕ), respectively.
NA(ϕ), NG(ϕ) and NbG(ϕ) can be determind for any specific ϕ by counting operations in
the extended codelist of ϕ. Table 3 lists the number of operations needed in each line of
the extended codelist by line type.

Table 3: Number of operations necessary to calculate yk, [yk], [y′k], [λk] and [y′′k ]
introduced in Algs. 1 and 2 for each type of line of a codelist (16). The last column
lists the number of operations for the evaluation of the set of updates Uk needed to
calculate [∇2ϕ] with the backward mode of automatic differentiation. See Alg. 3
and Rem. 1 in the appendix for details. N([y′k]) denotes the number of operations
necessary to compute [y′k] assuming that [yk] is already available. N([λk]), N([y′′k ]),
and N(Uk) denote the number of operations necessary to compute [λk], [y

′′
k ] and the

updates of [u] in line k, respectively, assuming [yk] and [y′k] are available. Listed
numbers apply for n > 1.

op Φk N(yk) N([yk]) N([y′k]) N([λk]) N([y′′k ]) N(Uk)
var 1 0 0 0 0 0

add 1 2 2n 2 n (n+ 1) 8n
mul 1 8 18n 18n+ 21 19n (n+ 1) 60n
addConst 1 2 0 0 0 4n
mulByConst 1 2 2n 2 n (n+ 1) 8n
powNat 1 5 8n+ 7 4n+ 26 14n (n+ 1) + 7 59n

oneOver 1 2 8n+ 7 4n+ 26 14n (n+ 1) + 7 56n
square 1 5 8n+ 2 4n+ 11 10n (n+ 1) 36n
cube 1 2 8n+ 7 4n+ 21 14n (n+ 1) + 2 54n
sqrt 1 2 8n+ 4 4n+ 25 13n (n+ 1) + 8 52n
exp 1 2 8n 4n+ 9 9n (n+ 1) 30n
ln 1 2 8n+ 2 4n+ 21 13n (n+ 1) + 4 51n

An operation counted towards N(yk), N([yk]), N([y′k]), N([λk]), N([y′′k ]) or N(Uk) in
Tab. 3 may either be an addition, multiplication or comparison of two real numbers, or
the application of one of the functions oneOver, square, cube, pow, sqrt, exp or ln. Note
that this way of counting operations is coarse but a standard approach in the field of
automatic differentiation [7, 18]. The use of Tab. 3 is illustrated with an example.

Example 4: (number of operations for Example 1) Table 4 lists the numbers of operations
necessary to evaluate [yk], [y

′
k], [λk] and [y′′k ] with the codelists (17) and (25) for the sample

function ϕ(x) = exp(x1 − 2x22 + 3x33) (n = 3). The last column states the number of
operations needed to calculate [∇2ϕ] by backward mode AD with the updates Uk introduced
in Rem. 1 and Alg. 3. The numbers of operations to calculate the eigenvalue bounds with

10



the eigenvalue arithmetic and the foward and backward AD Gershgorin variants can be
obtained from

NA(ϕ) =

n+t
∑

k=n+1

N([yk]) +N([y′k]) +N([λk]), (31)

NG(ϕ) = N([λG]) +
n+t
∑

k=n+1

N([yk]) +N([y′k]) +N([y′′k ]), and (32)

NbG(ϕ) = N([λG]) +
n+t
∑

k=n+1

N([yk]) +N([y′k]) +N([Uk]). (33)

We find NA(ϕ) = N([λϕ]) = 17 + 105 + 85 = 207, NG(ϕ) = N([∇2ϕ]) + N([λG]) =
17 + 105 + 446 + 28 = 596 and NbG(ϕ) = 17 + 105 + 456 + 28 = 608, where N([λG]) =
3n2 + n− 2 = 28 is the number of operations necessary to calculate [λG] assuming [∇2ϕ]
has already been determined. For later use we note that the number of operations needed
to calculate [λA] assuming [yk] and [y′k] have already been calculated is N∆A(ϕ) = 85.
N∆A(ϕ) is introduced more precisely in Eq. (36) below.

Table 4: Numbers of operations for the codelist lines of Example 1.

k op Φk N([yk]) N([y′k]) N([λk]) N([y′′k ]) N(Uk)
4 square 5 26 23 120 108
5 cube 2 31 33 170 162
6 mulByConst 2 6 2 12 24
7 mulByConst 2 6 2 12 24
8 add 2 6 2 12 24
9 add 2 6 2 12 24
10 exp 2 24 21 108 90
∑

17 105 85 446 456

Before applying Tab. 3 to the collection of examples in Sect. 3, we derive some general
statements. From the last three columns of Tab. 3 we infer

