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Positive invariance tests
with efficient affine inclusions

Moritz Schulze Darup† and M. Mönnigmann†

Abstract

We analyze the computational complexity of several methods for automatically search-
ing positive invariant (p.i.) sets of nonlinear autonomous continuous and discrete time
systems. We show that p.i. detection can be improved upon by considering traits of the
equations of the dynamical system such as monotonicity and convexity. Furthermore, we
show that these traits can be taken into account by automated methods that apply to
large system classes.

Keywords. positive invariance, domain of attraction, Lyapunov function, affine inclu-
sions, interval matrices, interval arithmetics.

1 Introduction

Positively invariant (p.i.) sets play an important role in various problems and applica-
tions of control theory [1]. The present paper deals with methods for establishing p.i. on
ellipsoids around a locally stable equilibrium of a nonlinear autonomous continuous time
system

ẋ(t) = f(x(t)), (1)

with appropriate initial conditions, where f : X → R
n is assumed to be a continuously

differentiable function on an open X ⊂ R
n. The discussed methods can be extended

to discrete time systems as briefly discussed in Sect. 5. Following a classical idea (see
e.g. [3]), we split f into its affine and nonlinear contributions, and subsequently bound the
nonlinear contributions with piecewise affine inclusions. In particular we are interested
in computational approaches to calculating inclusions that are computationally efficient
and that can be carried out automatically for any member of the system class (1), i.e.
without human intervention and insight into special structures of the particular system at
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hand. Specifically, we are interested in enlarging the set for which p.i. can be established,
whenever such an enlargement comes at a reasonable computational effort. We stress
that the treated computational methods in general provide conservative estimates of p.i.
sets, which may, nevertheless, be practically relevant. P.i. sets are of practical importance
in establishing the stability of model predictive control, for example. In this context an
automated procedure for the proof of p.i. is useful even if the identified set is not the
largest p.i. set.

From a technical point of view codelists and interval arithmetics are instrumental to the
approaches discussed here. The presented methods are related to a second order approach
that is based on bounds of the eigenvalues of Hessian matrices [7]. In the present paper,
however, eigenvalue bounds for Hessian matrices are not used.

The paper is organized as follows. In Sect. 2 we introduce two variants for overestimating
nonlinear, factorable functions by affine inclusions. Sections 3, 3.2, and 4 state sufficient
conditions for p.i. of affine inclusions on ellipsoids, the detection of positive definiteness
(p.d.) of matrices, and a simple algorithm for p.i. detection by p.d. detection, respectively.
Section 5 briefly extents the proposed approach to discrete time systems and gives an
example for a continuous and a discrete time system. Conclusions are given in Sect. 6.

2 Calculating affine inclusions for nonlinear functions

A continuously differentiable function fi : X → R can be expanded into a Taylor series

fi(x) = fi(x̆) +

n
∑

j=1

aij (xj − x̆j) + gi(x− x̆), (2)

where aij = ∂fi(x)
∂xj

∣

∣

x̆
and gi has no affine contributions. Without restriction we assume

x̆ = 0 is an equilibrium of (1). Since fi(x̆) = 0 the linearization of (1) reads

ẋ(t) = Ax(t), (3)

where A is the Jacobian with elements aij.
We anticipate that it will be crucial to obtain bounds on gi(x) for all x ∈ B, where

B ⊂ X is a compact hyperrectangle that contains the equilibrium x̆ = 0. The desired
bounds can be written in any of the following three forms.

gi(x) ∈
n
∑

j=1

[wij ]xj =
n
∑

j=1

[αij(xj), αij(xj)]

= [β
i
(x), βi(x)]

(4)

with

[αij(xj), αij(xj)] =

{

[wij xj , wij xj ] if xj ≥ 0

[wij xj , wij xj ] if xj < 0,
(5)

β
i
(x) =

n
∑

j=1

αij(xj) and βi(x) =

n
∑

j=1

αij(xj), (6)

where i ∈ N := {1, . . . , n}, j ∈ N , and where [wij] is a shorthand notation for the real
interval [wij ] = [wij , wij] ⊂ R. Equation (4) and subsequent equations involve arithmetic
operations on intervals. These operations are carried out according to standard interval
arithmetics (IA) rules (see e.g. [5]).

