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Optimal and suboptimal event-triggering
in linear model predictive control

Michael Jost'*, Moritz Schulze Darup’™, and M. Ménnigmann

Abstract

We present two event-triggered MPC laws that do not require to solve a quadratic program
(QP) in every time step but only upon certain events. We prove one of the control laws
results in exactly the same closed-loop behavior as classical MPC. The second control law
requires even fewer QPs per time. It is suboptimal w.r.t. the MPC cost function, but still
results in asymptotically stable closed-loop behavior. We illustrate the event-triggered
MPC laws with two examples.

1 Introduction

Model predictive control (MPC) is an established method for the control of multivari-
able constrained systems. Because MPC is based on perpetually solving optimal control
problems, the computational cost of MPC is often a bottleneck.

As one possible remedy, MPC may be combined with ideas from event-triggered control,
where feedback is not applied periodically but only when the system requires attention
(see [1] for an introduction). Several authors investigated event-triggered MPC schemes
before. One idea builds on triggering an event if the difference between the predicted and
the real state trajectory becomes too large [2H4]. In a second family of approaches the
optimal input sequence is recalculated when the rate of change of the MPC cost function,
which serves as a Lyapunov function, is not sufficient anymore [5H§].

The present paper also combines event-triggered control and MPC, but the proposed
method is new to the knowledge of the authors. The central ideas can be summarized as
follows: (i) MPC is based on solving a QP for the current state in every time step. The
optimal solution is usually understood to provide the optimal input for the current state
(a point in the state space). The optimal solution does, however, not only provide the
optimal solution for a point in the state space, but an affine control law that is optimal
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for an entire polytope in the state space. (ii) As long as future states do not leave this
polytope, the affine control law can be reused, and therefore no QP needs to be solved. If
the system leaves the polytope, this is considered to be the event that triggers solving the
next QP. This simple idea gives rise to the first event-triggered MPC control law proposed
here. (iii) Roughly speaking, the affine control law can be reused even if the system has
left its domain polytope as long as the MPC cost function, which is a Lyapunov function
under typical assumptions, still decreases. This idea can be used to construct another
condition that triggers solving the next QP. The resulting control law, while suboptimal
by construction, can be shown to result in an asymptotically stable closed-loop system.

The paper is organized as follows. First, we detail the problem formulation and state
preliminaries in Section 2l The main result of the paper, i.e., the two novel event-triggered
MPC schemes for constrained linear systems sketched above, are presented in Section Bl
Two examples are given in Section ll and an outlook is stated in Section

1.1 Notation

For an arbitrary matrix M € R®*?, M7 with Z C {1, ...,a} denotes the submatrix with the
rows indicated by Z. Let M* be short for M1}, Define R, = {r e R|r > 0}. A polytope
is understood to be a set that results from the intersection of a finite number of halfspaces.
Note that this definition implies polytopes are convex. Let Q = {1,...,q}, where ¢ is the
number of constraints of the MPC problem introduced in (@) below.

2 Problem Statement and Preliminaries

Consider a linear discrete-time state space system

x(k+1)=Ax(k)+ Bu(k), x(0)=xg

y(k) = Cah) D

with states z(k) € R™, inputs u(k) € R™, outputs y(k) € RP and system matrices A €
R™™ B e R™™™ (' € RP*™. Assume the states and inputs of ([I]) are subject to constraints

u(k)ed CcR™ and z(k) e X CR" (2)

for all k € N, where the properties of U, X are summarized in Assumption [I] below. MPC
regulates the system (Il) to the origin while respecting the constraints (2l) by solving the
optimal control problem

N-1
min  z(N)'Pa(N) + EO 2(1)'Q (i) + u(@) Ru(i)
s.t. z(0) =
z(i+ ) Ax(i) + Bu(i), i =0,...,N — 1, (3)
z(i)e X, i=0,...,N—1,
u(i) € i=0,....,.N—1,
z(N )

on a receding horizorl], where X = (2'(1),...2/(N)), U = (W(0),... 4/ (N — 1)) are
introduced for convenience and where the weighting matrices @@ € R™*" R € R™*™ and

! Note that x(0) = = in @) is an abuse of notation that is supposed to mean that initial condition

for the prediction internal to (B]) is set to the current actual state x. Since the predicted states are
eliminated (see ()), we do not introduce a more elaborate notation here.



