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Efficient constraint adaptation for
sampled linear systems

Moritz Schulze Darup†

Abstract

The paper addresses rigorous constraint satisfaction for linear continuous-time
systems under piecewise constant control. To guarantee constraint satisfac-
tion, we discretize the system and design adapted constraints in such a way
that constraint satisfaction of the discretized system w.r.t. the adapted con-
straints implies constraint satisfaction of the continuous-time system w.r.t. the
original constraints. Compared to existing approaches, the new method de-
scribed in this paper is less conservative, not restricted to any specific control
scheme (e.g., MPC), and computationally efficient.

1 Introduction

In the majority of cases, mathematical models describing real-life processes are
continuous-time systems. In contrast, due to sampling, controller design and
evaluation are usually carried out in the discrete-time domain. To this end, the
process model is often transformed into a discrete-time system. In principle,
this procedure is uncritical for linear systems since the discretization is exact
in the sense that the discretized system and the continuous-time system (under
zero-order hold (ZOH) control) coincide at all sampling instances.

The situation changes, however, if state and input constraints are present. In
fact, even for constrained linear systems, it is well-known that the continuous-
time system (i.e., the real-life process) may violate some constraints although
the discrete-time counterpart satisfies all constraints for all sampling instances
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(see, e.g., the motivating example in [12]). An obvious way to avoid this prob-
lem is to adapt the constraints such that constraint satisfaction of the discrete-
time systems (w.r.t. the adapted constraints) implies constraint satisfaction of
the continuous-time system (w.r.t. the original constraints).

The paper deals with a new method for the systematic adaptation of the
original constraints of the continuous-time system. To highlight differences to
existing procedures, we briefly summarize the results obtained in [1, 2, 7, 12]
and discuss advantages of the new approach afterwards.

In [1] and [2], methods for the computation of so-called controlled safe sets
are presented. Controlled safe sets are related to but different from controlled
invariant sets. According to [2, Def. 2], for every state in a ∆t-controlled
safe set, there exists a piecewise constant (or ZOH) control law such that
the controlled continuous-time system respects the original constraints for all
times. While the computation of controlled safe sets is well-understood, it is
not yet clear how to integrate the computed sets into common control schemes.
In fact, staying in the controlled safe set only guarantees that suitable control
actions exist. However, the controller has to take care that one of these suitable
controls is indeed selected, which is not straightforward.

In [12] and [7], methods guaranteeing constraint satisfaction of continuous-
time systems under sampled model predictive control (MPC) are addressed.
While the reformulated MPC schemes indeed preclude violation of the original
constraints, both approaches concentrate on a specific control strategy, namely
MPC.

In contrast to [1] and [2], the new method presented in this paper provides
adapted constraints that do not require the verification of suitable inputs dur-
ing runtime of the controller. In other words, if the discretized system satis-
fies the adapted constraints provided here, then the continuous-time system
is guaranteed to respect the original constraints. Moreover, in contrast to [12]
and [7], the presented method is not restricted to any specific control scheme.
In fact, it can be combined with any control strategy that takes constraints
explicitly into account (like but not limited to MPC). Furthermore, we con-
sider combined state and input constraints and thus generalize the concepts
introduced in [1, 2, 7, 12]. Finally, the adapted constraints computed by the
proposed procedure can be significantly less conservative than those obtained
using existing approaches (see the example in Sect. 4).

The paper is organized as follows. After introducing some notation in the
remainder of this section, we detail the problem of interest in Section 2. The
main results of the paper, i.e., the efficient computation of adapted constraints
is addressed in Section 3. Finally, Sections 4 and 5 present a numerical example
and state conclusions, respectively.

1.1 Notation

We denote non-negative reals, positive reals and positive natural numbers by
R0, R+, and N+, respectively. In addition, we define N[i,k] := {j ∈ N | i ≤ j ≤
k}. Let m,n ∈ N+ and let z ∈ R

n+m. We frequently deal with orthogonal
projections of z onto different subspaces. In this context, we define the ma-
trices Px :=

(
In 0

)
∈ R

n×(n+m) and Pu :=
(
0 Im

)
∈ R

m×(n+m), where Ij
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is the identity matrix in R
j×j. Obviously, Px z results in a vector containing

the first n elements of z. For a compact set Z ⊂ R
n+m, the projection PxZ is

understood as PxZ = {Px z | z ∈ Z}. Analogously, scaling of Z by any factor
λ > 0 is defined as λZ = {λ z | z ∈ Z}. By extr(Z), we denote the set of all
extreme points of Z. Moreover, conv({z1, . . . , zl}) refers to the convex hull of
the points z1, . . . , zl ∈ R

n+m. Finally, let A ∈ R
n×n. Then, µ2(A) denotes the

so-called logarithmic norm induced by the spectral matrix norm (see [11] for
details).