N([λk]) < N([y′′k ]) and N([λk]) < N(Uk) (34)

for all codelist line types and all n > 1. Combining (34) and (31)–(33) we find

NA(ϕ) < NG(ϕ) and NA(ϕ) < NbG(ϕ) (35)

for any function ϕ that can be stated as a codelist with lines of the types from Tab. 3.
Furthermore, inspection of Tab. 3 shows that the eigenvalue arithmetic can be applied
at little additional computational effort, whenever eigenvalue bounds are calculated with
the interval Hessian. This statement holds, since the [y′k] required for the arithmetic are
available as an intermediate result in both the foward and backward AD variant. More
specifically,

N∆A(ϕ) =

n+t
∑

k=n+1

N([λk]) (36)

additional operations are needed to calculate eigenvalue bounds with the arithmetic, if they
are calculated by applying Gershgorin’s circle criterion to the interval Hessian matrix. We
infer from Tab. 3 that N∆A(ϕ) as defined in (36) amount to O(n) operations.

11



While the number of operations can be reduced with the backward mode of automatic
differentiation1, the resulting interval enclosures are in general not tighter than for the
forward mode [21]. This result, which is surprising at first sight, can be traced to the
subdistributivity of interval arithmetics. A discussion is beyond the paper, and we refer
the reader to [21]. In order to simplify the comparisons reported here, we count operations
for both the forward and backward variant of the interval Hessian calculation in combination
with Gershgorin’s circle criterion, but we calculate eigenvalue bounds only with the forward
variant. We stress this results in a comparison in favour of Gershgorin’s circle criterion,
since we compare our method to the tighter out of two results and the smaller out of two
operation counts that can be obtained with the Gershgorin variants.

3 Benchmark: Arithmetic versus Gershgorin and Hertz

We apply the eigenvalue arithmetic (A) to a large collection of examples and compare
results to those obtained by applying Gershgorin’s circle criterion (G) and Hertz and
Rohn’s method (H) to the interval Hessian. While all interval Hessians are calculated
with forward mode automatic differentiation, we report the number of operations both
for forward and backward mode. See the end of Sect. 2 for an explanation. Sections 3.1
and 3.2 describe the test examples and the scheme of comparison. The actual results are
summarized in Sect. 3.3.

3.1 Collection of test cases

The test cases are extracted from the COCONUT collection of optimization problems [22].
We consider all COCONUT problems with 1 < n ≤ 10 variables and extract those cost
and constraint functions that can be decomposed into the operations listed in Tabs. 1 and
2 respectively. This results in a set of 1522 sample functions ϕ : Rn → R with 1 < n ≤ 10.
For each ϕ, we generate 100 random hyperrectangles B ⊆ D ⊂ R

n in the domain D of ϕ
specified in the respective COCONUT problem. Each of the three methods (A, G, and
H) introduced in Sect. 2 is applied to the resulting 1522 · 100 sample problems.

We omit examples with n = 1, since the three methods yield identical spectral bounds in
this case2. The upper bound n ≤ 10 is arbitrary. The comparison in Sect. 3.3 corroborates
that the eigenvalue arithmetic benefits more and more from its favorable computational
complexity as n increases, which was anticipated in the comparison of computational
complexities in Sect. 2.3. While the eigenvalue arithmetic and Gershgorin’s circle criterion
could be applied well beyond n = 10, it becomes tedious to calculate the exact Hessian
matrix eigenvalue bounds for comparison, due to the O(2n n3) complexity of this problem.

Table 5 lists three sample functions from the COCONUT collection for illustration. We
refer to all examples by their COCONUT name, for example ex8_1_6. The suffix -i, as
in ex8_1_6-1 for example, uniquely identifies the function in the respective COCONUT
optimization problem, where i = 1 corresponds to the objective function and i = 2, . . . ,m
corresponds to the (i− 1)-th constraint function3.

1 In fact this holds only for n > n̄, where n̄ depends on the codelist line type and can be computed
from solving N([y′′

k ]) = N(Uk), where N([y′′
k ]) and N(Uk) are as in Tab. 3.

2 To see [λA] = [λG] = [λH] for n = 1, first note that, according to (19) and (20), [λG] = [λH] = [ϕ′′]
in this case. Moreover, for n = 1, we have [λ1] = [0, 0] = [Z,Z] = [y′′

1 ] and, according to (23) and
(24), [Λs]([y

′
i]) = [y′

i]
2 = [y′

i] [y
′
i]
T and [Λt]([y

′
i], [y

′
j ]) = 2 [y′

i] [y
′
j ]. Therefore, [λk] = [y′′

k ] for every
k = 1, . . . , 1 + t which yields [λA] = [λϕ] = [ϕ′′].

