
Preamble. This is a reprint of the article:
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On general relations between
null-controllable and controlled invariant sets

for linear constrained systems

Moritz Schulze Darup† and M. Mönnigmann†

Abstract

We prove some general relations between null-controllable and controlled invariant sets
for linear systems with input and state constraints. We show that the closure of the
largest null-controllable set is identical to the largest controlled invariant set. In order to
prove this claim, we demonstrate that the interior of every controlled invariant set is null-
controllable in the linear case. While some of these properties appear to be obvious, formal
proofs are missing to the best of the authors’ knowledge. To highlight the importance of
careful proofs, we show that these properties are specific to linear systems and generally
do not hold in the nonlinear case.

1 Introduction

We study null-controllable sets of linear discrete-time systems

x(k + 1) = Ax(k) +B u(k), x(0) = x0, (1)

with input and state constraints of the form

u(k) ∈ U ⊂ R
m, x(k) ∈ X ⊂ R

n, ∀ k ∈ N, (2)

whereA ∈ R
n×n andB ∈ R

n×m and where U and X are assumed to be convex and compact
sets with the origin in their interiors. It is well-know that the i-step null-controllable set

Ni, i.e., the set of all states x0 that can be steered to the origin in at most i ∈ N steps
without violating the input and state constraints, can be computed from

Ni+1 = Q(Ni) ∩ X with N0 = {0}, (3)

† M. Schulze Darup and M. Mönnigmann are with Automatic Control and Systems Theory, De-
partment of Mechanical Engineering, Ruhr-Universität Bochum, 44801 Bochum, Germany. E-mail:
moritz.schulzedarup@rub.de.
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where
Q(T ) := {x ∈ R

n | ∃u ∈ U : Ax+B u ∈ T } (4)

refers to the so-called one-step controllable set to T (see, e.g., [6] or [9]). The sequence (3) is
known to approach the largest null-controllable set (LNCS) Nmax (i.e., the set of all states
x0 that can be steered to the origin within a finite number of steps without violating the
constraints) from inside, that is Ni ⊆ Nmax for every i ∈ N [6]. An outer approximation
of Nmax can be computed from1

C1
i+1 = Q(C1

i ) ∩ X with C1
0 = X , (5)

where C1
i refers to the i-step constraint-admissible set, i.e., the set of all states x0 that can

be kept in X for at least i-steps without violating the constraints. The sequence (5) is
known to approach the largest controlled invariant set (LCIS) C1

max from outside [1].
The main contribution of the paper is to prove that, in the linear case, the closure of

the LNCS is identical to the LCIS. This result builds on the observation that the interior
of every controlled invariant set is null-controllable. As a consequence, the elements of the
sequences (3) and (5) become arbitrarily close for large i ∈ N. The claimed characteristics
appear self-evident, which may be the reason that formal proofs are missing (to the best
of the authors’ knowledge). We stress that careful proofs are important, since the listed
characteristics are specific to linear systems and generally do not hold in the nonlinear
case (see the motivating example in the beginning of Sect. 3).

The paper is organized as follows. We state notation and preliminaries in Sect. 2. The
main result of the paper, i.e., the proof that cl(Nmax) = C1

max for linear systems, is given
in Sect. 3. Finally, we illustrate our findings with two examples and state conclusions in
Sects. 4 and 5, respectively.

2 Notation and Preliminaries

2.1 Notation

We denote matrices by capital letters, vectors and scalars by lowercase letters and sets by
calligraphic letters. Let A ∈ R

n×n and B ∈ R
n×m, n,m ∈ N. Let In ∈ R

n×n refer to the
identity matrix. By BT , rk(B), σmin(B) and σmax(B) denote the transpose, the rank and
the smallest and largest singular value of the matrix B, respectively. Define

Sν(A,B) := (A0B, A1B, . . . , Aν−1B),

for ν ∈ N+, where N+ denotes positive integers.
Let X ,T ⊆ R

n and Nj,k := {i ∈ N | j ≤ i ≤ k}. Let int(T ) and cl(T ) refer to the
interior and the closure of the set T , respectively. By X ⊕ T := {x + t |x ∈ X , t ∈ T }
denote the Minkowski sum of X and T . Furthermore, let λ ∈ R and define the sets
λX := {λx |x ∈ X}, B X := {B x |x ∈ X} and A−1 X := {x |Ax ∈ X}. Recall that
A−1X is well-defined even if A is not invertible. Note that we can write the one-step-set
introduced in (4) as Q(T ) = A−1(T ⊕B (−U)) with the set operations introduced so far
(see [6] for a discussion of this expression). Finally, by Bn(r) = {x ∈ Rn | ‖x‖2 ≤ r},
denote a ball in R

n with radius r ∈ R+, where R+ denotes positive reals.