2 Problem statement

Consider the continuous-time linear system

ẋ(t) = Ax(t) +B u(t), x(0) = x0 (1)

with (combined) state and input constraints of the form

(
x(t)
u(t)

)
∈ Z for every t ∈ R0 (2)

under piecewise constant control (resp. ZOH)

u(t) = u(tk) for every t ∈ [k∆t, (k + 1)∆t), (3)

where ∆t ∈ R+ denotes the sampling time and where tk := k∆t for every
k ∈ N. The control task is to steer the system to the origin under the following
assumptions.

Assumption 1: The matrices A ∈ R
n×n and B ∈ R

n×m are such that the pair
(A,B) is stabilizable. The set Z ⊂ R

n+m is a convex and compact polytope
with the origin in its interior.

During the controller design (and the controller evaluation), system (1)
w.r.t. (2) and (3) is usually replaced by the discrete-time system

x(tk+1) = Â x(tk) + B̂ u(tk), x(0) = x0 (4)

with adapted constraints

(
x(tk)
u(tk)

)
∈ Ẑ for every k ∈ N, (5)

where Â := exp(A∆t) and B̂ :=
∫ ∆t

0 exp(Aτ) dτ B. In practice, the con-

straints Ẑ of the discrete-time system are often chosen identical to the ones
of the continuous-time system, i.e., Ẑ = Z. It is, however, well known
that the continuous-time system (1) may violate the constraints Z although
the discrete-time system (4) satisfies (5) for Ẑ = Z. Precisely, let uN =
{u(t0), . . . , u(tN−1)} denote an input sequence of length N ∈ N+ and let
ϕ̂(k, x0,uN ) (resp. ϕ(t, x0,uN )) be the solution of (4) (resp. (1) under control
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policy (3)) at time tk for k ∈ N[0,N ] (resp. at time t ∈ [0, N∆t]) and initial
condition x0. Then, we may have

(
ϕ(t, x0,uN )

u(t)

)
/∈ Z for some t ∈ [0, N∆t] (6)

even though
(
ϕ̂(k, x0,uN )

u(tk)

)
∈ Z for every k ∈ N[0,N ].

The paper deals with the computation of suitable constraints Ẑ ⊆ Z for the
discretized system in order to avoid constraint violations of the continuous-
time system as in (6).

Definition 1: We call a set Ẑ ⊆ Z a suitable constraint set for the discretized
system (4) if, for any x0 ∈ R

n, any N ∈ N+, and any input sequence uN ,
constraint satisfaction of the discretized system (4), i.e.,

(
ϕ̂(k, x0,uN )

u(tk)

)
∈ Ẑ for every k ∈ N[0,N ], (7)

implies constraint satisfaction of the continuous-time system (1) under control
policy (3), i.e.,

(
ϕ(t, x0,uN )

u(t)

)
∈ Z for every t ∈ [0, N∆t]. (8)

3 Computation of suitable constraint sets

Definition 1 provides an intuitive description of suitable constraints by con-
sidering input sequences of (arbitrary) length N ∈ N+. Such input sequences
are for example investigated in MPC. However, according to Lemma 1, suit-
able constraint sets can be identified by solely analyzing input sequences of
length N = 1. As a preparation, note that we write ϕ(t, x0, u0) instead of
ϕ(t, x0,u1) (resp. ϕ̂(1, x0, u0) instead of ϕ̂(1, x0,u1)) whenever we consider an
input sequence of length N = 1, where u0 is short for u(t0).

Lemma 1: Assume the set Ẑ ⊆ Z is such that, for every z0 ∈ Ẑ, we have
(
ϕ(t, x0, u0)

u0

)
∈ Z for every t ∈ [0,∆t], (9)

where x0 := Pxz0 and u0 := Puz0. Then, Ẑ is a suitable constraint set for (4).

Proof. Consider any x0 ∈ R
n, any N ∈ N+, and any input sequence uN and

assume (7) holds. We below show that condition (9) implies (8). Consequently,
Ẑ is suitable constraint set for (4) according to Definition 1.

Let k∗ ∈ N[0,N−1] be arbitrary but fixed and set x∗ := ϕ̂(k∗, x0,uN ) and
u∗ := u(tk∗) (where u(tk∗) refers to the (k∗ + 1)-th element of uN ). Let

z∗ :=

(
x∗

u∗

)
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and note that z∗ ∈ Ẑ according to (7). Moreover, we obviously have ϕ(t, x0, u0) =
ϕ(t− k∗∆t, x∗, u∗) and u(t) = u∗ for every t ∈ [k∗∆t, (k∗ +1)∆t] by construc-
tion. Thus, we find

(
ϕ(t, x0, u0)

u(t)

)
∈ Z for every t ∈ [k∗∆t, (k∗ + 1)∆t], (10)

according to (9). Since k∗ ∈ N[0,N−1] was arbitrary, (10) implies (8). �

In the following, we exploit Lemma 1 in order to verify suitable constraint
sets.