3 Ordering is as in the GAMS code provided in the COCONUT library.
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Table 5: Excerpt of the set of examples taken from the COCONUT-benchmark.

name n function ϕ

ex8_1_6-1 2 1
(x1−4)2+(x2−4)2+0.1 + 1

(x1−1)2+(x2−1)2+0.2 + 1
(x1−8)2+(x2−8)2+0.2

ex7_2_6-2 3 1− 0.01 x2

x3
− 0.01 x1 − 0.0005 x1 x3

ex14_2_2-6 4 10.208− 2755.642
x3+219.161 −

0.192x1

x1+0.192 x2
− x2

0.316 x1+x2
− ln(0.316 x1 + x2) + x4

We stress that we use the described set of test functions without further modifications.
There exist functions in the collection treated here that contain convex terms, or terms
for which tight convex under- or tight concave overestimators are known (e.g., bilinear,
trilinear, linear fractional terms) [2,13] . Depending on the application it may be advisable
to separate these terms from the given function ϕ, and to calculate Hessian eigenvalue
bounds only for the remaining terms of ϕ. Here we choose not to apply any preprocessing
for the sake of an unbiased comparison.

3.2 Evaluation of results

We introduce a simple rating scheme that assigns each result to one of a finite set of
classes. Specifically, we distinguish the cases listed in Tab. 6, which reflect that a bound
from the eigenvalue arithmetic may be

(−) worse than the bounds from the other two methods,
(◦) equal to the one from Gershgorin’s method, but equal to or worse than

the one from Hertz and Rohn’s method,
(+) better than the one from Gershgorin’s method, and equal to or worse

than the one from Hertz and Rohn’s method,
(++) better than the one from Hertz and Rohn’s method.

Note that bounds calculated with Hertz and Rohn’s method are never worse than those
from Gershgorin’s circle criterion, since Hertz and Rohn’s method provides the tight eigen-
value bounds for an interval matrix. Consequently, the bounds from Gershgorin’s method
do not play a role in our definition of the (++) category. Furthermore note that we do
not distinguish between λG = λH and λG < λH (resp. λG = λH and λG > λH) in the case
λA ≤ λG (resp. λA ≥ λG).

Table 6: Classes used to aggregate results in Sect. 3.3. Symbols [λA] = [λA, λA],
[λG] = [λG, λG], and [λH] = [λH, λH] denote the eigenvalue bounds calculated with the
eigenvalue arithmetic, Gershgorin’s circle criterion, and Hertz and Rohn’s method,
respectively.

bound class

(−) (◦) (+) (++)

upper (λA) λA > λG ≥ λH λA = λG ≥ λH λG > λA ≥ λH λG ≥ λH > λA

lower (λA) λA < λG ≤ λH λA = λG ≤ λH λG < λA ≤ λH λG ≤ λH < λA

Table 7 lists some numerical results. These examples illustrate that the classes intro-
duced in Tab. 6 are meaningful. In particular it is evident that eigenvalue bounds of the
same function may fall into different classes for different hyperrectangles B.
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Table 7: Illustration of the classes (−), (◦), (+), (++) introduced in Tab. 6.

example illustrative-1 illustrative-2

ϕ exp(x1 − 2 x2
2 + 3 x3

3)
x1

x1+0.2x2
2

− 2 x2

x2+0.3x3
3

[x1, x1] [−0.3, 0.2] [−0.198, 0.177] [1.043, 1.535] [1.5, 1.6]
B [x2, x2] [−0.1, 0.6] [−0.473, 0.2] [0.6, 1.969] [0.6, 1.1]

[x3, x3] [−0.4, 0.5] [−0.392, 0.39] [0.555, 0.772] [1.0, 1.6]

A [λA, λA] [−19.904, 37.004] [−15.767, 19.27] [−43.934, 27.391] [−45.014, 17.624]
G [λG, λG] [−26.391, 38.587] [−15.767, 18.443] [−44.907, 27.391] [−40.725, 19.507]
H [λH, λH] [−20.597, 29.603] [−12.603, 14.278] [−34.743, 26.399] [−33.691, 18.897]

class λA (+) (−) (◦) (++)
λA (++) (◦) (+) (−)

3.3 Results

Table 8 summarizes the results obtained for the 1522 sample functions4. The numbers
listed in the columns labeled λA state for how many of 100 randomly generated hyper-
rectangles the lower bounds calculated with the three methods fall into the classes (−),
(◦), (+) and (++) defined in Tab. 6. The numbers listed in the columns labeled λA state
the corresponding results for the upper bounds.

The examples are ranked in Tab. 8 by, loosely speaking, the quality of the bounds
found with the eigenvalue arithmetic. More precisely, the higher an example is ranked,
the higher the sum of the figures in its two (++) columns. If this sum is equal for several
examples, they are sorted according to the sum of the figures in their two (+) columns.
Subsequently, the sums of the two (◦) columns and the two (−) columns are used for the
ranking whenever necessary.

Table 8 shows the 20 best and 5 worst rated examples and characteristic ranks in
between. Ranks 213−209, for example, are shown, because they mark the boundary
between those ϕ for which some eigenvalue bounds still fall into class (++), and the
highest ranking examples for which class (++) no longer occurs. These transitions in the
ranking are marked with horizontal lines and shaded areas.