1 Note that the superscript “1” in (5) is used to highlight the relation to expression (8) for the choice
λ = 1.
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2.2 Basic definitions and assumptions

A convex and compact set T ⊂ R
n with 0 ∈ int(T ) will be called C-set [2]. The so-called

Minkowski function of a C-set T is defined by

ΨT (x) := inf{λ ∈ R |x ∈ λ T , λ ≥ 0}

(see [4, pp. 79-80] for details). Let ϑl be the shorthand notation for any control sequence
ϑl = {u(0), u(1), . . . , u(l − 1)} of length l ∈ N+. The solution of (1) at time k ∈ N0,l

associated with a particular control sequence ϑl is denoted by ϕ(k, x0, ϑl), where

ϕ(k, x0, ϑl) = Akx0 +
∑k−1

j=0 A
k−1−jB u(j). (6)

We call ϑl an admissible control sequence, if u(k − 1) ∈ U and ϕ(k, x0, ϑl) ∈ X for every
k ∈ N1,l. Let ̺ : Rn → U denote a control law. The solution of the controlled system

x(k + 1) = Ax(k) +B ̺(x(k)), x(0) = x0, (7)

at time k ∈ N is denoted by ϕ(k, x0, ̺). It will be clear from the context whether ϕ refers
the solution of the uncontrolled (1) or controlled system (7).

We frequently use null-controllable, λ-contractive and controlled invariant sets.

Definition 1: A set T ⊆ X is called null-controllable if, for every x0 ∈ T , there exist

an l ∈ N+ and an admissible control sequence ϑl such that ϕ(l, x0, ϑl) = 0. The largest

null-controllable set is denoted by Nmax.

Definition 2: Let λ ∈ [0, 1]. A T ⊆ X is called λ-contractive if, for every x0 ∈ T , there

exists a u0 ∈ U such that Ax0 + B u0 ∈ λ T . For the special case λ = 1, a 1-contractive
set T is also called controlled invariant. The largest λ-contractive set is denoted by Cλ

max.

We make the following assumptions throughout the paper.

Assumption 1: Let the pair (A,B) be controllable and let X and U be C-sets.

Note that controllability of the pair (A,B) implies rk(Sn(A,B)) = n [8, Def. 1].

2.3 Known Properties of Null-Controllable and Constraint-Admissible Sets

We summarize some well-known characteristics of null-controllable and constraint-admissible
sets in the following. We first introduce a more general variant of (5), which reads

Cλ
i = Q(λ Cλ

i−1) ∩ X with Cλ
0 = X , (8)

where λ ∈ [0, 1] is arbitrary but fixed (see [2] for further details). The sequence {Cλ
i }

is known to approach the largest λ-contractive set Cλ
max from outside [2]. Obviously, for

λ = 1, Eq. (8) turns into the special case (5). We collect some important properties of the
sequences (3) and (8) and their relations to Nmax and Cλ

max in Tab. I.
Note that the elements of the sequences {Ni} and {Cλ

i } are C-sets (given i ≥ n [6, Lem.
4.3] and 0 ∈ int(Cλ

max) [2, Thm. 3.1], respectively). The limit of a sequence2 of C-sets need
not be a C-set, however, and it is important to analyze the properties of the limits2

N∞ := lim
i→∞

Ni and Cλ
∞ := lim

i→∞
Cλ
i

2 A sequence of sets converges to a limit, if the limit superior and the limit inferior are equivalent
[7, p. 21]. With regard to sequence (3), it is easy to show that the limit is such as in Tab. I, since
lim infi→∞ Ni =

