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A missing link between nonlinear MPC
schemes with guaranteed stability

Moritz Schulze Darup† and Mark Cannon†

Abstract

We present an interesting link between two nonlinear MPC schemes with guar-
anteed stability. In particular, we show that terminal sets and costs designed
for MPC with terminal constraints can be exploited to compute suitable pre-
diction horizons for stabilizing MPC without terminal constraints.

1 Introduction

Model predictive control (MPC) is an optimization based method for the feed-
back control of dynamical systems. It is well-known for its ability to consider
both performance demands and constraint satisfaction. While MPC allows
for (nearly) optimal closed-loop behavior, stability of the controlled system
is not intrinsically guaranteed. Stability can, however, be guaranteed using
different techniques. Among a variety of methods designed for different types
of systems (see [11] for an overview), we can distinguish two fundamentally
different approaches. First, by including a so-called terminal set (and an as-
sociated terminal cost) in the optimization problem, the predicted trajectory
can be explicitly forced into a neighborhood of the origin, where a stabilizing
controller is known (see, e.g., [5,7] or Sect. 2.1). Second, by suitably choosing
the prediction horizon, we can implicitly guarantee that the optimal predicted
trajectory ends in a stabilizing neighborhood (see, e.g., [3, 9, 10] or Sect. 2.2).

The two approaches have well-known differences. The first approach makes
it possible to stabilize a system using relatively short prediction horizons while
the second approach usually requires longer horizons. Although this is an ad-
vantage of the first method, it has to be taken into account that the inclusion
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of a terminal set and cost modifies the optimization problem and the underly-
ing performance measure. In fact, the second approach usually provides closer
approximations of the infinite-horizon cost. Finally, the two methods rely on
different assumptions. The first approach requires the knowledge of an ap-
propriate terminal set and an associated terminal cost function (see Thm. 1
in Sect. 2). The second approach assumes some relations between the infinite
horizon cost and the stage cost are known (see Thm. 2 in Sect. 2). While
methods for the computation of terminal sets and costs for a huge class of
systems exist (see, e.g., [2, 4, 6, 8] or Sect. 3), procedures for the systematic
verification of the conditions (8) and (9) in Thm. 2 are lacking.

In this paper we intend to show that, despite the discussed differences,
the two MPC schemes offer an interesting link. In particular, we present a
method that allows verification of the conditions in Thm. 2 (associated with
the second method) based on the knowledge of a terminal set and cost as
required for the first method. In other words, the systematic verification of
the assumptions underlying both methods can be carried out using the same
numerical methods.

To establish this result, we briefly recall two variants of nonlinear MPC
schemes with guaranteed stability in Sect. 2. We then introduce a universal
condition for the identification of terminal sets and costs in Sect. 3 (see Prop. 1)
and show that established criteria can be easily converted to this form. The
main result of the paper, i.e., the systematic verification of conditions (8)
and (9), is presented in Sect. 4. The link between the two discussed MPC
schemes is illustrated in Sect. 5 using a numerical example. Finally, conclusions
are stated in Sect. 6.

1.1 Notation

We denote non-negative reals, positive reals and positive natural numbers by
R0, R+ and N+, respectively. In addition, we define N[i,k] := {j ∈ N | i ≤ j ≤
k}. Let P ∈ R

n×n and H ∈ R
t×n. We write P ≻ 0 if P is positive definite and

symmetric. Beside the vector norms ‖x‖1, ‖x‖2, and ‖x‖∞, we use ‖x‖P =√
xTPx (for P ≻ 0) and the matrix norm ‖H‖∞ = maxi∈N[1,t]

∑n
j=1 |Hij|.

Whenever we consider eTkH or Hej , ek ∈ R
t and ej ∈ R

n refer to the k-th
and the j-th Euclidean unit vector, respectively. Let C ⊂ R

n be a compact
set. By ∂C and int(C), we denote the boundary and the interior and of C.
For a polytope C, extr(C) denotes the set of all vertices (or extreme points)
of C. Conversely, conv({v1, . . . , vs}) refers to the convex hull of the points v1
through vs. We call a set C a C-set if C is compact, convex and 0 ∈ int(C).
Scaling of C by a factor ρ > 0 is understood as ρ C = {ρ x |x ∈ C}. Finally, for
a C-set C, the Minkowski function is defined as ΨC(x) = inf{λ ∈ R+ |x ∈ λC}.

2 Review of stabilizing MPC schemes

Consider the nonlinear discrete-time system

x(k + 1) = f(x(k), u(k)), x(0) = x0
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with state and input constraints of the form

x(k) ∈ X and u(k) ∈ U for every k ∈ N.