3.1 Verification

According to Assumption 1, the set Z is a convex and compact polytope
containing the origin as an interior point. Thus, it can written as

Z = {z ∈ R
n+m |Hz z ≤ 1h}, (11)

where Hz ∈ R
h×(n+m) is a full-rank matrix with h ≥ n + m + 1 and where

1h ∈ R
h is a vector with all entries equal to 1. Clearly, (9) holds if (and only

if)
max
z0∈Ẑ

max
j∈N[1,h]

max
t∈[0,∆t]

eTj (Hxϕ(t, x0, u0) +Huu0) ≤ 1, (12)

where ej ∈ R
h is the j-th Euclidean unit vector and where Hx := HzP

T
x ,

Hu := HzP
T
u , x0 := Pxz0, and u0 := Puz0.

Remark 1: Note that condition (12) is similar to but different from the coun-
terpart in [2, Thm. 5]. Roughly speaking, the expression in [2, Thm. 5] con-
tains a maximization w.r.t. the state x0 and a minimization w.r.t. the input u0,
while we consider a maximization w.r.t. the augmented state z0 in (12). The
minimization in [2] finally leads to controlled safe sets (see [2, Def. 2]), which
“only” guarantee the existence of a suitable input such that the continuous-time
system does not violate the original state and input constraints. In contrast, we
are looking for suitable constraint sets according to Definition 1 that guarantee
constraint satisfaction of the continuous-time system for all input sequences
that respect the adapted constraints Ẑ of the discretized system. Thus, we have
to consider the maximization w.r.t. z0.

Taking into account that ϕ(t, x0, u0) evaluates to

ϕ(t, x0, u0) = exp(At)x0 +

∫ t

0
exp(Aτ) dτ B u0 (13)

for every t ∈ [0,∆t], it is obvious that the expression eTj (Hxϕ(t, x0, u0)+Huu0)
in (12) is in general not concave (nor convex) on [0,∆t] for fixed values of x0,
u0, and ej . Hence, checking whether the l.h.s. in (12) is smaller than or equal

to 1 is a non-convex optimization problem (OP). However, assuming Ẑ is a
convex polytope, we are able to simplify the outer maximization in (12). This
is summarized in the following proposition.
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Proposition 2: Assume Ẑ ⊆ Z is a convex polytope, which can be written as
Ẑ = conv({z1, . . . , zl}), where zi ∈ R

n+m. Then, Ẑ is a suitable constraint set
for (4) if

max
i∈N[1,l]

max
j∈N[1,h]

max
t∈[0,∆t]

eTj (Hxϕ(t, vi, wi) +Huwi) ≤ 1, (14)

where vi := Pxzi and wi := Puzi.

Proof. Consider any z0 ∈ Ẑ and note that z0 can be written as a convex
combination of the form z0 =

∑l
i=1 αizi for some αi ≥ 0 with

∑l
i=1 αi = 1.

Let x0 = Pxz0 =
∑l

i=1 αivi and u0 = Puz0 =
∑l

i=1 αiwi. Then, with regard
to (13), we easily obtain

max
t∈[0,∆t]

eTj (Hxϕ(t, x0, u0) +Huu0)

=
l∑

i=1

αi max
t∈[0,∆t]

eTj (Hxϕ(t, vi, wi) +Huwi) ≤
l∑

i=1

αi = 1,

where the inequality holds due to (14). Thus, condition (12) holds and Ẑ is a
suitable constraint set for (4) according to Lemma 1. �

Proposition 2 implies that the two outer maximizations in (12) can be re-
formulated as an enumeration problem. Consequently, checking (12) “only”
requires to repeatedly solve the univariate non-convex OP

max
t∈[0,∆t]

eTj (Hxϕ(t, vi, wi) +Huwi) (15)

for all combinations vi, wi, and ej . We discuss the solution of (15) in more
detail in Section 3.4. First, however, we address the identification of suitable
constraints and comment on the accuracy of the proposed procedure.

3.2 Identification

We will exploit Proposition 2 to identify suitable constraint sets Ẑ. As a
preparation, we need a procedure for the computation of appropriate candidate
sets. To this end, consider the sequence of sets defined by Q0 := Z and

Qk+1 :=
{
z ∈ Z

∣∣ ( Â B̂
)
z ∈ PxQk

}
(16)

for every k ∈ N. It is easy to show that {Qk} results in a sequence of nested
sets satisfying

Qk+1 ⊆ Qk ⊆ Z

for every k ∈ N (see [3] for details). We will use Qk (for an arbitrary k ∈ N)
as a candidate set for Ẑ. More precisely, we set Z̃ = Qk and try to identify a
suitable constraint set Ẑ ⊆ Z̃ by (non-uniform) scaling of Z̃.
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Proposition 3: Let k ∈ N and set Z̃ = Qk. Then, extr(Z̃) = {z̃1, . . . , z̃l} is a
nonempty finite set. Moreover, let

̺ij := max
t∈[0,∆t]

eTj (Hxϕ(t, ṽi, w̃i) +Huw̃i) (17)

for every i ∈ N[1,l] and every j ∈ N[1,h], where ṽi := Pxz̃i, and w̃i := Puz̃i and
set

ẑi :=
1

max{1, ̺i1, . . . , ̺ih}
z̃i. (18)

Then Ẑ = conv({ẑ1, . . . , ẑl}) is a suitable constraint set for (4).