P € R™™™ define the cost function. 7 is a terminal set and N is the horizon. We make
the following assumptions throughout the paper.

Assumption 1: Assume the matrices Q, R, and P are symmetric and positive definite.
Assume the pair (A, B) is stabilizable. Finally, assume X, U and T C X are convex and
compact polytopes that contain the origin as an interior point.

By eliminating the state variables, the optimal control problem (Bl can be stated in the
compact form

mUin V(z,U) st. GU —-FEz <w, (4)

with the cost function
1 1
V(z,U) = §U’H U+2'FU+ §x'Y:U, (5)

where Y € R™" [ ¢ RmN [ ¢ RMVXmN G e RIXMN 4y ¢ RY, E € R?*", and where
g denotes the number of constraints [9]. It can be shown that H is positive definite under
the assumptions stated above.

We call () feasible for a given = € R™ if there exists a U such that the constraints are
fulfilled. Let Xy C & be the set of states for which () is feasible. Since H is positive
definite, the solution to (@) is unique for all x € Xy. We denote this solution by U*(x).

It proves convenient to introduce the set of constraints that are active respectively
inactive for a given x € &X;. These sets are given by

A(x) ={ie{l,..,¢}|G'U*(z)— E'z = w'},

. ‘ . 6
I(z) = {i {1,...,q}|GZU*(x)—EZx<wZ}, (6)

respectively.

For the remainder of the paper, (k) and u(k) denote the actual state of the system ()
at time k and the actual input send to the system at time k, respectively (as opposed to
the predicted states internal to the MPC problem (B])).

In the classical MPC setup, we compute U*(z(k)) at time instance k, use the first m
elements as inputs, i.e.,

u(k) = ® U*(2(k)) where & = [[™*™ mxm(N=1)] (7)

and repeat the procedure at time instance k + 1 for the new state that actually results at
time k + 1. Obviously, the optimization problem (@) is solved in every time step.

We intend to reduce the optimization effort by introducing two event-triggered control
schemes that do not require to solve () in every time step. These control laws will exploit
the special structure of the optimal solution U*(x), which we briefly summarize in the
following paragraph.

Bemporad et al. [9] showed that the optimal solution U* : Xy — U” is continuous and
piecewise affine. More precisely, there exist a finite number p of polytopes P; with pairwise
disjoint interiors, gains K; € R™N*" and biases b; € R™V such that U?Zl P; = Xy and

Kix+b ifxePy,
U*(x) = : : (8)



is continuous. Since a polytope is the intersection of a finite number of halfspaces, there
exist, for every p € {1,...,p}, T; € R"*™ and d; € R™ such that

We stress we never actually determine optimal control laws of the form (8]) explicity. This
is an important remark, since explicit laws of the form (&) can only be determined for fairly
small problems. We do, however, calculate () locally. In fact, it is one of the central ideas
of the present paper to infer which of the affine laws K;x + b; and polytope P; on the r.h.s.
of ([8) apply for the current z(k), and to use this law, roughly speaking, as long as possible
for future z(k + j), j > 0. Before explaining this idea in detail in Section Bl we collect
some established results on the stability of the MPC-controlled system (see, e.g., [7,10])
in the following Lemma.

Lemma 1: Let Assumption hold and let P be the positive definite solution of the discrete-
time algebraic Riccati equation (DARE). Consider the matriz Ko, = —(R+B'PB)"'B'PA
and let the terminal set T be such that (A + BKx)x € T and Kooz € U for every
x € T. Then the origin is an asymptotically stable steady state of the controlled system
with domain of attraction Xy. Moreover, the function

Vi Xy = R, V) =V(z,U"(2)) (10)

is a Lyapunov function of the controlled system. In particular, there exist o, 3,y € Ry
with 8 > v such that

afallf <V*(@) < Bllzl3  and (11)
VH(a®) = V() < v loll3 (12)
for every x € Xy, where zt = Az + B U*(x).