⋃∞

i=0

⋂∞

k=i
Nk =

⋃∞

i=0
Ni and lim supi→∞ Ni =

⋂∞

i=0

⋃∞

k=i
Nk =

⋃∞

i=0
Ni due to the

identified monotonicity. Analogously, it can be shown that Cλ
∞ =

⋂∞
i=0

C
λ
i .
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separately in this regard. The limit Cλ
∞ actually is a C-set (given 0 ∈ int(Cλ

max)) [2].
In particular 0 ∈ int(Cλ

max) for λ = 1 since 0 ∈ int(Nmax) ⊆ C1
max. Consequently, since

Cλ
max = Cλ

∞ according to [2], the LCIS is a C-set. In contrast, the limit of the sequence {Ni}
may or may not be a C-set depending on the considered system. Thus, since Nmax = N∞
according to [6] (given Assum. 1 holds), the LNCS may or may not be a C-set. In fact,
while the LNCS is always convex and bounded with 0 ∈ int(Nmax), it may be open even
though it is the limit of a sequence of closed sets. See Sect. 4 both for examples where
Nmax is open and where it is closed. See [6, Ex. 4.2] or [4, p. 172] for further examples
where Nmax is open and therefore not a C-set.

Table 1: Properties of the sequences (3) and (8) extracted from [1–6,10].

null-controllable sets constraint-admissible sets

monotonicity Ni ⊆ Ni+1 ⊆ Nmax Cλ
max ⊆ Cλ

i+1 ⊆ Cλ
i

elements Ni is C-set if i ≥ n Cλ
i is C-set if 0 ∈ int(Cλ

max)

limit N∞ =
⋃∞

i=0Ni Cλ
∞ =

⋂∞
i=0 Cλ

i

relationships Nmax = N∞, Cλ
max = Cλ

∞,
Nmax ⊆ C1

max Cλ
max ⊆ Nmax if λ ∈ [0, 1)

Since Ni and Cλ
i are C-sets (given i ≥ n and 0 ∈ int(Cλ

max)) and due to the convergence
of (3) and (8) to Nmax respectively Cλ

max, for every ǫ > 0, there exist i, j ∈ N such that

Nmax ⊆ (1 + ǫ)Ni and Cλ
j ⊆ (1 + ǫ) Cλ

max, (9)

respectively (see, e.g., [5] and [2]). Finally note that the LNCS is known to be controlled-
invariant while every λ-contractive set (with λ < 1) is null-controllable (given Assum. 1
holds).

3 Important relations of null-controllable and controlled

invariant sets

The main contribution of the paper is summarized in the following proposition.

Proposition 1: Consider linear systems of the form (1) with constraints (2) and as-

sume Assum. 1 holds. Then, the closure of the LNCS Nmax equals the LCIS C1
max, i.e.,

cl(Nmax) = C1
max.

While Prop. 1 seems natural, it is not self-evident. In fact, even for very simple nonlinear
systems, the relation cl(Nmax) = C1

max does not hold. Consider for example the bilinear
system

x(k + 1) = 1.2x(k) + (0.4 + 0.8x(k))u(k)

with X = [−2, 2] and U = [−1, 1]. It is easy to show that the LNCS3 reads Nmax =
(−0.4, 2.0] while the LCIS is C1

max = [−2.0, 2.0] [11]. Clearly, cl(Nmax) = [−0.4, 2.0] 6=
C1
max.
The proof of Prop. 1 builds on the following lemma, which we prove in Sect. 3.1.

3 Note that the definitions of null-controllable and controlled invariant sets for nonlinear systems are
analogue to Defs. 1 and 2 except that the nonlinear system dynamics are considered.
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Lemma 1: The interior of the largest controlled invariant set C1
max is null-controllable.

Proof of Prop. 1. We have
int(C1

max) ⊆ Nmax ⊆ C1
max (10)

according to Lem. 1 and Tab. I, respectively. Evaluating the closure of (10) yields

cl(int(C1
max)) = cl(C1

max) ⊆ cl(Nmax) ⊆ cl(C1
max).

Taking into account that C1
max is closed (since it is a C-set, see Sect. 2.3), i.e., cl(C1

max) =
C1
max, we infer C1

max ⊆ cl(Nmax) ⊆ C1
max, which proves the claim. �

As a direct consequence of Prop. 1 and Lem. 1, the elements of the sequences {Ni} and
{C1

j } become arbitrarily close for i, j → ∞. This observation is formalized in the following
corollary.