We frequently need bounds on gi(x) and its derivatives on hyperrectangles B. For ease
of reference these bounds are summarized in Conds. 1.
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Conditions 1: Let i ∈ N be arbitrary. Assume there exist intervals (i) [gi], (ii) [(∇gi)j ],
(iii)

[

(∇2gi)jj
]

, such that (i) gi(x) ∈ [gi], (ii) (∇gi(x))j ∈ [(∇gi)j ], (iii) (∇2gi(x))jj ∈
[(∇gi)jj] for all x ∈ B and all j ∈ N .

Lemmata 1 and 2 state how gi(x) can be bounded on B by affine functions.

Lemma 1: Let i ∈ N be arbitrary. Assume Conds. 1(ii) holds. Then, for all x ∈ B and
x′ ∈ B, gi(x) ∈ gi(x

′) +
∑n

j=1 [(∇gi)j] (xj − x′j).

Proof. Let x ∈ B and x′ ∈ B be arbitrary. According to the mean value theorem there
exists a ξ ∈ B on the line between x and x′ such that gi(x) = gi(x

′)+
∑n

j=1(∇gi(ξ))j (xj −
x′j). Since (∇gi(ξ))j ∈ [(∇gi)j] for all ξ ∈ B, the claim holds. �

Note that bounds of the form gi(x) ∈
∑n

i=1[(∇g)j ]xj as introduced in Eq. (4) result
from Lemma 1 for the particular choice x′ = 0.

If at least one partial derivative of gi(x) is known to be nonnegative or nonpositive for
all x ∈ B, then an upper bound gi(x) ≤ gi can be replaced by a tighter affine bound as
stated in the following lemma. The corresponding lower bound is omitted here for brevity.

Lemma 2: Let i ∈ N be arbitrary. Assume Conds. 1 (i) and (ii) hold. Then, for all
x ∈ B,

gi(x) ≤ gi + δi(x) ≤ gi (7)

where δi(x) =
∑n

j=1 γij(xj) and

γij(xj) =







∇gij (xj − xj), if ∇gij < 0,

∇gij (xj − xj), if ∇gij > 0,

0, otherwise.

(8)

Proof. The second inequality in Eq. (7) holds, because δi(x) ≤ 0 for all x ∈ B by definition.
To show the first relation in Eq. (7) assume there exists an x′′ ∈ B such that gi(x

′′) >

gi + δi(x
′′) and show that a contradiction results. Let I = {j ∈ N |∇gij > 0} and

D = {j ∈ N |∇gij < 0}, then the assumption implies

gi(x
′′) > gi +

∑

j∈I

∇gij (x
′′
j − xj) +

∑

j∈D

∇gij (x
′′
j − xj) (9)

On the other hand, lemma 1 yields gi(x
′′) ∈ gi(x

′)+
∑n

j=1 [(∇gi)j ] (x
′′
j−x′j). In particular

this holds for the choice

x′j =







xj , if j ∈ I,
xj , if j ∈ D,

0, otherwise.
(10)

which results in the upper bound

gi(x
′′)≤ gi(x

′)+
∑

j∈I

∇gij (x
′′
j−xj)+

∑

j∈D

∇gij (x
′′
j−xj). (11)

Combining Eqs. (9) and (11) yields gi(x
′) > gi, which is a contradiction, since x′ ∈ B and

gi(x) ≤ gi for all x ∈ B by assumption. �
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2.1 Using function traits to tighten affine inclusions

The affine inclusions introduced in the previous section can be improved upon, if in-
formation on properties such as monotonicity and convexity are available. It turns out
to be convenient to discuss these properties not for gi, but for the auxiliary functions
hij : Lj × Bj → R with Lj = [xj ] ⊂ R, Bj = {x ∈ B |xj = 0} ⊂ R

n and

hij(xj , zj) = gi(xj ej + zj), (12)

where ej represents the j-th unit vector. The desired properties can be related to bounds
on the second order derivatives of gi as in the following Lemma 3, which we state without
proof.

Lemma 3: Assume Conds. 1 (ii) and (iii) hold. Then, for all zj ∈ Bj , the function

hij : Lj × Bj → R is convex (concave) on Lj, if ∇
2gijj ≥ 0 (∇2gijj ≤ 0).