3 Event Triggered MPC

We propose two simple event-triggered MPC schemes that reduce the computational effort
of MPC. Essentially, we determine the affine law K;z+b; and its domain P; (see (§)) from
the optimal solution U*(z(k)) in time step k. Instead of solving the MPC optimization
problem (@) in the subsequent time steps k + 1, k + 2, etc., we then apply K;z + b; as
long as possible. The two variants of the proposed method differ w.r.t. the criterion that
is used to decide how long K;z + b; can be used before going back to solving (4 again.

We first summarize how to determine the particular affine law K;x + b; and polytope
P; such that z(k) € P; from the optimal solution to () for the state xz(k) in Lemma 2
The two variants of their use are described in Sections [B.J] and subsequently.

Lemma 2: Let v € X} be arbitrary and assume the quadratic program () has been solved
for the optimal U*(x). Let A(x) and Z(x) be as in ([0) and denote them by A and I for
brevity. Assume that the matric G* has full rank. Let

K*—H —1( .A)(G.AH ( )) 1S.A H™ 1F1

b= HL(GAY(GAH 1 (GAY) 1w,

. GIH- (GA) (GAH (GA)’) 1gA _ g7

- (GAH (@A) 5 )

. (GIH HGAY (GG ) W‘—aﬂ)
(GAH(GAY) A ’



where S = E+GH'F', S € RI*™. Let
P ={zx e R"|Tz < d'}. (13)

Then U*(z) = K*x+b*, x € P*, and K*x+b* is the optimal control law &) for all states
in the polytope P*, i.e.

U*(z) = K*z + b* for all & € P*. (14)
Proof. The Karush-Kuhn-Tucker (KKT) conditions for () read

HU + F'z+G'X=0, (15)

N(GU-FEz-w")=0, i=1,...,q (16)

N>0, i=1,...,q

GU — Ez —w <0, (17)

As a preparation recall the Lagrange multipliers of the inactive constraints are zero, i.e.
M = 0, which follows from combining ([[8) and G'U — E'z — w' < 0 for all i € Z, where
the latter statements holds according to the definition of Z in ().

Since H is invertible, (IH]) can be solved for U. This yields

U=-H'F'z —H'G')
= —H 'F'z — H'GA'NA, (18)

where we used G'\ = GA/A\A, which holds because AT = 0. Since the active set A is known
by assumption, we can split (I7]) into those rows that are fulfilled with equality and those
that are fulfilled with inequality. The former ones read

GAU — BAz —wh = 0. (19)
Substituting (I8]) yields
—GAH'GANA -~ GAH ' Fle — B2z —w? =0
or equivalently
—GAHT'GANA - 54z —wh = 0. (20)

The matrix GAH 1G4’ is invertible since H > 0 and the matrix G4 has full rank by
assumption. Thus, 20) can be solved for A, This yields

M= = (GAH'GA) T (SAa + wh) | (21)
Substituting this result into (I8]) gives
U=(H'GA (GAHTIGA)  $A - BT )
L HGA (GAHAGA/)—l wh,
which proves ([[4]). The relation T*z < d*, i.e. the defining relation in (I3]), can be shown
analogously by substituting (I8) and 1) into GTU — EZz — w? < 0 instead of into ().

This results in the first rows in 7* and d*. The respective second rows result from A\* > 0
for M from (ZI)). [

We assumed that G4 has full rank in Lemma [ for simplicity only. If this is not the
case, there still exists an affine control law K*x + b* that is optimal on a polytope P*
such that Lemma 2 holds. The Lagrange multipliers are not uniquely defined in this case,
however, and the linear algebra required to solve the KK'T conditions for U becomes more

complicated. We omit this case in the present paper due to space limitations and refer
to [9, Section 4.1.1] or [11] Section II.C].