Corollary 1: For every ǫ > 0, there exist i, j ∈ N such that

C1
j ⊆ (1 + ǫ)Ni. (11)

Proof. Set δ :=
√
1 + ǫ− 1 and note that δ > 0. According to Eq. (9), there exist i, j ∈ N

such that
Nmax ⊆ (1 + δ)Ni and C1

j ⊆ (1 + δ) C1
max, (12)

respectively. Evaluating the closure of the first relation in (12) yields cl(Nmax) ⊆ (1 +
δ) cl(Ni). We have cl(Nmax) = C1

max and cl(Ni) = Ni according to Prop. 1 and since Ni is
closed (since it is a C-set, see Sect. 2.3). Thus, we find

C1
max ⊆ (1 + δ)Ni. (13)

Multiplying (13) by (1 + δ) and substituting the result into the second relation in (12)
results in

C1
j ⊆ (1 + δ) C1

max ⊆ (1 + δ)2 Ni = (1 + ǫ)Ni,

where the last relation holds by definition of δ. �

We prove Lem. 1 in Sect. 3.1. Note that there exists a trivial proof of Lem. 1 (see the
appendix), if the following familiar conjecture holds (cf. [4, pp. 168 ff.]).4

Conjecture 1: For every ǫ > 0, there exists a λ ∈ [0, 1) such that

C1
max ⊆ (1 + ǫ) Cλ

max. (14)

However, while Conj. 1 applies for many linear systems, a formal proof for the correctness
is missing (and not straightforward) to the best of the authors’ knowledge.

4 We thank one of the anonymous reviewers for bringing to our attention that the proof of Lem. 1 would
be trivial if Conj. 1 could be proven.
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3.1 The null-controllable interior of controlled invariant sets

In this section, we show that the fundamental statement in Lem. 2 given below holds.
Obviously, Lem. 2 immediately proves Lem. 1 since C1

max is a C-set according to Sect. 2.3
and controlled invariant by definition (see Def. 2).

Lemma 2: Let T ⊆ X be a controlled invariant C-set. Then, int(T ) is null-controllable.

We prove Lem. 2 in the remainder of the section. Lemma 3 is needed as a preparation.
Loosely speaking, Lem. 3 states that, for every initial state x0 in the interior of a controlled
invariant C-set T , there exists a control sequence ϑn such that the trajectory has moved
closer to the origin than x0 after at most n steps (where n refers to the system dimension).
We use the Minkowski function value to measure closeness to the origin. See Fig. 1 and
the example in Sect. 4.2 for an illustration of the statement in Lem. 3. Basically, the
lemma makes use of the fact that an unconstrained linear system can be steered to every
state within n steps.

Lemma 3: Let T ⊆ X be a controlled invariant C-set and let µ ∈ (0, 1) be arbitrary. Let

ru, rx, rx ∈ R+ be such that Bm(ru) ⊆ U , Bn(rx) ⊆ T ⊆ Bn(rx) and

rx ≥ √
nσmax(Sn(A,B)) ru. (15)

Then, for every x0 ∈ µ T there exist an admissible control sequence ϑn such that

ΨT (ϕ(n, x0, ϑn)) ≤ λ̃ΨT (x0), (16)

where λ̃ ∈ [0, 1) is defined as

λ̃ := max

{

0, 1 − σmin(Sn(A,B))
ru
rx

(

1

µ
− 1

)}

. (17)

Proof. First note that λ̃ < 1, since ru, rx ∈ R+, since
1
µ
− 1 > 0 for every µ ∈ (0, 1), and

since Assum. 1 implies σmin(Sn(A,B)) > 0. Further note that the choice of rx and rx
implies

r−1
x ‖x‖2 ≤ ΨT (x) ≤ r−1

x ‖x‖2 (18)

for every x ∈ R
n. Now, since T is controlled invariant there exists, for every x0 ∈ ∂T ,

a u0 ∈ U such that Ax0 + B u0 ∈ T . Thus, there exists a function ̺∂ : ∂T → U such
that ϕ(1, x0, ̺∂) ∈ T , which implies ΨT (ϕ(1, x0, ̺∂)) ≤ 1. Based on ̺∂ , we introduce the
control law ̺ : T → U (see [3, p. 1753]), where