The control task is to steer the system to the origin while minimizing the
infinite horizon cost in (1). Taking the system dynamics and the constraints
into account, this task can be formulated as the optimal control problem

V∞(x0) := min
u∞

∞∑

k=0

l(x(k), u(k)) (1)

s.t. x(0) = x0,

x(k + 1) = f(x(k), u(k)), ∀k ∈ N,

x(k) ∈ X , ∀k ∈ N,

u(k) ∈ U , ∀k ∈ N,

where l : Rn ×R
m → R0 is the stage cost and where u∞ = {u(0), u(1), . . . } is

the infinite sequence of control actions to be chosen. A meaningful cost func-
tion is obtained under the following assumption, which we make throughout
the paper.

Assumption 1: The origin is an equilibrium point of the system, i.e., f(0, 0) =
0. The constraints X ⊂ R

n and U ⊂ R
m are C-sets. The stage cost l(x, u) is

convex and positive definite (in x and u).

Problem (1) is generally hard to solve since it is infinite dimensional and
non-convex. In MPC, (1) is thus replaced by the truncated optimal control
problem

VN (x0) := min
uN

τ(x(N)) +
N−1∑

k=0

l(x(k), u(k)) (2)

s.t. x(0) = x0,

x(k + 1) = f(x(k), u(k)), ∀k ∈ N[0,N−1],

x(k) ∈ X , ∀k ∈ N[0,N−1],

u(k) ∈ U , ∀k ∈ N[0,N−1],

x(N)∈ T ,

with prediction horizon N ∈ N+, terminal cost τ : Rn → R0 and terminal set
T ⊆ X . While (2) may still be non-convex, the number of decision variables
(in terms of the input sequence uN = {u(0), . . . , u(N − 1)}) is finite. Let u∗

N

be an optimizer of (2) at x0. Then, the MPC feedback law ̺N : Rn → R
m at

x0 is defined by
̺N (x0) := u∗(0), (3)

where u∗(0) is the first element of the optimal input sequence u∗
N . Depending

on the choice of τ , T , and N the origin of the controlled system

x(k + 1) = f(x(k), ̺N (x(k)) (4)

may or may not be asymptotically stable. We recall two suitable choices
guaranteeing stability in the following.
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2.1 Stabilizing MPC with terminal constraints

According to [11, Assum. A1 to A4], [5], and [7], a stabilizing MPC scheme is
obtained by choosing the terminal cost τ and the terminal set T as summarized
in Thm. 1. We refer to this approach as MPC with terminal constraints since
we usually have T ⊂ X and thus further restrict the terminal state x(N).

Theorem 1: Assume there exists a set C ⊆ X with 0 ∈ int(C) and a function
ϕ : R

n → R0 such that, for every x ∈ C, there exists a u ∈ U such that
f(x, u) ∈ C and

ϕ(f(x, u)) ≤ ϕ(x) − l(x, u). (5)

Set τ(·) = ϕ(·) and T = C in (2). Then, for every choice N ≥ 1, the origin
of the controlled system (4) is asymptotically stable with domain of attraction
(DOA) equal to DN = {x0 ∈ X | (2) is feasible}.

It is important to note that (5) implies

V∞(x) ≤ ϕ(x) for every x ∈ C, (6)

i.e., ϕ represents an overapproximation of the infinite horizon cost (1) on C.

2.2 Stabilizing MPC without terminal constraints

According to [3, Thm. 4 and Rem. 5], a stabilizing MPC scheme can also
be obtained by choosing the prediction horizon N according to the criteria in
Thm. 2. As a preparation, we introduce the function l⋆ : Rn → R with

l⋆(x) := inf
u∈U

l(x, u). (7)

Theorem 2: Assume there exists a set C ⊆ X with 0 ∈ int(C) and constants
γ, µ ∈ R+ such that,

V∞(x) ≤ γ l⋆(x) for every x ∈ C, (8)

µ ≤ γ l⋆(x) for every x ∈ X \ int(C), (9)

and, for every x ∈ C, there exists a u ∈ U such that f(x, u) ∈ C. Set τ(·) = l⋆(·)
and T = X . Then, for every choice N ∈ N+ and δ ∈ R+ such that

N >
ln(β)

ln(β)− ln(β − 1)
where β := max{δ/µ, γ, 2}, (10)

the origin of the controlled system is asymptotically stable with DOA larger
than or equal to DN = {x0 ∈ X |VN (x0) ≤ δ}.

Remark 1: Condition (10) slightly differs from the original conditions stated
in [3]. In fact, the conditions from [3, Thm. 4 and Rem. 5] read

δ

(
β − 1

β

)N̂−1

< µ and
ln(β − 1)

ln(β)− ln(β − 1)
+ 2 < N̂. (11)

To see that conditions (11) and (10) are interchangeable, first note that, due
to β ≥ δ

µ
, the first condition in (11) holds whenever the second condition
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in (11) is satisfied. Moreover, (2) with τ(x) = l⋆(x) and horizon length N (as
considered in Thm. 2) is equal to (2) with τ(x) = 0 (as considered in [3, Sect.
2]) and horizon length N + 1. Clearly, the second relation in (11) holds for
N̂ = N + 1 if and only if (10) holds for N .