Just as for the illustrative examples given in Tab. 7, all classes (−), (◦), (+), (++) occur
for the sample functions from the COCONUT collection. In particular there exist cases
for which the eigenvalue arithmetic provides tighter bounds than the tight bounds for the
interval Hessian. An analysis of the data given in Tab. 8 reveals that 2.50% and 5.52% of
the examples belong to the (++) class for the lower bound and upper eigenvalue bound,
respectively. Furthermore, in 12.48% of the cases the eigenvalue arithmetic provides tighter
lower bounds than Gershgorin’s circle criterion applied to the interval Hessian matrix. In
10.63% of the cases the upper bound from the eigenvalue arithmetic is tighter than the
upper Gershgorin bound. In 60.85% (60.33%) of the cases the lower (upper) bounds
from the eigenvalue arithmetic and those from Gershgorin’s circle criterion are equal. We
stress, however, that the Gershgorin bounds outperform those of the eigenvalue arithmetic
in 24.17% (lower bound) and 23.52% (upper bound) of the cases, respectively. Overall,
there exist 40 examples for which the eigenvalue arithmetic provides better bounds than

4 All results were obtained with Jcodegen, a code generator written by the authors available on
www.rus.rub.de/software/jcodegen for non-commercial use. Given a function ϕ, Jcodegen can gen-
erate ANSI C-code for the calculation of [∇ϕ], [λA], [∇2ϕ], etc., where the hyperrectangle B is a
parameter to be passed at time of execution. Generated code needs to be linked to a simple IA
implementation provided with Jcodegen.
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Table 8: Summary of results for the 1522 sample functions extracted from the CO-
CONUT collection. For each example, lower and upper bounds on Hessian matrix
eigenvalues were calculated with the methods introduced in Sect. 2 for 100 random
hyperrectangles. Numbers state for how many out of the 100 random hyperrectangles
the bounds belong to the classes (−), (◦), (+) and (++) defined in Tab. 6. Shaded
cells highlight empty classes. Horizontal lines divide characteristic groups, e.g. exam-
ples with an empty class (++) (rank 212 ≤ r ≤ 854). The averages listed in the last
row take all 1522 examples into account, including the ones not shown here.

example λ
A

λA

r name n (−) (◦) (+) (++) (−) (◦) (+) (++)

1 box3-1 3 2 50 32 16 0 0 2 98
2 box2-1 3 0 56 26 18 0 0 6 94
3 cliff-1 2 22 54 1 23 0 10 1 89
4 chaconn1-1 3 29 45 0 26 0 14 0 86
5 chaconn2-1 3 19 63 0 18 0 11 0 89
6 cb3-1 3 18 62 0 20 0 14 0 86
7 polak6-1 5 0 0 100 0 0 0 0 100
8 polak6-2 5 0 0 100 0 0 0 0 100
9 polak6-3 5 0 0 100 0 0 0 0 100

10 polak6-4 5 0 0 100 0 0 0 0 100
11 growth-1 3 0 0 96 4 0 0 4 96
12 alsotame-1 2 0 0 100 0 0 0 0 100
13 vardim-1 10 0 0 0 100 0 0 100 0
14 vardim-2 10 0 0 100 0 0 0 0 100
15 alsotame-2 2 0 0 100 0 0 0 0 100
16 brownden-1 4 1 0 99 0 0 0 0 100
17 price-1 2 3 0 97 0 0 0 0 100
18 vanderm1-10 10 75 0 25 0 0 0 0 100
19 ex8_1_7-1 5 99 0 1 0 0 0 0 100
20 hs026-2 3 0 100 0 0 0 0 0 100
...

209 ex14_1_7-5 10 4 0 95 1 25 0 75 0
210 ex14_1_7-9 10 25 0 75 0 4 0 95 1
211 nonmsqrt-1 9 100 0 0 0 96 0 3 1

212 brkmcc-1 2 0 0 100 0 0 0 100 0
213 ship-15 10 1 0 99 0 1 0 99 0

...
...

...
852 butcher-4 7 100 0 0 0 99 0 1 0
853 i5-3 10 100 0 0 0 99 0 1 0
854 cohn3-1 4 100 0 0 0 99 0 1 0

855 ex4_1_8-1 2 0 100 0 0 0 100 0 0
856 sample-3 4 0 100 0 0 0 100 0 0

...
...

...
...

...
1391 womflet-1 3 100 0 0 0 97 3 0 0
1392 reimer5-2 5 98 2 0 0 99 1 0 0
1393 reimer5-5 5 98 2 0 0 99 1 0 0

1394 ex7_2_9-4 10 100 0 0 0 100 0 0 0
1395 ex7_2_9-2 10 100 0 0 0 100 0 0 0

...
...