Apart from the properties treated in Lemma 3, the particular form of B affects the affine
inclusions. We anticipate that domains of the particular form Lj ∈ {[0,∆xj ], [−∆xj ,∆xj ], [−∆xj, 0]}
with ∆xj > 0 will be needed in Sect. 3 and 4. We introduce the trait variables xvij and
lrj defined in Tab. 1 in order to be able to state the traits and domain of a function hij
in a compact fashion.

Table 1: Shorthand notation for function traits and domains.

xvij meaning lrj meaning

1 0 ≤ ∇2gijj, i.e. hij is convex 1 [0,∆xj ]

0 ∇2gijj < 0 < ∇2gijj 0 [−∆xj,∆xj ]

−1 ∇2gijj ≤ 0, i.e. hij is concave −1 [−∆xj, 0]

Proposition 1 states our main result on tightening affine inclusions based on trait infor-
mation.

Proposition 1: Assume Conds. 1 (i)–(iii) hold. Let hij : Lj × Bj → R, j = 1, . . . , n be
defined as in Eq. (12), and assume Lj ∈ {[0,∆xj ], [−∆xj ,∆xj ], [−∆xj , 0]} for all j ∈ N .
Assume convexity properties cvij are known for all hij , j = 1, . . . , n and let [w∗

ij ] be defined
as in Tab. 2. Then gi(x) ∈

∑n
j=1[w

∗
ij ]xj for all x ∈ B and [w∗

ij ] ⊆ [(∇gi)j ] for all j ∈ N .

We use the following lemma to prove proposition 1.

Lemma 4: Assume Conds. 1 (i) to (iii) hold. Let βi(x) and δi(x) be defined as in Eq. (4)
and in Lemma 2, respectively. Assume that, for every j ∈ N , either [wij ] = [(∇gi)j ] or
[wij ] = [w∗

ij ] as defined in Tab. 2. Then δi(x) ≤ βi(x) for all x ∈ B.

Proof. By definition δi(x) =
∑n

j=1 γij(xj) and βij(x) =
∑n

j=1 αij(xj). The claim therefore
holds, if, for all xj ∈ Lj and all j ∈ N ,

γij(xj) ≤ αij(xj). (13)

It suffices to show that (13) holds for arbitrary j ∈ N and all xj ∈ Lj . Consider the cases

xj < 0 0 ≤ xj
0 < wij ≤ wij (1a) (1b)

wij ≤ 0 ≤ wij (2a) (2b)

wij ≤ wij < 0 (3a) (3b)
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Recall that γij(xj) ≤ 0 for all xj ∈ Lj by the definition of γij given in Eq. (8). On the
other hand, the definition of αij(xj) in Eq. (5) implies αij(xj) ≥ 0 in the cases (1b), (2a),
(2b), and (3a). In these cases the claim therefore holds, and (1a) and (3b) remain to be
considered.

Case (1a): First assume wij = w∗
ij and note that the assumption wij ≥ 0 implies

w∗
ij = ∇gij in all rows in Tab. 2. This implies wij = w∗

ij = ∇gij(xj) and

αij(xj) = ∇gijxj ≥ ∇gij(xj − xj) = γij(xj),

where the relations hold by definition of αij in Eq. (5), because ∇gij = wij > 0 and xj ≥ 0

imply −∇gij xj ≤ 0, and by definition of γij(xj) in Eq. (8), respectively.

Case (3b) can be proved similarly. �

Table 2: Rules for [w∗
ij ].

xvij lrj [w∗
ij ]

1 1
[

∇gij,min
( gi
∆xj

,∇gij
)

]

1 0
[

max
(g

i
−gi

∆xj
,∇gij

)

,min
(gi−g

i

∆xj
,∇gij

)

]

1 −1
[

max
(−gi
∆xj

,∇gij

)

,∇gij

]

0 {1, 0,−1} [(∇gi)j ]

−1 1
[

max
( g

i

∆xj
,∇gij

)

,∇gij

]

−1 0
[

max
(g

i
−gi

∆xj
,∇gij

)

,min
(gi−g

i

∆xj
,∇gij

)

]

−1 −1
[

∇gij,min
(−g

i

∆xj
,∇gij

)

]

Proof of Prop. 1. Consider the case xvij = lrj = 1. In this case hij(xj , zj) is convex on
Lj for arbitrary but fixed zj ∈ Bj according to Lemma 3. By [wij ] = [(∇gi)j ], j = 1, . . . , n
denote bounds introduced in Eq. (4) on the components of ∇gi(x) on B. By [αij(xj)] and
[βi(x)] denote the corresponding bounds introduced in Eqs. (5) and (6), respectively.