̺(x) :=

{

ΨT (x) ̺∂
(

x
ΨT (x)

)

if x 6= 0,

0 if x = 0.
(19)

Note that x
ΨT (x) ∈ ∂T for every x 6= 0. Moreover, it is easy to show that

ΨT (ϕ(k, x0, ̺)) ≤ ΨT (x0) (20)

for every x0 ∈ T and every k ∈ N. Thus, for every x0 ∈ T , the admissible control sequence
ϑn = {̺(ϕ(0, x0, ̺)), . . . , ̺(ϕ(n − 1, x0, ̺))} satisfies (16) for λ̃ = 1. In order to show that
(16) holds for λ̃ < 1 as in (17), we study small perturbations of ϑn, i.e.,

u(k) = ̺(ϕ(k, x0, ̺)) + ∆u(k), (21)
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for every k ∈ N0,n−1. Since we have to take the input constraints into account, the
perturbations ∆u(k) are subject to constraints. In order to specify constraints for ∆u(k),
first note that we have ΨT (x0) ≤ µ for every x0 ∈ µ T . From the definition of ̺ in (19),
we infer ̺(x0) ∈ ΨT (x0)U ⊆ µU for every x0 ∈ µ T . Moreover, in combination with (20),
we find

ϕ(k, x0, ̺) ∈ µ T and ̺(ϕ(k, x0, ̺)) ∈ µU (22)

for every x0 ∈ µ T and every k ∈ N. For the following, we note that the choices ∆rx :=
(1− µ) rx and ∆ru := (1− µ) ru are such that

µ T ⊕ Bn(∆rx) ⊆ T and µU ⊕ Bm(∆ru) ⊆ U , (23)

respectively. To see this, note that, for every ∆x ∈ Bn(∆rx), we have ΨT (∆x) ≤ ‖∆x‖2
rx

≤
∆rx
rx

= 1− µ according to (18) and by definition of ∆rx, respectively. Thus, the first (and

analogously the second) relation in (23) holds since

ΨT (x+∆x) ≤ ΨT (x) + ΨT (∆x) ≤ µ+ 1− µ = 1 (24)

for every x ∈ µ T and every ∆x ∈ Bn(∆rx), where the first inequality in (24) applies
according to [4, Prop. 3.12]. In combination with (22), the relations (23) can be used
as follows. Obviously, for any trajectory with initial condition x0 ∈ µ T , the modified
inputs (21) will not violate the constraints U , if the perturbations satisfy ‖∆u(k)‖2 ≤ ∆ru
for every k ∈ N. The perturbed inputs result in a perturbed trajectory, which must respect
the state constraints. The perturbed states can be written as

x(k) = ϕ(k, x0, ̺) + ∆x(k), (25)

where ∆x(k) =
∑k−1

j=0 A
k−1−jB∆u(j) for all k ∈ N0,n (cf., Eq. (6)). Obviously, ∆x(0) = 0

and

∆x(k) = Sk(A,B)







∆u(k − 1)
...

∆u(0)






(26)

for all k ∈ N1,n. Now, initially choose any ∆ru ∈ (0,∆ru] and assume ‖∆u(k)‖2 ≤ ∆ru
for all k ∈ N. Then, according to (26), we have

‖∆x(k)‖2 ≤ ‖Sk(A,B)‖2

√

√

√

√

k−1
∑

j=0

‖∆u(j)‖22,

≤ σmax(Sk(A,B))
√
k∆ru (27)

for every k ∈ N+. It is easy to prove that the relation σmax(Sk(A,B)) ≤ σmax(Sk+1(A,B))
holds for all k ∈ N+. Hence, introducing

∆rx := σmax(Sn(A,B))
√
n∆ru (28)

yields ‖∆x(k)‖2 ≤ ∆rx for all k ∈ N0,n. In the following, we choose ∆ru ≤ ∆ru such that
∆rx ≤ ∆rx, where ∆rx is defined as in (28). Thus, any choice of the perturbations ∆u(k),
k ∈ N0,n−1, such that ‖∆u(k)‖2 ≤ ∆ru results in a trajectory that is guaranteed to satisfy
the constraints (2) for the first n steps. Obviously, any choice ∆ru ∈ R+ with