...
...

...
...

...
...

...
1518 cohn2-2 4 100 0 0 0 100 0 0 0
1519 cohn2-3 4 100 0 0 0 100 0 0 0
1520 cohn2-4 4 100 0 0 0 100 0 0 0
1521 boon-2 6 100 0 0 0 100 0 0 0
1522 boon-4 6 100 0 0 0 100 0 0 0

arithmetic average 24.17 60.85 12.48 2.50 23.52 60.33 10.63 5.52
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Gershgorin’s circle criterion for all random boxes (e.g. 7 ≤ r ≤ 15 or r = 212). On the
other hand, there exist 129 examples for which the arithmetic results in less tight spectral
bounds for all random boxes (r ≥ 1394). For 854 out of the 1522 examples (i.e., 56.11%)
the eigenvalue arithmetic provides tighter bounds than Gershgorin for at least one of the
random boxes.

One of the anonymous reviewers suggested to compare the three methods as a function
of the size of the hyperrectangles. In particular, sequences of hyperrectangles that converge
to a point in R

n are of interest, because bisection algorithms may result in a large number of
small boxes if first order interval extensions are used (a phenomenon known as the cluster
problem, see, e.g., [6]). Hertz and Rohn’s method, if applicable despite its computational
complexity, will converge to tight bounds in the limit of hyperrectangles that collapse to
a point. Neither the eigenvalue arithmetic nor the method based on Gershgorin’s circle
criterion will in general converge in this sense5. A closer comparison of Gershgorin’s circle
criterion and the eigenvalue arithmetic would be interesting but is beyond the paper.

Finally, we note that the ranking r does not correlate with the dimension n, i.e., we find
both low and high values of n in any part of the ranking shown in Tab. 8. The dependency
on n is analyzed in more detail at the end of this section with Tab. 10.

We discussed in Sect. 2.3 that the methods do not only differ with respect to the tight-
ness of eigenvalue bounds, but also with respect to their computational complexity. Table
9 lists the numbers of operations necessary to evaluate the eigenvalue bounds for the ex-
amples from Tab. 8. All figures in Tab. 9 are based on the total number of operations
needed for the respective method. Specifically, NA(ϕ) denotes the total number of op-
erations for calculating [λA] with the eigenvalue arithmetic, including the operations for
the intermediate results [yk] and [y′k]. NG(ϕ) denotes the total number of operations for
calculating [λG] with Gershgorin’s circle criterion and forward automatic differentiation,
including the operations for the intermediate results [yk], [y

′
k] and [y′′k ]. NbG(ϕ) refers to

the same figure but backward automatic differentiation. Note again that all interval Hes-
sians are calculated with forward mode automatic differentiation, but we list the numbers
of operations for both the forward and backward mode. This results in a comparison in
favour of the methods based on interval Hessians; see the explanation at the end of Sect. 2.

We also list N∆A(ϕ) defined in (36), i.e. the additional effort to calculate [λA], if [λG]
and its intermediate results [yk] and [y′k] have been determined. Note that N∆A(ϕ) is
independent of the mode of automatic differentiation. As predicted by relations (35),
the eigenvalue arithmetic always requires fewer operations than the interval variant of
Gershgorin’s circle criterion. This result holds regardless of the mode of automatic dif-
ferentiation. When forward mode is used, the computational effort for the eigenvalue
arithmetic on average amounts to 39.17% of that of applying Gershgorin’s circle criterion
to the interval Hessian, where values range from 10.45% (example r = 18 in Tab. 9) to
60.52% (example r = 161). These figures read 43.30%, 22.86% (example r = 1455), and
51.87% (example r = 1498), respectively, for backward mode AD. The relative additional
effort N∆A(ϕ)/NG(ϕ) is 18.29% on average, with a minimum of 3.31% and maximum of
30.49%. The respective mean reads 20.14%, with a minimum of 6.13% and maximum of
26.94% for N∆A(ϕ)/NbG(ϕ), i.e., the case where backward mode AD is used.

NA(ϕ), N∆A(ϕ), NG(ϕ), and NbG(ϕ) do not depend on the particular hyperrectangle B,
but can be determined for any function ϕ before eigenvalue bounds are actually calculated.
It may therefore be an option to determine these operation counts beforehand and to decide
which method to use. This may be of interest in applications in which eigenvalue bounds

5 Recall Gershgorin’s circle criterion does in general not provide tight bounds for a real, i.e. non-interval,
matrix.
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Table 9: Computational effort for the evaluation of eigenvalue bounds for the examples
taken from the COCONUT-benchmark. NA(ϕ) and NG(ϕ) denote the total number
of operations necessary to calculate [λA] and [λG], respectively. N∆A(ϕ) denotes the
additional number of operations needed to calculate [λA] assuming the Gershgorin
bounds have already been computed. The examples are listed in the same order as
in Tab. 8. Shaded cells highlight minima and maxima of NA(ϕ)