Since hij(xj , zj) is convex on Lj, we have, for all ξ ∈ Lj, ζ ∈ Lj, and zj ∈ Bj,

hij(t ξ + (1− t) ζ, zj) ≤ t hij(ξ, zj) + (1− t)hij(ζ, zj) (14)

for all t ∈ [0, 1] (Jensen’s inequality). Choosing ξ = ∆xj and ζ = 0 yields

hij(t∆xj, zj) ≤ t hij(∆xj, zj) + (1− t)hij(0, zj).

Using Eq. (12) this can be rewritten as

gi(t∆xj ej + zj) ≤ t (gi(∆xj ej + zj)− gi(zj)) + gi(zj). (15)

Below we show that the r.h.s. of Eq. (15) is bounded above on the interval t ∈ [0, 1]
according to

t (gi(∆xj ej + zj)− gi(zj)) + gi(zj) ≤ t gi + βi(zj). (16)
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Combining Eqs. (15) and (16) yields

gi(t∆xj ej + zj) ≤ tgi + βi(zj)

for all t ∈ [0, 1]. Substituting xj = t∆xj yields

gi(x) = gi(xj ej + zj) ≤
gi
∆xj

xj + βi(zj)

for all xj ∈ Lj, which proves the claim under the assumption that Eq. (16) holds.
It remains to prove Eq. (16). As a preparation consider the following relations

gi(∆xj ej + zj) ≤ gi + δi(∆xj ej + zj) ≤ gi + δi(zj)

≤ gi + βi(zj), (17)

which hold according to Lemma 2, by definition of δi in Lemma 2, and according to Lemma
4, respectively.

Turning to Eq. (16) again we first note that this relation obviously holds if the slope
mij := gi(∆xj ej+zj)−gi(zj) and the offset gi(zj) of the line in t on the l.h.s. of Eq. (16) are
not larger than the slope and offset on the r.h.s., i.e. mij ≤ gi and gi(zj) ≤ βi(zj), where
the latter relation holds by assumption. Without giving details we claim that Eq. (16)
also holds for some values mij 6≤ gi, specifically if

gi ≥ gi(∆xj ej + zj)− βi(zj). (18)

Note that this is a less strict condition than mij ≤ gi, since

gi(∆xj ej + zj)− g(zj) ≥ gi(∆xj ej + zj)− βi(zj)

due to gi(zj) ≤ βi(zj). The condition (18) can be derived by setting the l.h.s. and r.h.s.
of Eq. (16) equal and by showing that the intersection of the two lines in t occurs for
a t > 1 if Eq. (18) holds. According to Eq. (17), the relation (18) holds, which proves
Eq. (16). We claim the other cases stated in Tab. 2 without proof. Finally, we note that
[w∗

ij ] ⊆ [(∇gi)j ] holds for all cases listed in Tab. 2 by definition of [w∗
ij ]. �

3 Sufficient conditions for positive invariance on ellipsoids

Let ϕ(t, x(0)) denote the solution of (1) that passes through x(0) at time t = 0, then we
call a set P ⊂ X p.i. for the system (1), if, for all t ≥ 0,

x(0) ∈ P implies ϕ(t, x(0)) ∈ P, (19)

i.e. any trajectory starting in P remains in P for all t ≥ 0. The following theorem according
to [6] states conditions for detecting p.i. sets using Lyapunov functions.