Since Thm. 2 does not (further) restrict the terminal state x(N) (since
T = X ), we refer to this approach as MPC without terminal constraints. Note
that the choice τ(x) = l⋆(x) requires l⋆(x) to be known explicitly. If this is
not the case, we can instead use τ(x) = 0 and N = N̂ with N̂ satisfying (11).

3 Identification of terminal sets and costs

As mentioned in the introduction, there exist a number of methods that can
(in principle) be used to compute terminal sets C and terminal costs ϕ as
required in Thm. 1 (see, e.g., [2,4,6,8]). In many cases, the resulting set C and
function ϕ can be characterized using the concepts introduced next, in Prop. 1.
The universal characterization of C and ϕ based on the Minkowski function
ΨC will be instrumental for the systematic verification of the conditions (8)
and (9) addressed in Sect. 4.

Proposition 1: Let C ⊆ X be a C-set, η ∈ R+, and κ ∈ N+. Assume, for every
x ∈ C, there exists a u ∈ U such that

Ψκ
C(f(x, u)) ≤ Ψκ

C(x)− η l(x, u). (12)

Then C and ϕ(x) = 1
η
Ψκ

C(x) are as required in Thm. 1.

Proof. Let x ∈ C be arbitrary but fixed. Assume u ∈ U is such that (12) holds.
Dividing (12) by η > 0 and substituting 1

η
Ψκ

C(x) by ϕ(x) immediately leads to
(5). It remains to prove f(x, u) ∈ C. Since l(x, u) ≥ 0 and η > 0, (5) implies
ΨC(f(x, u)) ≤ ΨC(x). �

In principal, the reformulation of the criteria in [2, 4, 6, 8] in the style of
condition (12) is straighforward. However, in [6], continuous-time systems are
considered. In [2, 8], controlled invariant sets are computed, which implies
η = 0 in (12). Clearly, for η = 0, the function ϕ(x) = 1

η
Ψκ

C(x) is ill-defined.
Finally, in [4], the stage cost l(x, u) = ‖Qx‖∞ is addressed, which does not
satisfy Assum. 1 (since l(x, u) is not pos. def. in u). Thus, in order to prepare
the results in Sect. 4, we adapt two criteria introduced in [6] and [4] in the
following and rewrite them according to Prop. 1. The adaptation of the criteria
in [2] and [8] can be carried out analogously but is omitted here due to space
limitations.

3.1 Criteria for terminal ellipsoids and polytopes

Analogously to [4, 6], we assume the nonlinear system can be bounded us-
ing linear difference inclusions (LDIs). In particular, let there be matrices
A1, . . . , Ar ∈ R

n×n and B1, . . . , Br ∈ R
n×m, r ∈ N+, such that

f(x, u) ∈ conv ({A1x+B1u, . . . , Arx+Bru})
for every x ∈ C and every u ∈ U . (13)
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Then an ellipsoidal terminal set can be identified as follows.

Corollary 1: Let η ∈ R+, P ∈ R
n×n, and K ∈ R

m×n with P ≻ 0. Consider
the quadratic stage cost

l(x, u) = ‖x‖2Q + ‖u‖2R. (14)

with Q ≻ 0 and R ≻ 0. Assume the ellipsoidal set

C = {x ∈ R
n | ‖x‖2P ≤ 1} (15)

is such that C ⊆ {x ∈ X |K x ∈ U} and assume (13) holds for every x ∈ C
and every u ∈ U . If

(Ai +BiK)TP (Ai +BiK)− P + η(Q+KTRK) � 0 (16)

for every i ∈ N[1,r], then C and ϕ(x) = 1
η
Ψ2

C(x) are as required in Thm. 1.

Proof. Since Ψ2
C(x) = ‖x‖2P , (16) implies

Ψ2
C((Ai +BiK)x) ≤ Ψ2

C(x)− η l(x,Kx) (17)

for every x ∈ R
n. Moreover, (13) and Kx ∈ U yields

f(x,Kx) ∈ conv({(A1 +B1K)x, . . . , (Ar +BrK)x})

for every x ∈ C. Convexity of the set C and the functions ΨC and l immediately
leads to (12). �

The criterion in Cor. 1 is linked to quadratic stage costs. For an arbitrary
cost function l (satisfying Assum. 1), a polytopic terminal set can be identified
according to Cor. 2.

Corollary 2: Let η ∈ R+ and let H ∈ R
t×n be such that the polytopic set

C := {x ∈ R
n |Hx ≤ 1}, (18)

(where 1 ∈ R
t is a vector with all entries equal to 1) is a C-set with C ⊆ X .