NG(ϕ) and N∆A(ϕ)
NG(ϕ) . The

averages stated in the last row take all 1522 examples into account, including those
not shown here.

example abs. complexity rel. complexity (%)

r name n NA N∆A NG NbG
NA

NG

N∆A

NG

NA

NbG

N∆A

NbG

1 box3-1 3 4584 1616 11584 12784 39.57 13.95 35.86 12.64
2 box2-1 3 4584 1616 11584 12784 39.57 13.95 35.86 12.64
3 cliff-1 2 318 112 554 806 57.40 20.22 39.45 13.90
4 chaconn1-1 3 174 58 428 488 40.65 13.55 35.66 11.89
5 chaconn2-1 3 174 58 428 488 40.65 13.55 35.66 11.89
6 cb3-1 3 174 58 428 488 40.65 13.55 35.66 11.89
7 polak6-1 5 2604 912 10896 9112 23.90 8.37 28.58 10.01
8 polak6-2 5 2600 912 10892 9068 23.87 8.37 28.67 10.06
9 polak6-3 5 2604 912 10896 9112 23.90 8.37 28.58 10.01

10 polak6-4 5 2604 912 10896 9112 23.90 8.37 28.58 10.01
11 growth-1 3 6940 3092 16208 16040 42.82 19.08 43.27 19.28
12 alsotame-1 2 118 46 216 288 54.63 21.30 40.97 15.97
13 vardim-1 10 5656 1442 41848 21794 13.52 3.45 25.95 6.62

14 vardim-2 10 6236 1490 45020 24326 13.85 3.31 25.64 6.13

15 alsotame-2 2 122 46 220 308 55.45 20.91 39.61 14.94
16 brownden-1 4 11392 3792 37120 34992 30.69 10.22 32.56 10.84
17 price-1 2 834 384 1502 1890 55.53 25.57 44.13 20.32

18 vanderm1-10 10 36316 13236 347420 153800 10.45 3.81 23.61 8.61

19 ex8_1_7-1 5 1364 458 5678 4746 24.02 8.07 28.74 9.65
20 hs026-2 3 396 150 1004 1152 39.44 14.94 34.38 13.02
...

161 gold-1 2 1922 894 3176 3956 60.52 28.15 48.58 22.60
...

1452 desc.f.-2 2 828 444 1456 1648 56.87 30.49 50.24 26.94
...

1455 more10-1 10 4000 1300 37940 17500 10.54 3.43 22.86 7.43
...

1498 ex2-1 2 360 186 630 694 57.14 29.52 51.87 26.80
...

1518 cohn2-2 4 6240 3028 18468 14092 33.79 16.40 44.28 21.49
1519 cohn2-3 4 6240 3028 18468 14092 33.79 16.40 44.28 21.49
1520 cohn2-4 4 10122 4926 29044 22028 34.85 16.96 45.95 22.36
1521 boon-2 6 1424 700 6360 3604 22.39 11.01 39.51 19.42
1522 boon-4 6 1424 700 6360 3604 22.39 11.01 39.51 19.42

arithmetic average irrelevant 39.17 18.29 43.30 20.14

17



need to be calculated for the same function ϕ for many B such as branch-and-bound global
optimization.

While we did not recognize a dependency of the tightness of the bounds on n, the ratios
NA(ϕ)/NG(ϕ) and N∆A(ϕ)/NG(ϕ) associated with forward mode automatic differentia-
tion clearly depend on n. Table 10 shows that the relative number of operations for the
eigenvalue arithmetic NA(ϕ)/NG(ϕ) improves from about 56% for n = 2 to about 14%
for n = 10. Similarly, the additional effort for the eigenvalue arithmetic decreases from
about 25% for n = 2 to about 6% for n = 10. Note that examples with n = 1 would
yield NA(ϕ)/NG(ϕ) = 1 = 100%. Equations (29) and (30) predict a weaker dimensional
dependency for the corresponding ratios NA(ϕ)/NbG(ϕ) and N∆A(ϕ)/NbG(ϕ). This is
confirmed by the numerical experiments. In fact, Tab. 10 shows that NA(ϕ)/NbG(ϕ)
(N∆A(ϕ)/NbG(ϕ)) decreases from about 44% (20%) for n = 2 to about 35% (15%) for
n = 10. Finally, we note that the large number of examples ϕ for n = 3 results from the
COCONUT optimization problem oet2. We did not omit any of these ϕ in order not to
introduce bias.