3.1 Optimal Event-Triggered MPC

Since K*x 4 b* defined in Lemma [2] is the optimal control law on P*, it is obviously safe
to use it as long as the state remains in P*. The following corollary therefore is a direct
consequence of Lemma [2

Corollary 1: Let x € Xt and let U*(x) be the solution of ). Moreover, let K*, b*, and
P* be defined as in Lemma [d Consider the successor state x+ = Ax + BOU*(z). If
xt € P*, then

U (™) = K* o +b*. (22)

Lemma Plsuggests to introduce a time-variant control law and an event-triggered update
rule. We first introduce the control law and the update rule and comment on them
immediately below. The time varying control law reads (23])

u(k) = @ (KT (k) (k) + bt (k:)) , (23)

KT(k), b'(k) and the polytope on which KTx(k) + bl is used are updated according to the
following event-triggered rule

I;: if k=0or
K (k) o o(k) ¢ P (k- 1),
b (k) | = K- 1) (24)
Plk) bi(k —1) otherwise,

Pl(k—1)

where K*, b* and P* are defined as in Lemma 2l for x = (k). Rule (24)) essentially states
to determine the optimal K*x + b* and its domain P* with Lemma [ for the current state
z(k) if 2(k) has left the most recent polytope (case z(k) & Pf(k — 1) in @24)). In this
case the QP (@) and Lemma 2l must be applied to obtain U*(x(k)) and K*, b* and P* for
the state z(k). On the other hand, the optimal K*z + b* can be reused as long as the
state remains in P* (case otherwise in (24])). No calculations beyond evaluating the affine
control law are required in this case, in particular no QP () needs to be solved.

The event-triggered control law 23], ([24)) is equal to the classical MPC control law ([7)
that requires solving the optimal control problem [B]) (or equivalently ([])) in every time
step. This is stated more precisely in the following proposition.

Proposition 1: The control law ([) and the control law ([23]) with the event-triggered update
rule [Z4) are equivalent in the sense that the resulting system states x(k + 1) with initial
condition x(0) = xg € Xy and the associated inputs u(k) are identical for both controllers
and every k € N.

Proof. The proof can be carried out by induction. Consider the time instance k = 0. We
have u(0) = ® (K* x(0)+b*) and consequently z(1) = Ax(0)+ B u(0) for both controllers,
where K* and b* are defined as in Lemma 2 for # = 2(0). Now consider any k € N with
k > 0 and assume the states z(k 4+ 1) and inputs u(k) are identical for both controllers
for all k € {0,...,k —1}. Let K*, b* and P* be defined as in Lemma [ for = z(k). The
classical MPC law ([7) evaluates to

u(k) = @ (K*z(k) + b). (25)



For the event-triggered controller (23), ([24), we have to distinguish the two cases (i)
z(k) ¢ Pk —1) and (ii) z(k) € Pf(k — 1) from one another. In case (i), the same
input u(k) as (@3] results according to [@4). In case (i), we have PT(k — 1) = P* and,
consequently, K (k) = K*, b(k) = b* and the same u(k) as (25 results. [

The stability properties of the classical MPC control law ([l carry over to the event-
triggered control law (23), ([24)).

Corollary 2: Let the weighting matriz P and the terminal set T be defined as in Lemma[dl
Then, the control law ([23) with update rule [Z4) asymptotically stabilizes the origin with
domain of attraction X;. Moreover, the function V* : Xy — R is a Lyapunov function of
the controlled system.

Proof. Since they are equal according to Proposition [Il the control law (23] inherits the
stability properties of () stated in Lemma/[Il |

3.2 Suboptimal Event-Triggered MPC

It is the very point of the control law (23]), (24]) introduced in the previous section to reduce
the computational effort of MPC by avoiding to solve the QP (@) whenever possible. We
show in this section that even fewer QPs (@) need to be solved if a suboptimal control
law is accepted. While it is suboptimal, the control law proposed below does maintain
asymptotic stability.

Instead of reusing the locally optimal K*x + b* as long as it remains optimal, we reuse
it here as long as it results in a decreasing cost function and satisfies the constraints.
This can be achieved as follows. Let A € (0, 1) be arbitrary and consider the time-variant
control law (23) with the new event-triggered update rule

K* ifk=0or
K4 b* V> AVHE—1)or
V*(x(k GU - Ex(k) > w,
bRy | = i(l’( ) z(k) > w (26)
Vi) Kk — 1)
bH(k —1) otherwise,
v
where K* and b* are defined as in Lemma Rl for = = z(k), V*(z) is as defined in (I0), and
U= Kk —1)z(k) + btk — 1), (27)
V =V(z(k),U).