∆ru ≤ min

{

∆ru,
∆rx√

nσmax(Sn(A,B))

}

(29)
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satisfies these conditions, where relation (28) was used to link ∆rx to ∆ru. An appropriate
choice that respects (29) is

∆ru := (1− µ) ru = ∆ru. (30)

To see this, note that min
{

∆ru,
∆rx√

nσmax(Sn(A,B))

}

= (1− µ) min

{

ru,
rx√

nσmax(Sn(A,B))

}

≥ (1− µ) ru,

where the two relations hold by definitions of ∆ru and ∆rx (stated below (22)) and
according to (15), respectively.

Up to now, we showed choosing ∆u(k) ∈ Bm(∆ru) implies the constraints (2) are
fulfilled for all k ∈ N0,n. It remains to show that there exists an admissible perturbed
input sequence (21) that steers the system closer to the origin than x0. To see this
first note that, for every ∆x(n) ∈ R

n, there exist n inputs ∆u(0), . . . ,∆u(n − 1) such
that ∆x(n) =

∑n−1
j=0 A

k−1−jB∆u(j). In fact, since Sn(A,B) has full rank according to
Assum. 1 ((A,B) controllable implies rk(Sn(A,B)) = n), the n inputs can be computed
from







∆u(n− 1)
...

∆u(0)






= Sn(A,B)−1∆x(n), (31)

where Sn(A,B)−1 refers to the Moore–Penrose pseudoinverse. Now let

∆rn := σmin(Sn(A,B))∆ru (32)

and not that ∆rn ≤ ∆rx. Then, for every ∆x(n) ∈ Bn(∆rn) the required inputs
∆u(0), . . . ,∆u(n − 1) that steer the system to ∆x(n) satisfy ‖∆u(k)‖2 ≤ r6 for all
k ∈ N0,n−1. This follows from

‖Sn(A,B)−1∆x(n)‖2 ≤ ‖Sn(A,B)−1‖2 ‖∆x(n)‖2,
≤ 1

σmin(Sn(A,B)) ∆rn = ∆ru,

where the particular relations hold due to sub-multiplicativity and ‖∆x(n)‖2 ≤ ∆rn,
since Sn(A,B) has full rank and by definition of ∆rn, respectively. Combining (31) and
‖Sn(A,B)−1∆x(n)‖2 ≤ ∆ru yields

∥

∥

∥

∥

∥

∥

∥







∆u(n− 1)
...

∆u(0)







∥

∥

∥

∥

∥

∥

∥

2

≤ ∆ru

which implies ‖∆u(k)‖2 ≤ ∆ru for every k ∈ N0,n−1. In other words, for every x0 ∈ µ T
and every x(n) ∈ ϕ(n, x0, ̺)⊕Bn(∆rn), there exists an admissible control sequence ϑn =
{u(0), . . . , u(n − 1)}, such that x(n) = ϕ(n, x0, ϑn). In order to minimize the Euclidean
distance to the origin, we may choose

x(n) = λ̂ ϕ(n, x0, ̺), (33)

i.e., ∆x(n) = (λ̂− 1)ϕ(n, x0, ̺), where λ̂ ∈ [0, 1) is defined by

λ̂ :=

{

0 if ‖ϕ(n, x0, ̺)‖2 ≤ ∆rn,

1− ∆rn
‖ϕ(n,x0,̺)‖2 if ‖ϕ(n, x0, ̺)‖2 > ∆rn.

(34)
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Note that (33) fulfills ‖∆x(n)‖2 ≤ ∆rn, since

‖(λ̂− 1)ϕ(n, x0, ̺)‖2 = |λ̂− 1| ‖ϕ(n, x0, ̺)‖2
=

{

‖ϕ ˆ̺(n, x0)‖2 if ‖ϕ(n, x0, ̺)‖2 ≤ ∆rn,
∆rn if ‖ϕ(n, x0, ̺)‖2 > ∆rn.