Table 10: Results by dimension n.

num. of mean: (%) mean: (%)

n examples (−) (◦) (+) (++) NA

NG

N∆A

NG

NA

NbG

N∆A

NbG

2 62 57.89 15.47 14.68 11.97 55.55 25.29 43.54 19.90
3 1078 10.88 79.32 8.79 1.01 44.08 20.96 46.17 21.98
4 67 61.29 19.34 8.45 10.92 31.74 14.18 37.84 17.00
5 88 56.86 15.85 12.48 14.81 25.53 10.68 34.58 14.61
6 95 35.05 14.21 36.88 13.86 23.18 9.42 34.53 14.16
7 27 65.81 34.17 0.02 0.00 19.08 7.76 33.54 13.80
8 15 94.23 4.50 1.27 0.00 17.75 7.97 37.51 16.89
9 24 65.60 4.21 18.71 11.48 14.71 6.32 33.35 14.46

10 66 57.06 9.34 23.74 9.86 14.32 6.06 34.87 14.90

all 1522 23.84 60.59 11.55 4.01 39.17 18.29 43.30 20.14

4 Conclusion and Outlook

Our numerical experiments corroborate that the eigenvalue arithmetic always requires
fewer operations than applying Gershgorin’s circle criterion to the interval Hessian matrix.
This result also holds if the interval Hessian is obtained with backward instead of forward
mode AD. While this result has been established by comparing the complexity classes
of the methods (see Sect. 2.3 and [16]), it was analyzed quantitatively with a large set
of examples here for the first time. Specifically, 10.45% (example r = 18) to 60.52%
(example r = 161) of the number of operations of the Gershgorin based approach are
necessary for the eigenvalue method. The average over all examples amounts to 39.17%
for the forward mode and 43.30% for the backward mode variant. As anticipated in
the complexity analysis in Sect. 2.3, the eigenvalue method benefits from its favorable
complexity as n increases (see Tab. 9 for details). We recall that a comparison to the
computational effort of Hertz and Rohn’s method is not reasonable, since Hertz and Rohn’s
method belongs to a very different complexity class (see Sect. 2.3).

While we determined the numbers of operations for both the forward and backward
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mode variants of Gershgorin’s circle criterion, we calculated all interval Hessian matrices
only with forward mode automatic differentiation (see the end of Sect. 2 for an expla-
nation.) Gershgorin’s circle criterion provides tighter lower (upper) bounds in 24.17%
(23.52%) of the examples. In 60.85% (60.33%) of the cases the lower (upper) bounds from
both methods are equal. In 14.98% (16.15%) of the examples the eigenvalue arithmetic
results in tighter lower (upper) bounds than the Gershgorin based approach. Finally, our
tests reveal that the number of cases in which the eigenvalue arithmetic results in tighter
bounds than the tight bounds of the interval Hessian, which are obtained with Hertz and
Rohn’s method, is small (2.50% and 5.52% for lower and upper bounds, respectively). On
the other hand, these figures indicate that these cases are not anecdotal or constructed,
but they appear in global optimization problems.

The eigenvalue arithmetic provides a tighter lower or upper bound than Gershgorin’s
circle criterion for at least one random box in 56.11% of the examples, where these oc-
currences are not correlated with n. This figure suggests to combine the two methods.
We claim the eigenvalue arithmetic can be applied at an attractive additional cost for,
say, n > 5, whenever the Gershgorin bounds have already been calculated, since both
methods involve the same intermediate quantities ([yk] and [y′k], see Sect. 2). Specifically,
the additional effort for applying the eigenvalue method after the intermediate quantities
have been calculated in the Gershgorin based approach ranges from 25% (20%) for n = 2
to about 6% (15%) for n = 10 using forward (backward) mode automatic differentiation
(see Tab. 10). These figures decreases for increasing n as anticipated from the abstract
complexity analysis in Sect. 2.3. Note that this combination of Gershgorin’s circle criterion
and the eigenvalue method will provide tighter bounds than Hertz and Rohn’s method for
the interval Hessian whenever the eigenvalue method does.
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Appendix

Interval Hessians can be calculated by backward mode AD according to the following
algorithm.

Algorithm 3: [7] Assume ϕ is twice continuously differentiable on U and can be written
as a codelist. Let B ⊂ U be a hyperrectangle. Then, for all x ∈ B, we have ϕ(x) ∈ [ϕ],
∇ϕ(x) ∈ [∇ϕ], and ∇2ϕ(x) ∈ [∇2ϕ], where [ϕ], [∇ϕ], and [∇2ϕ] are calculated by the
following algorithm.

1. For k = 1, . . . , n, set [yk] = [xk, xk] and [y′k] = [e(k), e(k)].

2. For k = n+1, . . . , n+ t, calculate [yk] and [y′k] according to columns 3−4 of Tab. 1,
respectively.

3. Set [ϕ] = [yn+t] and [∇ϕ] = [y′n+t].

4. For d = 1, . . . , n,

a) set [u] = [e2(n+t), e2(n+t)].

b) for k = n+t, . . . , n+1, update [ui], [uj ], [ul+i] and [ul+j ] with l = n+t according
to columns 3−4 of Tab. 11, respectively.

c) for k = n+ t, . . . , n+1, update [ul+i] and [ul+j ] with l = 0 according to column
4 of Tab. 11, respectively.

d) set the d-th row of [∇2ϕ] equal to ([u1], . . . , [un]).