Note that U is the input sequence that results from evaluating the control law K jF(k —
1)z +bf (k—1) used in the previous time step for the current z(k). V is the corresponding,
generally suboptimal, value of the cost function. Essentially, (26]) states to solve the MPC
problem () and to determine K*, b* with Lemma [2] in the current time step k, if the
most recent control law results in a infeasible input (case GU — Ex(k) > w), or the
most recent control law does not result in a sufficient decrease of the cost function (case
V> AVH(E —1)). In contrast, the most recent control law is reused, if it results in a
feasible input and a sufficient decrease (case otherwise).

Before turning to the stability properties of the new control law, we need to confirm
that (26]) always results in a feasible input. Lemma [3 below states that a feasible U exists,
even if the most recent control law results in an infeasible one (case G U-E z(k) > w
in (Z6) with U from (27)). Moreover, Lemma [3 states that there exists a feasible U that
results in a certain decrease of the cost function V(z,U) of ().



Lemma 3: Let the weighting matriz P and the terminal set T be defined as in Lemma [1
Letx € Xy and let U € R™ be feasible for @), i.e., GU—Ex < w. Consider the successor
state ¥ = Az + B®U. Then, there exists a UT € R™Y such that GUT — Ext < w and

Vi@t <Vt U) < V@, 0) = Auin(@) l|z]3- (28)

Proof. Let X = (#/(1),...,&'(N)) be the trajectory associated with the input sequence
U = (&(0),...,0/(N—1)) and the initial state #(0) = 2. Since U is feasible for @), X and
U are feasible for the optimal control problem (B]). Now let K, be defined as in Lemma/[I]
and consider the input sequence Ut = (@/(0),...,a'(N — 1)) with a(i) = a(i + 1) for
i=0,...,N—2and u(N —1) = K #(N). Let X = (&/(1),...,7/(N))" be the trajectory
associated with U™ and the initial state #(0) = 2. Note that #'(i) = #'(: + 1) for
i=1,...,N—1and Z(N) = (A+ B K)%(N). Since &(N) € T, we have (N — 1) =
Ko #(N) €U and Z(N) = (A+ BKy)Z(N) € T according to Lemma[Il Thus, X and
U™ are feasible for @) at 1 and U™ is feasible for {@) at 2T, i.e., GUT — Ext < w.

To prove (28)), first note that V*(x*) < V(z*,U™) holds by optimality. The second
relation in [@8) can be proven as follows. The difference V(zt,U™) — V(z,U) evaluates
to

V(era U+) - V(I’, 0)
=3'(N)((A+ BKy)'P(A+ BKy) — P)%(N)
—2'Qx — 4 (0)R4(0),

= —#'(N)(Q + K\ RE) &(N) — 2'Qx — @/ (0) R 4(0),

< —2'Qr < —Auin(Q) H'IH%’
where the first equation holds by definition of V(x,U) (see the objective function in (3))).
The second equation results from the fact that (A + BKy)P(A+ BKy) — P+ Q +
K! RK., = 0. Finally, the third relation holds since the matrices  and R are positive

definite by Assumption [l and since @ + K/ RK, is positive definite by construction.
Rewriting V (zt,U%) — V(2,U) < —Amin(Q) ||2]3 yields 28). [

We can now proceed to state the stability properties that result with the new event-

triggered update rule (20)).

Proposition 2: Let the weighting matriz P and the terminal set T be defined as in Lemmalll
and let A € (0,1). Apply the control law [23]) with event-triggered update rule 2] to the
system (). The origin is an asymptotically stable steady state of the controlled system
with domain of attraction Xy, i.e., for every e > 0 there exist 6 > 0 and k € N such that
lzollz < 6 = |lz(k)|l2 <€, YEeN and (29)

T € Xp = |z(k)|l2 <€, Yk>Ek, (30)

where x(k) denotes the state of the controlled system at time k € N. Moreover, we have
x(k) € Xy for every k € N and every xg € Xj.