Proof. We obviously have 0 ∈ Qk for every k ∈ N. Hence extr(Z̃) is nonempty.
Moreover, it is easy to show that Qk is a polytope for every k ∈ N, since
Q0 = Z is a polytope by assumption. Thus, extr(Z̃) is finite. Consequently,
Ẑ is a convex polytope by construction. Consider any vertex ẑi of Ẑ and any
j ∈ N[1,h] and note that

max
t∈[0,∆t]

eTj (Hxϕ(t, v̂i, ŵi) +Huŵi)

=
maxt∈[0,∆t] e

T
j (Hxϕ(t, ṽi, w̃i) +Huw̃i)

max{1, ̺i1, . . . , ̺ih}

=
̺ij

max{1, ̺i1, . . . , ̺ih}
≤ 1,

where v̂i := Pxẑi and ŵi := Puẑi. Thus, Ẑ is a suitable constraint set for (4)
according to Proposition 2. �

Proposition 3 suggests to compute suitable constraint sets according to the
following simple algorithm.

Algorithm 1: Computation of suitable constraint sets Ẑ.

(i) choose any ∆t ∈ R+ and compute Â and B̂,

(ii) choose any k ∈ N, compute Qk, and set Z̃ = Qk,

(iii) evaluate {z̃1, . . . , z̃l} = extr(Z̃) and compute all ̺ij according to (17),

(iv) compute ẑi as in (18) and set Ẑ = conv({ẑ1, . . . , ẑl}).

3.3 Accuracy

By construction, the adapted constraints Ẑ computed according to Algo-
rithm 1 are a subset of the original constraints, i.e., Ẑ ⊆ Z. In most cases,
the adapted constraints will in fact be a strict subset of Z, i.e., Ẑ ⊂ Z. It is
important to note that any choice Ẑ ⊂ Z may entail the exclusion of actually
stabilizable states. For example, there may exist states x0 ∈ (PxZ) \ (PxẐ)
which are stabilizable for the continuous-time system w.r.t. Z but unstabi-
lizable for the discretized system w.r.t. Ẑ since x0 /∈ PxẐ. While this effect
cannot be completely avoided, we show in the following that a suitable choice
of the sampling time ∆t allows to bound the defect of Ẑ.
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At first, it is crucial to note that the computation of a candidate set Z̃
according to step (ii) in Algorithm 1 does not exclude any stabilizable states.
In fact, if x0 /∈ PxQk for some k ∈ N then x0 cannot be stabilizable for the
continuous-time system since any trajectory emanating from x0 is guaranteed
to violate the constraints Z for some points in time in the interval [0, k∆t]
(cf. [3]). Consequently, the only source of conservatism is the (non-uniform)
scaling in (18) based on the factors ̺ij from (17). However, the defect resulting
from scaling can be easily bounded. Assume for the moment that

max
i∈N[1,l]

max
j∈N[1,h]

̺ij ≤ 1 + ǫ (19)

for some ǫ ≥ 0. Then, we obviously have

1

1 + ǫ
Z̃ ⊆ Ẑ ⊆ Z̃. (20)

Thus, ǫ provides a measure for the defect of Ẑ. Obviously, evaluating the
l.h.s. of (19) allows to a posteriori quantify the defect ǫ for a given set Ẑ.
However, it is also possible to a priori choose ∆t and k such that the adapted
constraint set Ẑ resulting from Algorithm 1 is guaranteed to satisfy (20) for
a given ǫ > 0. This is summarized in Corollary 5 further below. As a prepa-
ration, we prove the following proposition.

Proposition 4: Let ǫ ∈ R+ and let z̃1, . . . , z̃l ∈ R
n+m with l ∈ N+. Let

c1, c2, c3 ∈ R+ be such that c1 ≥ maxj∈N[1,h]
‖eTj Hx‖2, c2 ≥

√
‖A‖22 + ‖B‖22,

and c3 ≥ maxi∈N[1,l]
‖z̃i‖2. Finally, let ∆t ∈ R+ be such that

∆t ≤

{
1

µ2(A) ln
(
ǫ µ2(A)
c1 c2 c3

+ 1
)

if µ2(A) > 0,
ǫ

c1 c2 c3
otherwise.

(21)

Then (19) holds, where ̺ij is defined as in (17).