Table 3 states the number of operations N(Uk) needed in Alg. 3 for each codelist line
type Φk. Remark 1 summarizes how these values for N(Uk) can be obtained.

Table 11: Rules for the update of [u] associated with the k-th line of the codelist (16)
[7].

op Φk [ui], [uj ] [ul+i], [ul+j ]

add −, − [ul+i] + [ul+k], [ul+j ] + [ul+k]
mul [ui] + [(y′j)d] [un+t+k], [uj ] + [(y′i)d] [un+t+k] [ul+i] + [yj ] [ul+k], [ul+j ] + [yi] [ul+k]
addConst −, − [ul+i] + [ul+k], −
mulByConst −, − [ul+i] + c [ul+k], −
powNat [ui] + (m− 1)m [yi]

m−2 [(y′i)d] [un+t+k], − [ul+i] +m [yi]
m−1 [ul+k], −

oneOver [ui] + 2 [yk]
3 [(y′i)d] [un+t+k], − [ul+i]− [yk]

2 [ul+k], −
square [ui] + 2 [(y′i)d] [un+t+k], − [ul+i] + 2 [yi] [ul+k], −
cube [ui] + 6 [yi] [(y

′

i)d] [un+t+k], − [ul+i] + 3 [yi]
2 [ul+k], −

sqrt [ui]− 0.25 (1/[yk]
3) [(y′i)d] [un+t+k], − [ul+i] + 1/(2 [yk]) [ul+k], −

exp [ui] + [(y′k)d] [un+t+k], − [ul+i] + [yk] [ul+k], −
ln [ui]− (1/[yi])

2 [(y′i)d] [un+t+k], − [ul+i] + 1/[yi] [ul+k], −

Remark 1: First note that steps 1-3 of Alg. 3 calculate the interval function value [ϕ]
and the interval gradient [∇ϕ]. The additional operations needed to calculate the interval
Hessian [∇2ϕ] arise in step 4.

We recall that in forward mode AD the second order derivative [y′′k ] is calculated for
each line of the codelist. The number of operations needed for the forward AD Hessian
calculation can be found by determining the additional number of operations needed for [y′′k ]
in each line k, and summing over all lines of a codelist. Similarly, the number of operations
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needed in the eigenvalue arithemetic can be found by determining the additional operations
for [λk] in each line k of the codelist, and summing over all lines. In order to compare the
backward mode case to the other two cases, we need to assign a number of operations to
each line k needed for the calculation [∇2ϕ]. Unfortunately, there is no intermediate result
in the backward mode that can be interpreted as easily as [y′′k ] or [λk], but the operations
are hidden in the updates in lines 4(b) and 4(c) of Alg. 3. Specifically, we have to evaluate
the four updates of [ui], [uj ], [ul+i] and [ul+j ] in line 4(b) and the two updates of [ul+i]
and [ul+j ] in step 4(c). Let

Ud
k :=

{

updates of [ui], [uj ], [ul+i], and [ul+j ] according to 4(b),
updates of [ul+i] and [ul+j ] according to 4(c)

}

,

denote the updates for the k-th line of the codelist and the d-th row of the interval Hessian
[∇2ϕ], and let Uk denote the set of all updates for line k, i.e. Uk = ∪nd=1Ud

k . Then the num-
ber of operations required to carry out the updates Uk is given by N(Uk) =

∑n
d=1 N(Ud

k ).
Without giving details we claim that it follows from Tab. 11 that N(Ud

k ) does not depend
on d, which implies N(Uk) = nN(Ud

k ). Table 3 lists N(Uk) for each codelist line type.

Finally, we illustrate the calculation of N(Uk) with a specific example.

Example 5: The following updates are required in a codelist line of type mul in lines 4(b)
and 4(c) of Alg. 3:

Ud
k =







[ui]← [ui] + [(y′j)d] [un+t+k], [uj ]← [uj ] + [(y′i)d] [un+t+k]

[un+t+i]← [un+t+i] + [yj] [un+t+k], [un+t+j ]← [un+t+j ] + [yi] [un+t+k]
[ui]← [ui] + [yj] [uk], [uj ]← [uj ] + [yi] [uk]







.

These updates require six interval additions and six interval multiplications. Each interval
addition requires two additions of real numbers according to (7). Each interval multipli-
cation requires eight operations, since four multiplications of real numbers are required
according to (8) and four comparisons of two real numbers are necessary to find the min-
imum and maximum among the four products. Consequently, N(Ud

k ) = 6 · (2 + 8) = 60
and N(Uk) = nN(Ud

k ) = 60n. This is the number of operations stated in the last column
of Tab. 3.
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