Theorem 2: (see e.g. [6], Chap. 3.1) Let x̆ = 0 be an equilibrium point for (1) and
T ⊂ X ⊂ R

n be a domain that contains x̆. Let v : T → R be a continuously differentiable
function. If v(0) = 0, v(x) > 0 for all x ∈ T \ {0}, and

v̇(x) :=
d

dt
v(ϕ(t, x))|t=0 = fT (x)∇v(x) < 0

for all x ∈ T \ {0}, then x̆ is asymptotically stable. Moreover if Vc = {x ∈ X | v(x) ≤ c}
is bounded and contained in T , then any trajectory that starts in Vc remains in Vc (and
tends to x̆ for t → ∞), i.e. Vc represents a p.i. set.
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Just as in the previous sections we set x̆ = 0 without restriction. Quadratic forms
are common candidate Lyapunov functions. We consider quadratic forms v(x) = xTPx,
P = P T ∈ R

n×n, P ≻ 0 on ellipsoids Ec = {x|xTPx ≤ c}, c ∈ R, c > 0 throughout
the remainder of the paper. Since v(0) = 0 and v(x) > 0 for all x ∈ Ec \ {0} hold by
construction, only the negative definiteness of v̇(x) remains to be established.

For linear systems of the form (3), v̇(x(t)) evaluates to

v̇(x(t)) = x(t)T
(

ATP + P A
)

x(t).

If the matrix
Q = −

(

ATP + P A
)

(20)

is p.d., then the linear system (3) is globally asymptotically stable (see e.g. [3] or [6]).
This implies that every Lyapunov surface Vc ⊂ X is a p.i. set.

3.1 Nonlinear systems

For nonlinear systems we use the affine inclusions from Sect. 2 to bound the nonlinear
part g : X → R

n introduced in Eq. (2). This yields linear interval systems of the form
(21)

f(x) = Ax+ g(x)

⊆ Ax+ [W ] · x = [A] · x for all x ∈ B, (21)

where [W ] and [A] are the matrices with elements [wij, wij ] and [wij + aij , wij + aij],
respectively. Extending (20) from a real matrix A to an interval matrix [A] results in

[Q] = −
(

[A]TP + P [A]
)

, (22)

and stability properties of the nonlinear system can be investigated by investigating the
definiteness of [Q]. This is made more precise in the following proposition. We call a
symmetric interval matrix [Q] p.d., if every symmetric matrix contained in [Q] is p.d..

Proposition 2: Let P be a p.d. matrix. Assume there exist an interval matrix [A] and a
hyperrectangle B ⊂ X such that f(x) ∈ [A]x for all x ∈ B. If [Q] as defined in Eq. (22) is
p.d., then every Vc = {x|xTPx ≤ c} that is contained in B is a p.i. set of the system (1).

Proof. The function v(x) = xTPx is p.d., since P is p.d. by assumption. According to
Theorem 2, Vc ⊂ B is p.i., if

v̇(x) = ẋTPx+ xTPẋ = f(x)TPx+ xTPf(x)

is negative definite on B. Since f(x) ∈ [A]x for all x ∈ B, we find

v̇(x) ∈ xT
(

[A]TP + P [A]
)

x (23)

for all x ∈ B. Since [Q] is p.d. by assumption, [A]TP + P [A] = −[Q] is negative definite,
therefore xT (ATP +P A)x < 0 for all A ∈ [A] and all x ∈ B \{0}. Together with Eq. (23)
this implies v̇(x) < 0 for all x ∈ B \ {0}, which proves the claim. �

Based on Prop. 2 we can search for p.i. sets as follows. We choose a candidate set
Vc = {x |xTPx ≤ c} by selecting a symmetric positive definite matrix P ∈ R

n×n and a
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c > 0. Subsequently, we bound Vc by a hyperrectangle B ⊃ Vc. Following [8] we choose
B = [−∆x1,∆x1]× · · · × [−∆xn,∆xn], where

∆xj = xj =

√

√

√

√c ·
n
∑

k=j

u2jk, (24)

and uij are the elements of U = (L−1)T , where L results from the Cholesky factorization
P = LLT . After B has been determined, [A] and [Q] can be calculated, and the p.d. of
[Q] can be checked.

3.2 Detecting positive definiteness of interval matrices [Q]

A symmetric interval matrix [Q] is p.d., if and only if the smallest eigenvalue

λ∗ = min
S∈[Q]

min
‖x‖=1

xTS x (25)

is positive (see e.g. [4]). A lower bound λ ≤ λ∗ can be calculated with an interval variant
of Gershgorin’s circle criterion [2]. Specifically, λ = mink λk, where

λk = q
kk

−
n
∑

i=1

i6=k

max
(

|q
ik
|, |qik|

)

(26)

for k = 1, . . . , n. Since λ is a lower bound for λ∗, λ > 0 implies that [Q] is p.d.. Clearly,
the converse is not true. In fact, Gershgorin’s circle is known to be quite conservative.