Proof. To prove x(k) € Xt, we show the relation
G (K*(k)z(k) + b* (k) — Ba(k) <w (31)

holds for every k € N and every zg € Xy, which implies feasibility of (k). Clearly, (31])
holds for k = 0 since 29 € Xy and since K*(0) = K* and b(0) = b*, where K* and b* are
defined as in Lemma [2 for © = 2(0). Now consider any k& > 0 and assume (3I) holds for
k — 1. We either have



() G(K*k—1)z(k)+bi(k—1)) - Ex(k) <wand V(z(k), K*(k—1) z(k) + b (k1)) <
AVEHE - 1),

(ii) G (K¥(k—1)x(k)+bt(k—1)) - Ex(k) <wand V(z(k), K*(k—1) 2(k) + bt (k—1))>
AVEHE - 1), or

(iil) G (K*(k—1)z(k) + b*(k— 1)) — Ex(k) > w.

In case (i), BI) holds since we have K¥(k) = K*(k — 1) and b*(k) = b*(k — 1) according
to ([26]). In case (ii) and (iii), feasibility of z(k — 1) guarantees feasibility of x(k) according
to Lemma Bl Thus, (I) holds with K*(k) = K* and b}(k) = b*, where K* and b* are
defined as in Lemma[for = x(k). In summary, z(k—1) € Xy implies z(k) € Xy. Hence,
x(k) € Xt holds for every k € N and every xo € Xy by induction.

It remains to prove relations 29) and (B0). First note that V*(0) = V*(x(0)). For all
other steps k, the figure V¥(k) in (28] represents the cost function value of a feasible or
optimal solution to (@) for x = z(k). Thus,

VHk) > V*(x(k)) for every ke€N. (32)
For any two consecutive values V*(k) and V*(k + 1), we either have
Vik+1) < AVHE) (33)
by construction of (20l or
VIE+1) =V (@(k+ 1)) < VF(E) = Xain(Q) [l2(R)[13 (34)

according to Lemma [l Since A € (0,1) and Apmin(Q) > 0, we obtain V#(k+ 1) < VH(k) in
both cases. Thus

Vik) < VH0) = V*(2(0)) for every ke N. (35)

Combining Equations (1), (82]), and B5]) yields

Vi(z(k) _ VI(k)

lz(k)II3 <

< V(@)
«

< 2ol (36)

«

From (B6]), we infer the choice § = \/% € is such that ([29) holds. To prove ([B0), let

4 =min{a (1 = A), \min(Q)} and choose k € N such that

=
)

Al

2

5 o (37)

(9

¥
where r € R is such that [|z|2 < r for every x € Xf. Note that 5 > 0. Further note that

a suitable choice of r is always possible since Xy C X and since & is compact. Instead of
proving ([B0) directly, we show that

o €Xp = Jke{0,....k}: |z(k)]2 <0 (38)

Clearly, (38)) in combination with (29]) implies [30). To prove (B8], assume the relation
does not hold and show that a contradiction results. Clearly, if (38) is false, we have
||z(k)||2 > ¢ for every k € {0,...,k}. Thus

ViE) > V() > ale®)]3 > a s (39)



On the other hand, V¥(k) can be written as

N k—1
i _ i i _yt
Vi(k) =V*0) + E k:ov (k+1) = V3k). (40)
In this context, we recognize that (33]) implies

Vik+1) - Vik)

where the first and the second relation result from (32) and (III), respectively. In combi-
nation with (34]), we obtain

VAk +1) = Vi) < —min{a (1= X), Amin (@)} [|2(F) |3,
= =7 (k)3
which holds for every k& € N. Overestimating ([@0) yields

k-1 _

VHE) < V(o) — Zk:(ﬂ (k)13
k-1 _
< Bllaoll3 — ZH'MQ
< Br?—k7é? (41)

Clearly, (89) and ({I]) can only be valid at the same time, if
ad® < Bri— k762 (42)

Relation (42]), however, contradicts (37). [

4 Examples

We apply both approaches to two different examples.

Double Integrator. Consider the double integrator system that results from discretizing
§ = u with zero-order hold (ZOH) and a sample time of Ty = 0.1s. We impose the state
and input constraints —5 < (k) < 5, =5 < zo(k) < 5 and —1 < u(k) < 1, respectively.
We set P to the solution of the DARE, and R = 0.1, Q = I"*". Furthermore, we chose
the horizons to N = 10 and A = 0.99.