Proof. The proof is inspired by [10, Lem. 11]. Consider any i ∈ N[1,l] and
j ∈ N[1,h] and note (17) can be written as

max
t∈[0,∆t]

eTj (Hx(ϕ(t, x̃i, ũi)− x̃i + x̃i) +Huũi)

= max
t∈[0,∆t]

eTj Hzz̃i + eTj Hx(ϕ(t, x̃i, ũi)− x̃i). (22)

Obviously, since z̃i ∈ Z̃ ⊆ Z, we obtain the upper bound eTj Hz z̃i ≤ 1 for the
first term in (22). It remains to show

max
t∈[0,∆t]

eTj Hx(ϕ(t, x̃i, ũi)− x̃i) ≤ ǫ. (23)

Clearly, the l.h.s. in (23) is dominated by

max
t∈[0,∆t]

|eTj Hx(ϕ(t, x̃i, ũi)− x̃i)|

≤ max
t∈[0,∆t]

‖eTj Hx‖2 ‖ϕ(t, x̃i, ũi)− x̃i‖2,

≤ c1 max
t∈[0,∆t]

‖ϕ(t, x̃i, ũi)− x̃i‖2, (24)
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where the last inequality holds by definition of c1. In order to overestimate
the maximization in (24), we consider the time-derivative

ϕ̇(t, x̃i, ũi) = A exp(At) x̃i + exp(At)B ũi (25)

and we note that the arc length s(t, x̃i, ũi) of the trajectory ϕ(t, x̃i, ũi) at time
t ∈ [0,∆t] emanating from x̃i can be written as

s(t, x̃i, ũi) =

∫ t

0
‖ϕ̇(τ, x̃i, ũi)‖2 dτ. (26)

By construction, we obtain

‖ϕ(t, x̃i, ũi)− x̃i‖2 ≤ s(t, x̃i, ũi) (27)

for very t ∈ [0,∆t]. Now, the arc length can be overestimated as follows. By
substituting (25) in (26), we obtain

s(t, x̃i, ũi) =

∫ t

0

∥∥(A exp(Aτ) exp(Aτ)B
)
z̃i
∥∥
2
dτ

≤ c3

∫ t

0

∥∥(A exp(Aτ) exp(Aτ)B
)∥∥

2
dτ (28)

≤ c3

∫ t

0

√
‖A exp(Aτ)‖22 + ‖ exp(Aτ)B‖22 dτ

≤ c3

√
‖A‖22 + ‖B‖22

∫ t

0
‖ exp(Aτ)‖2 dτ

≤ c2 c3

∫ t

0
exp(µ2(A) τ) dτ, (29)

where the second relation holds since ‖z̃i‖2 ≤ c3. The third relation holds
according to [4, Thm. 1]1. Finally, the two last relations hold according
to [11, Prop. 2.1] and by definition of c2, respectively. Depending on the value
of µ2(A), the integral in (29) evaluates to2

∫ t

0
exp(µ2(A) τ) dτ =

{
exp(µ2(A) t)−1

µ2(A) if µ2(A) 6= 0,

t otherwise.
(30)

Taking the maximum on the domain [0,∆t] obviously yields

max
t∈[0,∆t]

exp(µ2(A) t)− 1

µ2(A)
=

exp(µ2(A)∆t) − 1

µ2(A)
, (31)

if µ2(A) 6= 0, and maxt∈[0,∆t] t = ∆t otherwise. Now, since (31) is smaller than
∆t whenever µ2(A) < 0, we may use the following overestimation:

1 Note that the Schatten ∞-norm investigated in [4] is identical to the spectral norm ‖·‖2
of a matrix. Further note the 1 × 2 block matrix in (28) can easily be extended to a
2× 2 block matrix, as required for [4, Thm. 1], by inserting zero blocks. This extension
does obviously not affect the validity of the derived relations since ‖Cz‖2 = ‖ (C

0 ) z‖2.
2 It is important to note that µ2(A) may be zero even if A 6= 0. Moreover, we have

µ2(A) < 0 for some matrices A. Thus, the so-called logarithmic “norm” does not
match the general requirements for a proper norm.
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text
max

t∈[0,∆t]

∫ t

0
exp(µ2(A) τ) dτ

≤

{
exp(µ2(A)∆t)−1

µ2(A) if µ2(A) > 0,

∆t otherwise.
(32)

Evaluating the l.h.s. of (23) finally yields

max
t∈[0,∆t]

eTj Hx(ϕ(t, x̃i, ũi)− x̃i)

≤ c1 max
t∈[0,∆t]

‖ϕ(t, x̃i, u0)− x̃i‖2

≤ c1 c2 c3

{
exp(µ2(A)∆t)−1

µ2(A) if µ2(A) > 0,

∆t otherwise.
(33)

according to (24), (27), (29), and (32). Substituting the upper bound for ∆t
from (21) in (33), easily proves (23). �

Corollary 5: Let ǫ ∈ R+, k ∈ N, and let c1 and c2 be defined as in Proposition 4.
Let c3,∆t ∈ R+ be such that c3 ≥ maxz∈Z ‖z‖2 and such that (21) holds.
Then, Ẑ computed according to Algorithm 1 satisfies (20).