An exact but numerically more expensive procedure for checking the definiteness of a
symmetric interval matrix [Q] was introduced by [4]. According to Hertz the p.d. of [Q] can
be established by checking the p.d. of 2n real matrices Sl ∈ [Q], where each Sl is associated
with one of the 2n orthants of Rn. By exploiting a certain symmetry, the number of real
matrices that need to be analyzed can be reduced to 2n−1 [4]. Since checking the p.d. of a
real matrix requires O(n3) operations, an overall computational complexity of O(2n−1 n3)
results.

Hertz’s method can be improved upon in the particular application treated here by
evaluating [Q]l on each of the 2n orthants of B ⊂ R

n separately. Note this does not change
the computational complexity significantly, since it is dominated by the exponential growth
in the number of orthants. Without giving details, we claim that the computational effort
of the modified Hertz method is O(2n n3). While twice as expensive as Hertz’s method,
the modified method provides a less conservative test of p.d. for a nonlinear system.

4 Implementation and complexity

We pointed out in the introduction that we are interested in automated methods for check-
ing positive invariance. In Sect. 4.1 we summarize how the two main steps of the proposed
approach, the computation of [Q] and the p.d. test for [Q], can be implemented. In Sect. 4.2
we discuss the computational complexity of several variants of these implementations.

4.1 Sketch of the implementation

The interval matrix [Q] depends on [W ] as specified in Eqs. (21) and (22). As detailed
in Sect. 2 the elements [wij ] of [W ] can either be calculated based on bounds [∇gi], or
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based on [gi], [∇gi] and trait information according to Prop. 1. We introduce the variable
DT ∈ {D,T}, where D (“derivatives”) and T (“traits”) refer to the methods without and
with trait variables. The interval matrix [Q] can be calculated as follows.

function intMatQ(A,P , g,B, DT)
switch(DT)
case(D) calculate [gi] and [(∇gi)j ] on B;

set [wij ] = [(∇gi)j];
case(T) calculate [gi], [(∇gi)j ] and [(∇2gi)jj] on B;

compute [wij ] acc. to Tab. 2 depending on B;
calculate [A] = A+ [W ];
calculate [Q] according to (22);

return [Q];

Once [Q] has been computed, its p.d. can be checked with one of the methods sum-
marized in Sect. 3.2. We introduce the notation GHO ∈ {G,H,O} to refer to the method
based on Gershgorin’s circle criterion (G), Hertz’s approach (H), and the modified Hertz
method that checks the p.d. on each orthant (O). The following function returns pd = 1
if [Q] is p.d. and pd = 0 otherwise.

function checkDef(A,P , g,B, GHO, DT)
switch(GHO)
case(G) calculate [Q]=intMatQ(A,P , g,B, DT);

check p.d. of [Q] using (26) and set pd;
case(H) calculate [Q]=intMatQ(A,P , g,B, DT);
for l = 1, . . . , 2n−1

check p.d. of orthant matrix Sl and set pd;
case(O) for l = 1, . . . , 2n

calculate [Q]l =intMatQ(A,P , g,Xl, DT)
for the l-th orthant Xl of B;
check p.d. of orthant matrix Sl and set pd;

return pd;

Since any of the choices DT ∈ {D,T} and GHO ∈ {G,H,O} can be combined with one
another, a total of six variants of the proposed method results. Without giving details we
state some relations between the sizes of the ellipsoids for which p.i. can be established
with these six methods. By cDT,GHO denote the largest c ≥ 0 for which p.d. of Vc can be
established for a combination of DT ∈ {D,T} and GHO ∈ {G,H,O}. Without proof we
claim

cT,GHO ≥ cD,GHO, (27)

for all GHO ∈ {G,H,O} and
cDT,O ≥ cDT,H ≥ cDT,G (28)

for all DT ∈ {D,T}.