Let {v1, . . . , vs} = extr(C) and assume (13) holds. If, for every vj, there exists
a wj ∈ U such that

eTkH(Aivj +Biwj) ≤ 1− η l(vj , wj) (19)

for every i ∈ N[1,r] and every k ∈ N[1,t], then C and ϕ(x) = 1
η
ΨC(x) are as

required in Thm. 1.

Proof. Relation (19) implies

ΨC(Aivj +Biwj) ≤ ΨC(vj)− η l(vj , wj)

for every i ∈ N[1,r] and every j ∈ N[1,s]. Using convexity of the sets C and U ,
and the functions ΨC and l, as well as positive homogeneity of ΨC with degree
1 (see [1, p. 80]) allows the proof of (12). �
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4 Choice of prediction horizons

The terminal sets C and costs ϕ identified according to Prop. 1 (resp. Cors. 1
and 2) are instrumental to design stabilizing MPC schemes with terminal
constraints according to Thm. 1. In this section we show that C and ϕ as in
Prop. 1, can also be exploited to compute γ and µ satisfying the conditions (8)
and (9) in Thm. 2. In combination with the user-defined choice of δ, the
constants γ and µ define β and consequently allow the choice of an appropriate
prediction horizon N according to (10). Thus, C and ϕ as in Prop. 1 can
also be used to design stabilizing MPC schemes without terminal constraints
according to Thm. 2. The relation between C and ϕ as in Prop. 1 and γ
and µ satisfying (8) and (9) is summarized in Prop. 2 further below. As a
preparation, we prove the following lemma.

Lemma 1: Let η, κ, and C be as in Prop. 1, define

L := {x ∈ R
n | l⋆(x) ≤ 1}, (20)

and assume (12) holds and

l⋆(x) = Ψκ
L(x) for every x ∈ X . (21)

Then
Ψκ

C(x) ≤ ρκ l⋆(x) for every x ∈ X (22)

holds if and only if
L ⊆ ρ C (23)

for some ρ∈ R+.

Proof. Necessity: Assume (23) does not hold. Then, since C and L are C-sets
by assumption and construction, respectively, there exists an x ∈ ∂C such that
ρx ∈ int(L). We thus obtain Ψκ

L(ρx) < 1 and consequently

Ψκ
C(x) = 1 > Ψκ

L(ρ x) = ρκΨκ
L(x) = ρκ l⋆(x),

which contradicts (22).
Sufficiency: From (23) we infer

ΨL(x) ≥ ΨρC(x) =
1

ρ
ΨC(x) for every x ∈ X .

This obviously implies Ψκ
C(x) ≤ ρκΨκ

L(x) for every x ∈ X and thus (22)
according to (21). �

Proposition 2: Let η, κ, and C be as in Prop. 1 and let ρ and L be as in
Lem. 1. Assume (12), (21), and (23) hold. Then C, γ = ρκ

η
, and µ = 1

ρκ
are

as required in Thm. 2.

Proof. According to Prop. 1, C and ϕ(x) = 1
η
Ψκ

C(x) are as required in Thm. 1.
In addition, we have V∞(x) ≤ ϕ(x) for every x ∈ C according to (6). We thus
obtain

V∞(x) ≤ 1

η
Ψκ

C(x) ≤
ρκ

η
l⋆(x) for every x ∈ C
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according to Lem. 1, which implies (8) with γ = ρκ

η
.

On the other hand, we have Ψκ
C(x) ≥ 1 for every x ∈ X \ int(C) and conse-

quently
1 ≤ ρκ l⋆(x) for every x ∈ X \ int(C)

according to (22). Clearly, this implies (9) with µ = 1
ρκ
. �

Remark 2: Obviously, the statement in Lem. 1 is more strict than Prop. 2.
To see this, first note that both conditions (8) and (9) are related to (22). As
stated in Lem. 1, condition (23) is necessary and sufficient for (22) to hold. It
is straightforward to show that (23) is also necessary and sufficient for (9) to
hold with µ = 1

ρκ
. However, it is important to note that (23) is only sufficient

for (8) to hold with γ = ρκ

η
. In fact, due to the overestimation (6), relation

(8) may hold for γ = ρκ

η
even though (23) does not.

The computation of the constants γ and µ according to Prop. 2 basically
requires the identification of a suitable ρ satisfying the geometrical condi-
tion (23). However, Prop. 2 can only be applied if (21) holds. Condition (21)
seems quite restrictive at first sight. We provide a detailed discussion of this
condition in the remainder of this section. To this end, we address different
combinations of terminal sets C and stage costs l and discuss the applicabil-
ity of Prop. 2. In particular, we consider ellipsoidal or polytopic sets C and
quadratic or (piecewise) linear stage costs l, where the latter is defined as

l(x, u) = ‖Qx‖p + ‖Ru‖p (24)

with full-rank matrices Q ∈ R
n×n and R ∈ R

m×m and p ∈ {1,∞}. Taking into
account that methods identifying ellipsoidal terminal sets are usually coupled
with quadratic stage costs (see Cor. 1), we obtain the four combinations spec-
ified in Tab. 1. Anticipating the detailed analysis in Sects. 4.1 through 4.4,
Prop. 2 is applicable for the three combinations marked with “�” in Tab. 1.
Condition (21) is violated, however, for polytopic sets C in combination with
quadratic stage costs l.