Proof. We have Z̃ = Qk ⊆ Z by construction for any k ∈ N. Since Z̃ is a
nonempty polytope (see proof of Prop. 3), {z̃1, . . . , z̃l} = extr(Z̃) is a finite
set with l ∈ N+. Moreover, we have maxi∈N[1,l]

‖z̃i‖2 ≤ c3. Thus, the claim in
Corollary 5 directly follows from Proposition 4. �

3.4 Implementation and Complexity

The computation of suitable constraint sets using Algorithm 1 requires to solve
a finite number of univariate non-convex OPs of the form (17) (resp. (15)).
Following the argumentation in [2], although the problem is non-convex, it can
be solved reliable since it is the search of the maximum of a scalar function
on a scalar compact domain. One way to concretely solve (17) is to use in-
terval arithmetics (see [9]) and bisection to identify intervals [t, t] ⊆ [0,∆t] on
which the objective function is either non-decreasing, non-increasing, convex,
or concave. Obviously, on these intervals, the local maximum can be easily
computed and the global maximum results from enumeration. Note that in-
terval inclusions for the matrix exp(At) on intervals t ∈ [t, t] can be computed
according to [?]. Further details on the solution of (17) are beyond the scope
of the paper. We stress, however, that we successfully applied the described
procedure to compute Ẑ for the numerical example in Section 4.

With regard to (17), the number of OPs to be solved in step (iv) of Algo-
rithm 1 depends on the number of vertices l of the candidate set Z̃ and the
number of hyperplanes h defining the original constraint set Z. While the
number h is inherently fixed, the number l (strongly) depends on the choice
of k in step (ii) of Algorithm 1. In fact, it is well-known that the number
of vertices of the set Qk grows with k (see, e.g., [6, Rem. 4.8]). Fortunately,
Algorithm 1 provides a suitable constraint set for every choice of k including
k = 0 (which implies Q0 = Z). Moreover, according to Corollary 5, a suitable
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choice of the sampling time ∆t allows us to meet any desired accuracy ǫ > 0
independent of the choice of k. Nevertheless, a larger k allows to eliminate
unstabilizable states and unsuitable inputs before applying the scaling (18).
Thus, choosing a larger k may permit to achieve a particular accuracy without
having to use undesired small sampling times ∆t. In summary, the choice of
k allows to control the trade-off between the numerical effort to compute the
adapted constraints and their accuracy.

4 Numerical Example

We consider the example discussed in [12] with

A =

(
−0.7 0.1
2.0 −0.1

)
and B =

(
2.0
1.0

)

and the constraints

− 2 ≤ x1(t) ≤ 2, −2 ≤ x2(t) ≤ 2, and − 1 ≤ u(t) ≤ 1 (34)

for every t ∈ R0. Clearly, the constraints (34) can be rewritten in the form (2)
with Z as in (11) and

Hz=




0.5 −0.5 0.0 0.0 0.0 0.0
0.0 0.0 0.5 −0.5 0.0 0.0
0.0 0.0 0.0 0.0 1.0 −1.0




T

∈ R
6×3. (35)

We apply Algorithm 1 to compute suitable constraint sets Ẑ for all combi-
nations of ∆t and k satisfying ∆t ∈ {0.2, 0.5, 1.0} and k ∈ {0, 2}. To make
our results more transparent, we provide details on the set Ẑ for the choice
∆t = 0.5 and k = 2. In this case, Algorithm 1 yields Ẑ = {z ∈ R

3 | Ĥzz ≤ 118}
with

Ĥz =




0.4796 0.3345 0.5528
0.0000 −0.5000 0.0000
0.0000 0.0000 1.0000

−0.0240 −0.1282 0.7841
−0.0240 −0.5165 0.0075
0.0240 0.5165 −0.0075
0.0000 0.5000 0.0000

−0.3621 −0.0207 −0.4309
−0.5000 0.0000 0.0000
−0.4796 −0.3345 −0.5528
−0.3457 −0.5059 −0.3544
−0.4143 −0.4864 −0.4661
0.3621 0.0207 0.4309
0.0240 0.1282 −0.7841
0.3457 0.5059 0.3544
0.0000 0.0000 −1.0000
0.4143 0.4864 0.4661
0.5000 0.0000 0.0000




∈ R
18×3. (36)
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Figure 1 illustrates Ẑ with Ĥz from (36). A projection of Ẑ onto the state
space is depicted in Figure 2 further below. For every combination of ∆t and
k, we a posteriori calculate the defect ǫ of Ẑ according to (19) as

ǫ = max
i∈N[1,l]

max
j∈N[1,h]

̺ij − 1,

where the factors ̺ij result from (17). Numerical values for ǫ regarding all
six combinations of ∆t and k are listed in Table 1. Obviously, the smallest
defect ǫ = 0.0111 results for the choice ∆t = 0.2 and k = 2. Moreover, it
is interesting to note that the defect ǫ = 0.2714 for the combination k = 2
and ∆t = 1.0 is smaller than ǫ = 0.4910 for the choice k = 0 and ∆t = 0.2.
Thus, eliminating unstabilizable states and unsuitable inputs (by computing
Z̃ = Qk for k > 0) before applying the non-uniform scaling (18) allows to
choose larger sampling times without increasing the defect of Ẑ.