Choosing x(n) as in (33) and computing the associated admissible control sequence ϑn

such that ϕ(n, x0, ϑn) = x(n) according to (31) and (21) results in

ΨT (ϕ(n, x0, ϑn)) = λ̂ΨT (ϕ(n, x0, ̺)) ≤ λ̂ΨT (x0), (35)

where the first and the second relation hold due to [4, Prop. 3.12] and (20), respectively.
With regard to (16), it remains to show that λ̂ as in (34) is smaller than or equal to λ̃

as in (17). In case of λ̂ = 0, λ̂ ≤ λ̃ obviously holds since λ̃ ≥ 0. It remains to study the
second case in (34), where ‖ϕ(n, x0, ̺)‖2 > ∆rn. With regard to (17), we have λ̂ ≤ λ̃, if

∆rn
‖ϕ(n, x0, ̺)‖2

≥ σmin(Sn(A,B))
ru
rx

(

1

µ
− 1

)

. (36)

Relation (36) holds since

∆rn
‖ϕ(n,x0,̺)‖2 = σmin(Sn(A,B))

ru(1−µ)
‖ϕ(n,x0,̺)‖2

≥ σmin(Sn(A,B))
ru(1−µ)

rxΨT (ϕ(n,x0,̺))

≥ σmin(Sn(A,B))
ru
rx

1−µ
ΨT (x0)

≥ σmin(Sn(A,B))
ru
rx

1−µ
µ

,

where the first relation holds by definition of ∆rn and ∆ru in (32) and (30). The second
and the third relation follow from Eqs. (18) and (20), respectively. Finally, the last relation
holds due to x0 ∈ µ T , i.e., ΨT (x0) ≤ µ. �

Finally, Lemma 2 can be shown with Lem. 3.

Proof of Lem. 2. Let ru, rx, rx ∈ R+ be as in Lem. 3 and let x0 ∈ int(T ) be arbitrary but
fixed. Set µ1 := ΨT (x0) and note that µ1 < 1. Thus, according to Lem. 3, there exists an
admissible control sequence ϑn such that

ΨT (ϕ(n, x0, ϑn)) ≤ λ̃1ΨT (x0), (37)

where λ̃1 < 1 refers to λ̃ as in (17) with µ = µ1. Set µ2 = ΨT (ϕ(n, x0, ϑn)) and note that
µ2 ≤ λ̃1 µ1 < 1. Hence, there exists another admissible control sequence ϑn such that

ΨT (ϕ(n,ϕ(n, x0, ϑn), ϑn)) ≤ λ̃2ΨT (ϕ(n, x0, ϑn)), (38)

where λ̃2 < 1 refers to λ̃ as in (17) with µ = µ2. Concatenating the two control sequences
results in an admissible control sequence of length 2n. Both (37) and (38) are fulfilled for
this control sequence. Moreover, since µ2 ≤ µ1, we obtain λ̃2 ≤ λ̃1 from (17). In general,
let l ∈ N+, then there exist λ̃1, . . . , λ̃l ∈ [0, 1) with λ̃i ≤ λ̃1 and an admissible control
sequence ϑln such that

ΨT (ϕ(i n, x0, ϑln)) ≤ λ̃iΨT (ϕ((i − 1)n, x0, ϑln)) (39)

for every i ∈ N1,l. From (39), we infer

ΨT (ϕ(l n, x0, ϑln)) ≤ µ1
∏l

i=1 λ̃i ≤ µ1 λ̃
l
1. (40)

9



which implies ϕ(l n, x0, ϑln) ∈ µ1λ̃
l
1 T . Since 0 ∈ int(Nn) (since it is a C-set, see Sect. 2.3)

and since λ̃1 ∈ [0, 1), for every x0 ∈ int(T ) there exists a l ∈ N+ such that µ1λ̃
l
1 T ⊆

Nn. Thus, x0 can be steered to Nn in at most l n steps without violating the input
and state constraints. Since any state in Nn can be steered to the origin in at most
n steps, there exists an admissible control sequence ϑl(n+1) of length l (n + 1) such that
ϕ(l (n+1), x0, ϑl(n+1)) = 0. Since x0 ∈ int(T ) was arbitrary, int(T ) is null-controllable. �

4 Examples

We analyze two examples to illustrate the findings in Sect. 3. In order to facilitate the
numerical evaluation of sets Ni and Ci, we consider polytopic C-sets X and U in the
examples. However, it is important to note that the statements in Sect. 3 hold for arbitrary
C-sets X and U .