4.2 Computational complexity of the algorithms

A precise analysis of the computational effort of the functions intMatQ and checkDef

introduced in Sect. 4.1 is straight forward but beyond the scope of the paper. We sum-
marize some results in Tab. 3, where N(·) denotes the number of operations necessary to
compute the respective information. N([gi], [(∇gi)j ], [(∇

2gi)jj]), for example, represents
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the number of operations necessary to calculate the intervals [gi], [(∇gi)j ], and [(∇2gi)jj ]
for all i, j ∈ N . Note that the complexity given for N([gi], [(∇gi)j ]) results if backward
mode automatic differentiation is used (see e.g. [5]).

Table 3: Computational complexity.

quantity complexity order

N(L) Cholesky dec. O(n3)
N([gi], [(∇gi)j ]) O(n)
N([gi], [(∇gi)j ], [(∇

2gi)jj]) O(n2)
N([W ] acc. to Tab. 2 O(n2)
N([A]) acc. (21) O(n2)
N([Q]) acc. (22) O(n3)
N(λ) Gershgorin acc. (26) O(n2)

N(intMatQ) for all DT O(n3)
N(checkDef), GHO = G, for all DT O(n3)
N(checkDef), GHO = H, for all DT O(2n−1 n3)
N(checkDef), GHO = O, for all DT O(2n n3)

We briefly note that the complexities for intMatQ and checkDef in Tab. 3 result from the
entries above the horizontal line. For example, N(intMatQ) = N([gi], [(∇gi)j])+N([Q]) =
O(n) +O(n3) = O(n3). Note that the choice of the method DT has no effect on the order
of N(intMatQ). The exact number of operations does depend on DT, however.

Finally, we claim without proof that closer inspection of the functions intMatQ and
checkDef results N(checkDef(GHO, DT = T)) > N(checkDef(GHO, DT = D)) for all GHO =
{G,H,O} andN(checkDef(GHO = O, DT)) > N(checkDef(GHO = H, DT)) > N(checkDef(GHO =
G, DT)) for all DT = {D,T}.

5 Examples

We consider a continuous time system in Sect. 5.1. Section 5.2 briefly introduces the
extension of the approach to discrete time systems and presents another example.

5.1 Continuous time example

Consider the following model of a nonlinear oscillator

ẋ1(t) = f1(x(t)) = x2(t)
ẋ2(t) = f2(x(t)) = −0.5 (x1(t) + x21(t))− 0.2x2(t)

(29)

with equilibrium x̆ = 0. Separating the functions fi into their linear and nonlinear parts
according to Eq. (2) results in

A =

(

0 1
−0.5 −0.2

)

and g(x) =

(

0
−0.5x21

)

.

Since the eigenvalues of A are λ1,2 = −0.1± 0.7i, the equilibrium x̆ = 0 is locally asymp-
totically stable. From g1(x) = 0 we infer [g1] = [w11] = [w12] = [0, 0]. Since g2(x)
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is independent of x2, [w22] = [0, 0]. For [g2] and the remaining element [w21] of [W ],
interval arithmetics results in [g2] = [−0.5 max(x21, x

2
1), 0], [(∇g2)1] = [−x1,−x1], and

[(∇2g2)11] = [−1,−1].

Table 4: Results for [w21].

DT GHO xv21 lr1 orthant k [w21]

D G, H, O − − − [−∆x1,∆x1]

T G, H −1 0 − [−0.5∆x1, 0.5∆x1]

T O −1 1 1, 3 [−0.5∆x1, 0]
−1 −1 2, 4 [0, 0.5∆x1]

Table 4 lists the bounds [w21] that result on B = [−∆x1,∆x1]× [−∆x2,∆x2] with the
methods introduced here. The results in rows 3-5 of Tab. 4 are calculated according to
Tab. (2) using trait information.

In order to calculate [Q] according to Eq. (22) we need to choose a p.d. matrix P .
For the sake of a concise comparison of all methods, we choose the same P in all cases.
Specifically, we calculate P by solving

max
P

vol
(

V1={x|v(x)=xTP x ≤ 1}
)

s.t. v̇(x) n.d.∀x ∈ V1

by local optimization on a grid of starting values. This results in

P =

(

6.641 1.956
1.956 12.877

)

.