Table 1: Applicability of Prop. 2 for different sets C and stage costs l.

set C stage cost l

quadratic linear, p = 1 linear, p = ∞
ellipsoidal � / Sect. 4.1 − −
polytopic � / Sect. 4.4 � / Sect. 4.2 � / Sect. 4.3

Sections 4.1 through 4.4 address the specification of Prop. 2 w.r.t. the four
combinations of C and l itemized in Tab. 1. Special emphasis is placed on
the reformulation of condition (23). In fact, according to Rem. 3, it is de-
sirable to provide conditions that allow us to easily compute the smallest ρ
satisfying (23).

Remark 3: According to (10), for smaller values of β, N can be chosen to be
smaller. A small β is achieved for small γ and large µ. Regarding Prop. 2,
both is obtained if ρ is chosen to be small.
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4.1 Ellipsoidal set and quadratic cost

Corollary 3: Consider the quadratic cost (14). Let η, ρ ∈ R+ and P ∈ R
n×n

with P ≻ 0. Assume the ellipsoidal set C as in (15) satisfies the conditions in
Lem. 1 for κ = 2 and

ρ2Q � P. (25)

Then C, γ = ρ2

η
, and µ = 1

ρ2
are as required in Thm. 2.

Proof. First note that l⋆(x) = ‖x‖2Q = Ψ2
L(x) for every x ∈ X , where L is

defined as in (20). Thus, the claim immediately follows from Prop. 2 since (25)
implies (23). To see this, note that (25) implies ρ2‖x‖2Q ≥ ‖x‖2P . Hence, x ∈ L,
i.e., ‖x‖2Q ≤ 1, yields ‖x‖2P ≤ ρ2, i.e., x ∈ ρ C. �

The smallest ρ satisfying (25) can be easily found by solving a semi-definite
program (SDP).

4.2 Polytopic set and linear cost (p = 1)

Corollary 4: Consider the linear cost (24) with p = 1. Let η, ρ ∈ R+ and
H ∈ R

t×n. Assume the polytopic set C as in (18) satisfies the conditions in
Lem. 1 for κ = 1 and 


±HQ−1e1

...
±HQ−1en


 ≤ ρ1. (26)

Then C, γ = ρ
η
, and µ = 1

ρ
are as required in Thm. 2.

Proof. We have l⋆(x) = ‖Qx‖1 = ΨL(x) for every x ∈ X , with L as in (20).
It remains to show (26) implies (23). To this end, note that (23) here reads
{x | ‖Qx‖1 ≤ 1} ⊆ {x |H x ≤ ρ1}. Using the coordinate transformation
x = Q−1 ξ, this is equivalent to L̂ = {ξ | ‖ξ‖1 ≤ 1} ⊆ {ξ |H Q−1ξ ≤ ρ1} = Ĉ.
Since (the cross-polytope) L̂ is convex, (23) holds if the vertices ±e1, . . . ,±en
of L̂ are contained in Ĉ, i.e., if (26) holds. �

The smallest ρ satisfying (26) can in principle be found by solving a linear
program (LP). The numerical solution of the optimization problem is however
not necessary, since it is easy to show that the solution is

ρ∗ = max
j∈N[1,n]

max
k∈N[1,t]

|eTkHQ−1ej|.

4.3 Polytopic set and linear cost (p = ∞)

Corollary 5: Consider the linear cost (24) with p = ∞. Let η ∈ R+ and
H ∈ R

t×n. Assume the polytopic set C as in (18) satisfies the conditions in
Lem. 1 for κ = 1 and 


HQ−1ε1

...
HQ−1ε2n


 ≤ ρ1, (27)
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where ǫ1, . . . , ǫ2n ∈ R
n denote the 2n vertices of the ∞-norm unit ball {ξ ∈

R
n |‖ξ‖∞ ≤ 1}. Then C, γ = ρ

η
, and µ = 1

ρ
are as required in Thm. 2.

Proof. The proof is analogous to the proof of Cor. 4. We obtain the condition
L̂ = {ξ | ‖ξ‖∞ ≤ 1} ⊆ {ξ |H Q−1ξ ≤ ρ1} = Ĉ, which is equivalent to (27). �

The smallest ρ satisfying (26) is ρ∗ = ‖HQ−1‖∞.