MIMO system. We consider the state space system that results from discretizing the
continuous-time transfer function

—b5s+1 0.5s 0
3652+65+1 0 1(83;61_’_1)
. .1(—10s —0.1
G(S) = 0 s(8s+1) (64s2+6s+1)s | » (43)
Can 2(-bst)’
1252+43s+1 1652+42s+1

with ZOH and T, = 1s. The state and input constraints read —10 < z;(k) < 10 for
i=1,...,10 and —1 < wu;(k) <1for j =1,...,3, respectively. The matrix P is set to the
solution of the DARE, and the weighting matrices on the states and inputs are Q) = ["*"
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and R = 0.25]™*™ respectively. The horizon is chosen to be N = 30. We pre-stabilize the
system with the LQR controller proposed in [12] to obtain a well-conditioned optimization
problem. Again, we chose A = 0.99 for our numerical experiments. Terminal sets 7 are
constructed with the algorithms from [I3[14] for both examples.

4
J—1:
= of
8 |
4
1
= 0
-1k 1k
1 pme L
0.5/ 0.5
S S
O grpp—— 07 ey g p—y
tins tin s
(a) Optimal triggered MPC, (b) Suboptimal triggered
double integrator MPC, double integrator
10 ‘ ‘ ‘ ‘ ‘ 10
-10
1
\g/ 0
o1l
1
l%0.5
O ST %0100 O 60 80100
tins tin s
(c) Optimal triggered MPC, (d) Suboptimal triggered
MIMO system MPC, MIMO system

Figure 1: Results of the optimal event-triggered MPC (a,c) and the suboptimal event-
triggered MPC (b,d) for both examples.

Results for both examples and both the optimal and suboptimal variant of the proposed
method are shown in Figure [l for a random initial point. The figures show the trajectories
of the states x(t), the inputs u(t) and the trigger functions egpt(t) and egup(t), which
indicates if a trigger event occurs. Specifically,

oo (t) = 1 ifk=0ora(k) ¢ Pi(k—-1)
opt 0 otherwise ’

and
ifk=0or V>AVik—1)or
esub(t) = GU - Ex(k)>w ;

0 otherwise
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respectively. We calculated the trajectories of the closed-loop system until ||z (k)|]2 < 1072.

We stress that the results shown in Figure[[lare only meant to corroborate the theoretical
findings presented in the previous sections. In particular the shown data is obviously
not statistically relevant. Nevertheless, the results shown in Figure [ illustrate that the
proposed event-triggered MPC controllers work as anticipated. Consider the results for
the optimal event-triggering according to rule (24)) first. In the double integrator example,
the MPC problem is solved for all but one time (¢ = 1) for the first two seconds. Then
the MPC optimization is never triggered again afterwards (cf. Fig. [[h). For the second
example, the MPC optimization is triggered in every time step up to a certain point,
and never triggered again afterwards (cf. Fig. [Ic). In both cases, optimal event-triggered
MPC detects that no MPC problem (B]) needs to be solved once a certain neighborhood
of the origin has been reached. (Specifically, 19 trigger events occur with (24]) and thus
19 QPs (@) are solved for the double integrator example for the simulated time period of
6.6s. Since 6.6s result in 66 sampling periods, 66 QPs are solved by the classical MPC
controller. For the MIMO example, 13 trigger events occur with ([24]) and thus 13 QPs are
solved. The classical MPC controller solves 111 QPs, which result from a simulation time
of 111s and AT = 1s.)

The suboptimal rule (26]) results in a nontrivial triggering, see Figures [Ib, d. Even for
the very simple double integrator example, a period exists in which a suboptimal control
law is selected for a certain period. For the MIMO example, this happens repeatedly. The
suboptimal triggering rule results in trajectories that obviously are suboptimal (cp. the
trajectories in Figure [Th to those in b and the trajectories in ¢ to those in d) but drive
the system to the origin as anticipated. (We note that in 12 out of 66 and in 7 out of
111 sampling times the suboptimal rule (26]) triggers a QP for the double integrator and
MIMO example, respectively, while classical MPC solves 66 QPs and 111 QPs for the
double integrator and MIMO example, respectively.)

5 Conclusion and Outlook

We proposed two event-triggered variants of MPC, showed that they result in asymptot-
ically stable closed-loop systems, and illustrated them with two simple examples. Future
research has to investigate the impact of the suboptimality parameter A, and the extension
to nonlinear MPC.
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