Figure 1 illustrates the resulting V1 along with the regions Vc = {x|xTP x ≤ c}, for
the values c that result with the variants of the method presented here. Table 5 lists the
numerical results for c. Note that in general bigger p.i. sets can be found if other geometries
than ellipsoids are admitted. Figure 1 shows the set P = {x|v(x) = 1

6x
3
1+

1
4x

2
1+

1
2 x

2
2 ≤

1
12},

which can be found here, because a potential is known for the nonlinear oscillator.

x1x1

x
2

x
2

0

0

0

0 −0.4 0.4
−0.3

0.3

−1
−1

1

1

Figure 1: Plot of the domain of attraction of (29) (light gray). Optimal ellipsoidal
Lyapunov surfaces (gray). Lyapunov surfaces obtained for DT = T (green) and DT = D
(blue). Solid, dashed and dotted lines refer to GHO = O,H,G, respectively.
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5.2 Discrete time example

The proposed approach can be extended to discrete time systems of the form

x(tk+1) = f(x(tk)) (30)

in a straight forward fashion. Without restriction we assume x̆ = 0 is a fixed point. Es-
sentially, the derivative along trajectories v̇(x(t)) introduced in Prop. 2 has to be replaced
by the forward difference ∆v(x(tk)) = v(x(tk+1))−v(x(tk)). This gives rise to the interval
matrix

[Q] = P − [A]TP [A] (31)

in the second Lyapunov equation. As an example for a discrete time system, we analyze
a variant of a Lotka-Volterra model given by

x1(tk+1)= 0.9x1(tk)+ 0.1x21(tk)− 0.1x1(tk)x2(tk)
x2(tk+1)= 0.8x2(tk)+ 0.2x22(tk)− 0.1x2(tk)x3(tk)
x3(tk+1)= 0.7x3(tk)+ 0.3x23(tk)− 0.1x3(tk)x1(tk).

(32)

Separating linear and nonlinear contributions according to Eq. (2) yields

A =





0.9 0 0
0 0.8 0
0 0 0.7



 and g(x) =





0.1x21 − 0.1x1 x2
0.2x22 − 0.1x2 x3
0.3x23 − 0.1x3 x1



 .

A matrix P can be found just as in the continuous time example presented in Sect. 5.1.
The resulting matrix reads

P =





1.209 0 −0.003
0 1.065 0

−0.003 0 1.054



 .

Positive invariance can be established for the sets Vc = {x|xTP x ≤ c} for the values of c
given in Tab. 5.

Table 5: Results for cDT,GHO for the different variants DT ∈ {D,T}, GHO = {G,H,O} of
the method.

Sys. D,G D,H D,O T,G T,H T,O

(29) 0.042 0.056 0.071 0.168 0.225 0.286
(32) 0.074 0.101 0.122 0.075 0.111 0.253

The results in Tab. 5 corroborate the relations between the various cDT,GHO stated in
Eqs. (27) and (28).

6 Conclusion

We investigated approaches to an automatic detection of p.i. sets of nonlinear autonomous
continuous and discrete time systems. Six variants of a method for the detection of p.i.
ellipsoidal sets were introduced and analyzed. We showed that the order of the computa-
tional complexity of the introduced approaches varies between O(n3) and O(2n n3). The
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considered examples suggest that p.i. detection can be improved upon at a reasonable
additional computational cost by exploiting traits of the model equations such as certain
convexity properties. Furthermore, is apparent that the proposed function trait method
is an interesting candidate in particular if combined with an orthant based analysis of the
state space (case DT = T, GHO = O). This is reasonable, since tighter affine inclusions can
be obtained with trait information in general. The improvement turns out to be consider-
able, however, if subdomains are considered that do not contain 0 in their interior (cases
lr 6= 0).

Future work has to address the application of the method for the calculation of terminal
sets (or regions) occurring within the framework of nonlinear model predictive control with
guaranteed stability.
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[2] S. Gershgorin. Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk
SSSR, Ser. fizmat., 6:749–754, 1931.

[3] W. Hahn. Stability of Motion. Springer Verlag, Berlin, 1967.

[4] D. Hertz. The extreme eigenvalues and stability of real symmetric interval matrices.
IEEE Transactions on automatic control, 37:532–535, 1992.

[5] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic
Publishers, 1996.

[6] H. K. Khalil. Nonlinear Systems. Prentice Hall, 1996.
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