4.4 Polytopic set and quadratic cost

In case of a polytopic terminal set C, we have ϕ(x) = 1
η
ΨC(x) according to

Cor. 2. In other words, (12) holds with κ = 1. Unfortunately, we find

l⋆(x) = ‖x‖2Q = Ψ2
L(x) but l⋆(x) 6= ΨL(x)

for a quadratic stage cost l. Consequently, condition (21) does not hold and
Prop. 2 cannot be applied. Nevertheless, a polytopic terminal set C can be
used to compute γ and µ even though a quadratic cost function is considered.
In this case, however, the knowledge of an auxiliary ellipsoidal terminal set E
is required. The constructive combination of the sets C and E is described in
the following proposition. Conditions under which Prop. 3 is useful (resp. not
useful) are discussed in Rem. 4 further below.

Proposition 3: Consider the quadratic cost (14). Let η, ρ1, ρ2 ∈ R+, H ∈
R
t×n, and P ∈ R

n×n with P ≻ 0. Assume the polytopic set C as in (18)
satisfies the conditions in Lem. 1 for κ = 1 and

ρ1 ≥ max
k∈N[1,t]

‖eTkHL−T‖2, (28)

where L refers to the Cholesky decomposition of Q, i.e., LLT = Q. In addi-
tion, assume the set E = {x |xTPx ≤ 1} satisfies the conditions1 in Lem. 1
for κ = 2 and

ρ22Q � P. (29)

Then, C, γ =
max{ρ1ρ2,ρ22}

η
, and µ = 1

ρ21
are as required in Thm. 2.

Proof. We first show that (28) and (29) imply

L ⊆ ρ1 C and L ⊆ ρ2 E . (30)

The second relation in (30) follows with the same arguments as in the proof of
Cor. 3. It remains to prove L ⊆ ρ1 C, which is equivalent to {x | ‖x‖2Q ≤ 1} ⊆
{x |H x ≤ ρ1 1}. Using the coordinate transformation x = L−T ξ, this can be
rewritten as {ξ | ‖ξ‖22 ≤ 1} ⊆ {ξ |H L−T ξ ≤ ρ1 1}, which immediately leads to
(28). Now, the relation

µ =
1

ρ21
≤ l⋆(x) for every x ∈ X \ int(C), (31)

1 To check whether E satisfies the conditions, substitute E for C in Lem. 1.
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can be proven analogously to the procedure in Prop. 2. It remains to show

V∞(x) ≤ max{ρ1ρ2, ρ22}
η

l⋆(x) for every x ∈ C. (32)

Based on (30) and the assumptions on C and E , we have

V∞(x)≤ 1

η
Ψ2

E(x) ≤
ρ22
η
Ψ2

L(x) =
ρ22
η
l⋆(x) for every x ∈ E ,

which proves (32) for x ∈ E , and

V∞(x) ≤ 1

η
ΨC(x) ≤

ρ1
η
ΨL(x) for every x ∈ C. (33)

Consider any x ∈ C\E . Then, we have ΨE(x) > 1 and consequently ρ2ΨL(x) ≥
ΨE(x) > 1. Thus, we obtain

V∞(x) ≤ ρ1
η
ΨL(x) <

ρ1ρ2
η

Ψ2
L(x) for every x ∈ C \ E ,

from (33), which completes the proof. �

Remark 4: Obviously, Prop. 3 is useful only if ρ1 ≤ ρ2. Otherwise, we gain

γ = ρ1ρ2
η

>
ρ22
η

and µ = 1
ρ21

< 1
ρ22

and we obtain better results by directly

applying Cor. 3 to the auxiliary ellipsoidal set E. If ρ1 ≤ ρ2, we obtain γ =
ρ22
η

and µ = 1
ρ21

≥ 1
ρ22

and the consideration of the polytope (in terms of ρ1) may

lead to a smaller value µ. Let ρ∗1 and ρ∗2 be the smallest values satisfying (28)
and (29), respectively. Then, we obviously have ρ∗1 ≤ ρ∗2 if (and only if) E ⊂ C.

5 Numerical example

In the previous section, we showed that terminal sets and costs originally de-
signed for MPC schemes with terminal constraints can also be used to tune
stabilizing MPC schemes without terminal constraints. In this section, we
compare the resulting controllers by analyzing an example. We consider a
discrete-time variant2 of the bilinear system introduced in [5] (and also ana-
lyzed in [4, 6, 8]). The system is given by

f(x, u) =

(
x1 + 0.1x2 + 0.09u + 0.01x1u
x2 + 0.1x1 + 0.09u − 0.04x2u

)
(34)

with the state and input constraints

X = {x ∈ R
2 | ‖x‖∞ ≤ 4} and U = [−2, 2].

Analogously to [5]3, we consider the quadratic cost (14) with

Q =

(
0.05 0.00
0.00 0.05

)
and R = 0.1.