2
0

−2
2

0

−2

1

0

−1

x1
x2

u

Figure 1: Illustration of the suitable constraint set Ẑ computed for the
example in Section 4 and the choice ∆t = 0.5 and k = 2. The axis-aligned
bounding box [x1] × [x2] × [u] = [−2, 2] × [−2, 2] × [−1, 1] refers to the
original constraint set Z of the continuous-time system.

Now, assume we want to a priori choose ∆t and k such that Ẑ result-
ing from Algorithm 1 satisfies (20) with ǫ = 0.0111 as above. According to
Corollary 5, this is guaranteed for an arbitrary choice of k ∈ N if ∆t sat-
isfies (21) with c1 and c2 as in Proposition 4 and c3 as in Corollary 5. To
evaluate the r.h.s. in (21), first note that the logarithmic norm of A reads
µ2(A) = 0.6920 > 0. Moreover, the choices

c1 = maxj∈N[1,h]
‖eTj Hx‖2 = 0.5000,

c2 =
√

‖A‖22 + ‖B‖22 = 3.0832, and

c3 = maxz∈Z ‖z‖2 = 3.0000

are as required in Corollary 5. Consequently, any sampling time ∆t ∈ R+ such
that
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∆t ≤
1

µ2(A)
ln

(
ǫ µ2(A)

c1 c2 c3
+ 1

)
= 0.0024

results in a suitable constraint set Ẑ that satisfies (20) with ǫ = 0.0111. Recall
that we already achieved the desired accuracy for the choice ∆t = 0.2 ≫ 0.0024
(and k = 2). Obviously, a priori bounds for ∆t provided by Corollary 5 are
valid but conservative.

Table 1: Defects ǫ of the suitable constraint sets Ẑ (left) and number of
vertices l of the candidate sets Z̃ (right) computed for the example in
Section 4 and different choices of ∆t and k.

defect ǫ of Ẑ

k ∆t

1.0 0.5 0.2

0 2.6637 1.2676 0.4910
2 0.2714 0.0690 0.0111

vertices l of Z̃

k ∆t

1.0 0.5 0.2

0 8 8 8
2 16 20 20

In the following, we briefly comment on the numerical complexity associ-
ated with the computation of Ẑ for the present example. As discussed in
Section 3.4, the computational effort of Algorithm 1 is mainly determined by
the number h·l of OPs to be solved in step (iii). According to (35), the original
constraint set Z is defined by h = 6 hyperplanes. The number of vertices l of
the candidate set Z̃ = Qk depends on the choice of k and ∆t. Clearly, since Z
is a hyperrectangle in R

3, we obtain l = 8 for k = 0 and any ∆t > 0. For k = 2,
the number of vertices l varies with ∆t as summarized in Table 1. Obviously,
the computation of the set Ẑ for the combination k = 2 and ∆t = 0.5 requires
to solve h · l = 6 · 20 = 120 OPs of the form (17). Rigorously solving these 120
non-convex OP using the procedure sketched in Section 3.4 (implemented in
Matlab R2014b) required 1.6103 s on an Intel Core i5 processor running at
1.9GHz).

Figure 2 allows to compare the results of the proposed method for the com-
putation of suitable constraints sets with the procedure described in [12]. Ob-
viously, the set PxẐ is significantly larger than the feasible domain of the MPC
scheme designed in [12] (cf. the light gray polytope with the polytope marked
by the dash-dotted boundary lines in Fig. 2). This observation is not cru-
cial, however, since the constraint set Ẑ may contain unstabilizable states. In
fact, according to Definition 1, the constraints Ẑ only guarantee that, if there
exists a feasible trajectory for the discretized system (4) w.r.t. (5), then the
corresponding trajectory of the continuous-time system satisfies the original
constraints Z.

To analyze the set of stabilizable states of system (4) w.r.t. (5), we integrate
Ẑ in a MPC scheme with guaranteed stability and compute the domain of
attraction of the closed-loop system. Note, however, that our approach is not
restricted to MPC. In fact, the set Ẑ can be easily integrated in any control
scheme that takes constraints explicitly into account. As summarized in [8],
stabilizing MPC (for linear systems) is based on the (convex) OP
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u
∗
N = min

uN

‖x(tN )‖2P +

N−1∑

j=0

‖x(tj)‖
2
Q + ‖u(tj)‖

2
R (37)

s.t. x(0) = x0,

x(tj+1) = Âx(tj) + B̂u(tj), for j = 0, . . . , N − 1,
(
x(tj)
u(tj)

)
∈ Ẑ, for j = 0, . . . , N − 1,

x(tN ) ∈ T ,

where Ẑ is a suitable constraint set and where T is an appropriate terminal
set (see Eq. (38) further below).