2 Euler discretization of [5, Eq. (36)] with ∆t = 0.1 and µ = 0.9.
3 We consider Q and R from [5, Eq. (38)] multiplied with ∆t = 0.1.
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To apply the criteria in Sect. 3.1, first note that (34) can be easily bounded
by LDIs as discussed in [4, Sect. 2]. In particular, for any polytopic C-set C
with {v1, . . . , vr} = extr(C), the choice

Ai =

(
1.0 0.1
0.1 1.0

)
and Bi =

(
0.09
0.09

)
+

(
0.01 +0.00
0.00 −0.04

)
vi

is such that (13) holds.

420−2−4

4

2

0

−2

−4

x1

x
2

Figure 1: Approximation of the DOA DThm. 1
N for the MPC scheme with

terminal constraints (T = C) and different predictions horizons N . The
blue framed sets refer (from inside to outside) to the DOA for N equal
to 2, 5, 10, 20, and 50, respectively. The red solid polytope illustrates
the set C. The red dashed ellipsoid depicts E for ease of comparison. The
black trajectory refers to a closed-loop trajectory resulting for the MPC
law ̺Thm. 1

50 (x) from (3), respectively.

Based on this observation, it is straightforward to verify4 that the sets E =
{x |xTPx ≤ 1} and C = {x ∈ R

n |Hx ≤ 1} with

P =

(
0.5382 0.0000
0.0000 0.5382

)
and H =




+0.7064 +0.6543
−0.1358 +0.5032
−0.7064 −0.6543
+0.1358 −0.5032




satisfy the conditions in Cors. 1 and 2 for η = 0.05, respectively, and thus can
both be used as terminal sets in stabilizing MPC with terminal constraints.
Since

vol(C) = 9.0016 > 5.8375 = vol(E),
4 We have considered the axis-aligned bounding of E to compute an LDI for (34) on E .
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the polytopic set C is a better choice for the terminal set T in (2) since it
promotes a larger feasible set and thus a larger DOA (see Thm. 1). The
resulting DOA DThm. 1

N is illustrated in Fig. 1 for different prediction horizons
N ∈ {2, 5, 10, 20, 50}.

To prepare the re-utilization of the sets for MPC without terminal con-
straints, we first compute the smallest ρ satisfying (25) and obtain ρ∗ = 3.2823.
Note that the application of Prop. 3 is not reasonable since E 6⊂ C (see Fig. 2
and Rem. 4). Computing γ and µ according to Cor. 3 leads to γ = 122.135
and µ = 0.093. Choosing δ = 20 implies β = γ = δ

µ
. Finally, the smallest N

satisfying (10) is N = 1154. Thus, according to Thm. 2, the MPC (2) with
T = X , τ(x) = l⋆(x) = ‖x‖2Q, and N = 1154 will stabilize every x0 ∈ X with

V Thm. 2
1154 (x0) ≤ 20. In Fig. 2 the set {x0 ∈ X |V Thm. 2

100 (x0) ≤ δ} is illustrated
for different values δ ∈ {1, 2, 5, 10, 20}.

420−2−4

4

2

0

−2

−4

x1

x
2

Figure 2: Approximation of the set DThm. 2
100 = {x0 ∈ X |V Thm. 2

100 (x0) ≤ δ}
for the MPC scheme without terminal constraints (T = X ) and different
values δ. The blue framed sets refer (from inside to outside) to DThm. 2

100

with δ equal to 1, 2, 5, 10, and 20, respectively. The red solid ellipsoid
illustrates E . The blue dashed set shows DThm. 1

50 from Fig. 1 for ease
of comparison. The black trajectory refers to a closed-loop trajectory
resulting for the MPC law ̺Thm. 2

100 (x) from (3).

Obviously, the size (and shape) of the set {x0 ∈ X |V Thm. 2
100 (x0) ≤ 20} is

comparable to the DOA obtained for N = 50 in Fig. 1. Since

{x0 ∈ X |V Thm. 2
N (x0) ≤ 20}⊆{x0 ∈ X |V Thm. 2

100 (x0) ≤ 20}

for every N ≥ 100, this observation implies that we obviously need to consider
a δ ≥ 20 in order to obtain a guaranteed DOA that is comparable to DThm. 1

50
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from Fig. 1. At this point, it is important to note that the set E was designed
in such a way that β and consequently N become as small as possible5 for the
specification δ = 20. In other words, it is hard to find P , K, η, and ρ satisfying
the conditions in Cors. 1 and 3 (using LDIs as in footnote 4) such that the

l.h.s. in (10) becomes significantly smaller than 1154 for β = max{δρ2, ρ2
η
, 2}.

Clearly, we are able to realize smaller prediction horizons N if we consider
smaller δ ∈ R+, i.e., smaller guaranteed DOA (see Fig. 2). However, even for
the choice δ = 1, we require N = 171 according to Tab. 2. At this point,
it is important to note that DThm. 2

N only represents an inner approximation
of the actual DOA. In fact, the actual DOA may be relatively large even for
relatively small N . However, there is in general no systematic way to compute
the actual DOA.

Comparison of the DOA in Figs. 1 and 2 shows that, for this example and
using the methods introduced in Sect. 4, we require significantly longer predic-
tion horizons for the MPC without terminal constraits to archive a guaranteed
DOA that is comparable to the DOA of the MPC with terminal constraints
and N = 50. This observation was anticipated in the introduction and states
an advantage of the MPC scheme with terminal constraints. It is, however,
important to keep in mind that the relation

V Thm. 2
N (x0) ≤ V∞(x0) ≤ V Thm. 1

M (x0) (35)

holds for arbitrary N,M ∈ N+.

Table 2: Approximations of the smallest prediction horizon N satisfy-
ing (10) for different values δ based on P , K, η, ρ, γ, and µ as in Cors. 1
and 3.

δ

1 2 5 10 20

η 1.000 0.500 0.200 0.100 0.050
γ 45.238 52.729 76.496 122.135 215.269
µ 0.022 0.038 0.065 0.082 0.093

N 171 208 330 585 1154

Clearly, the overestimation V Thm. 1
M (x) ≥ V∞(x) is a direct consequence

of the terminal set and cost. In fact, especially if η is chosen small in or-
der to obtain a large terminal set, the terminal cost ϕ(x) = 1

η
ΨC(x) over-

estimates V∞(x) significantly. This becomes apparent if we consider a state
x0 ∈ X and a horizon N for which (2) is feasible using T = C, but where
the optimal x∗(N) lies close to the boundary of the terminal set C. Regard-

ing Fig. 1, this case occurs for x0 =
(
−2.0 −1.7

)T
and N = 20. Evalu-

ating the cost function value V Thm. 1
20 (x(k)) along the closed-loop trajectory

leads to the trend in Fig. 3. Compared to the evolution of V Thm. 2
100 (x(k))

5 In contrast to E , the set C was designed to provide an as large as possible volume (see [4]
for details).
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and V Thm. 1
50 (x(k)), V Thm. 1

20 (x(k)) shows a significant overshoot especially for
the first five steps. Since V Thm. 2

100 (x(k)) and V Thm. 1
50 (x(k)) are almost iden-

tical, i.e., V Thm. 2
100 (x(k)) ≈ V Thm. 1

50 (x(k)) ≈ V∞(x(k)) according to (35),
V Thm. 1
20 (x(k)) represents a bad approximation of the original performance

measure. Nevertheless, the closed-loop trajectory is visually indistinguishable
from the trajectories illustrated in Figs. 1 and 2.

403020100

30

15

0

k

V
N

Figure 3: Evolution of V Thm. 2
100 (x(k)) (red), V Thm. 1

50 (x(k)) (black), and
V Thm. 1
20 (x(k)) (blue) along the respective closed-loop trajectory.

6 Conclusion and outlook

The paper presents a missing link between stabilizing MPC schemes with and
without terminal constraints (see Thms. 1 and 2 or [3,5,7,9,11]). Basically, we
show that terminal sets and costs designed for MPC with terminal constraints
can be exploited to compute suitable prediction horizons for stabilizing MPC
without terminal constraints. In particular, we provide a method to system-
atically verify the central condition (10) on N as introduced in [3]. The main
result of the paper is summarized in Prop. 2. Corollaries 3 through 5 and
Prop. 3 state customized variants for different sets (ellipsoidal or polytopic)
and costs (quadratic or linear).

The presented results were illustrated with a numerical example. The ex-
ample shows that the computation of prediction horizons satisfying condi-
tion (10) can easily be carried out based on the knowledge of terminal sets
(and costs) using the proposed method. However, the computed horizons are
large (N ∈ N[171,1154] for the discussed example) and may not be suitable for
a practical realization of the MPC.

We have to stress that this observation does not imply that stabilizing MPC
without terminal constraints is not useful in practice. In fact, a number of con-
vincing examples are presented in [3,9]. Basically, the motivation for this paper
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was to illustrate the link between the discussed stabilizing MPC schemes and
to simultaneously provide a method to systematically verify condition (10) for
a huge class of systems. The analyzed example simply illustrates that this link
is currently not “strong” enough to provide efficient verification procedures.

Nevertheless, we think that the presented link is interesting and may be
further exploited. Consequently, future work has to address the improvement
of the link from two directions. First, the conservatism inherent in (6) can
be reduced using sharper criteria to identify appropriate terminal sets and
costs. Second, it may be possible to improve criterion (10) for the choice
of the prediction horizon N . Note that an improvement of the presented
condition (23) is impossible since it is necessary and sufficient according to
Lem. 1.
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