20−2

2

0

−2

x1

x
2

Figure 2: Illustration of the projected suitable constraint set and the
predictive control scheme designed for the example in Sect. 4. The dark
gray and the light gray polytopes refer to PxZ̃ and PxẐ, respectively,
where Z̃ and Ẑ were computed using Alg. 1 for the choice ∆t = 0.5 and
k = 2. The polytopes with the (black) dashed and dash-dotted boundary
lines mark the feasible set (i.e., the domain of attraction) of the MPC
schemes designed here and in [12], respectively. The polytope with the
(black) dotted boundary line refers to the terminal set T characterized
in (38). The blue lines mark trajectories of the continuous-time system
(solid) and the discretized system (dashed) under the predictive control
scheme (37) for three different initial conditions x0 (located at the vertices
of the feasible set).

The weighting matrices Q and R and the sampling time ∆t are chosen as
in [12], i.e., Q = I2, R = 2, and ∆t = 0.5. Hence, the system matrices of the
discretized system evaluate to

Â =

(
0.7243 0.0414
0.8287 0.9729

)
and B̂ =

(
0.8617
0.9321

)
.
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We consider the constraint set Ẑ with Ĥz as in (36) (i.e., the set Ẑ that
results from Algorithm 1 for ∆t = 0.5 and k = 2). The terminal weighting P
is chosen as the solution of the discrete-time matrix Riccati equation (DARE)
and thus accounts for the infinite horizon cost of the discretized system under
the stabilizing control law u(tk) = K x(tk) with K = −(R + B̂TPB̂)−1B̂P Â.
Numerical values for P and K are

P =

(
2.0265 0.6980
0.6980 1.9557

)
and K =

(
−0.5921 −0.3886

)
.

In order to guaranty asymptotic stability of the closed-looop system controlled
by the MPC scheme (37) (see [8] for details), we consider the terminal set

T =

{
x ∈ R

n

∣∣∣∣
(
In
K

)
(Â+ B̂K)k x ∈ Ẑ, ∀k ∈ N

}
(38)

as introduced in [5]. Note that T as in (38) can always be described by only
considering a finite number of steps k ∈ N. In fact, for this example, it is
sufficient to solely consider k = 0. The resulting terminal set T is illustrated
in Figure 2. Finally, we choose the (relatively short) prediction horizon N = 2.

In Figure 2, the feasible set of the quadratic program (37) (i.e., the set of all
feasible initial conditions x0 ∈ R

n) is illustrated. Clearly, the feasible set of the
MPC scheme presented here is significantly larger than the feasible set of the
predictive controller in [12] even though the prediction horizon in [12] is longer
(in fact, N = 8 in [12]). To see this, compare the sizes of the polytopes marked
by the dashed boundary lines and the dash-dotted boundary lines in Figure 2,
respectively. Since both MPC schemes guarantee closed-loop stability, the
feasible sets are equal to the domains of attraction of the controlled systems
in both cases. Obviously, for this example, the adapted constraints computed
with the presented method result in a larger domain of attraction than the
constraints proposed in [12]. A reason for this observation may be that the
polytopic overapproximations exploited in [12] are more conservative (at least
for small choices of the parameter ν (see [12, Lem. 2 and Sect. V])) than the
(non-uniform) scaling introduced here (see Eq. (18)).

Finally, Figure 2 illustrates trajectories of the discretized system under the
predictive control scheme (37) for three different initial conditions x0. An-
alyzing the corresponding trajectories of the continuous-time system proves
that the adapted constraints Ẑ are suitable. In fact, the trajectories of the
continuous-time system do not violate the original constraints (34).

5 Conclusion and outlook

We presented a new method to guarantee constraint satisfaction for linear
continuous-time systems under piecewise constant control. The approach
builds on the systematic adaptation of the state and input constraints such
that constraint satisfaction of the discretized system w.r.t. the adapted con-
straints implies constraint satisfaction of the continuous-time system w.r.t. the
original constraints. Roughly speaking, the computation of adapted con-
straints for the discrete-time system (according to Alg. 1) is based on the
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idea to first eliminate unstabilizable states (and unsuitable inputs) and then
scale the resulting set to obtain a suitable constraint set (according to Def. 1).
Compared to existing approaches (see [1, 2, 7, 12]), the new method is less
conservative, not restricted to any specific control scheme (e.g., MPC), and
computationally less demanding.

Future work has to address efficient numerical procedures for the solution of
the recurrent non-convex optimization problem (17) (resp. (15)). Moreover,
extensions of the proposed method to time-variant linear systems and the
inclusion of disturbances are of interest.
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