4.1 Example 1: Illustration of Prop. 1 and Cor. 1

Consider system (1) with A = 1.2 and B = 1 and constraints X = [−10, 10] and U =
[−1, 1]. It is easy to show that the null-controllable sets Ni and the constraint-admissible
sets C1

j are

Ni = [−νi, νi] and C1
j = [−κj , κj ], (41)

where

νi = 5

(

1− 1

1.2i

)

and κj = 5

(

1 +
1

1.2j

)

.

Obviously, the sequence νi approaches κ∞ := 5 from below while κj approaches κ∞ from
above. The LCIS is given by the closed set C1

max = [−5, 5]. In contrast, the LNCS is
open. In fact, Nmax =

⋃∞
i=0Ni = (−5, 5). Note that x0 = 5 (as well as x0 = −5) is not

an element of Nmax, since x0 cannot be steered closer to the origin due to Ax0 + B u0 =
6+u0 ≥ 5 for every u0 ∈ U . However, the claim in Prop. 1 holds since cl(Nmax) = [−5, 5] =
C1
max. Moreover, the elements of the sequences {Ni} and {C1

j } become arbitrarily close as
predicted by Cor. 1. To see this, note that condition (11) reads

κj = 5

(

1 +
1

1.2j

)

≤ (1 + ǫ) νi = 5 (1 + ǫ)

(

1− 1

1.2i

)

(42)

for this example. Relation (42) holds for i = j =

⌈

ln(1+ 2

ǫ )
ln(1.2)

⌉

.

4.2 Example 2: Illustration of Lem. 3

Consider system (1) with

A =

(

0 1
−1 0

)

and B =

(

0
1

)

and constraints

X = {x ∈ R
2 | |x1| ≤ 5, |x2| ≤ 5} and U = [−1, 1].

It is easy to show that the sets Ni and C1
i evaluate to

Ni =
{

x ∈ R
2
∣

∣ |x1| ≤ min{
⌈

i
2

⌉

, 5}, |x2| ≤ min{
⌊

i
2

⌋

, 5}
}
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and C1
i = X for every i ∈ N, respectively. We consequently find Cmax = X and Nmax =

N10 = X in accordance with Prop. 1. Thus,Nmax is closed for this example and cl(Nmax) =
Nmax = C1

max. Moreover, for the choice i = 10 and j = 0, condition (11) is trivially fulfilled
for every ǫ > 0.

T = Nmax = C
1

max

ΨT (x0) T

λ̃ΨT (x0) T

x0

0

x̂(1)

x(1)

x(2)

x̂(2)

50−5

5

0

−5

x1

x
2

Figure 1: Illustration of two trajectories (of Ex. 2) that are instrumental to prove Lem. 2. The
dashed trajectory along the states x̂(k) = ϕ(k, x0, ̺), k ∈ N0,2, refers to the solution of the controlled
system (7) based on the auxiliary control law ̺(x) = 0. Obviously, ϕ(k, x0, ̺) remains on the boundary
of the set ΨT (x0) T for the present example. In contrast, the solid trajectory via x(k) = ϕ(k, x0, ϑ2)
enters λ̃ΨT (x0) T (dotted rectangle) in the second step. In fact, within two steps, the system (1)
can be steered to any state in the smaller (dark gray) circle ϕ(2, x0, ̺) + B

2(∆rn) without leaving
the larger (light gray) circle ϕ(1, x0, ̺) + B2(∆rx) in the first step and without violating the input
constraints.

It is important to note that the set T = N∞ = C1
max (and in addition every set Ni with

i ≥ 2) is controlled invariant but not λ-contractive for any λ ∈ [0, 1). To see this, consider
for example the point x0 = (−4 5)T ∈ T and note that Ax0 +B u0 = (5 4 + u0)

T /∈ λ T
for every u0 ∈ U and every λ ∈ [0, 1). Thus, in accordance with Def. 2, T cannot be
λ-contractive for any λ ∈ [0, 1). In other words, there exist many x0 ∈ T that cannot be
steered closer to the origin within one time step (where closeness to the origin is measured
by the Minkowski function value). In particular, it is easy to verify that this claim holds
for every x0 ∈ T with |(x0)1| ≤ |(x0)2|.

However, according to Lem. 2, we are able to steer every x0 ∈ int(T ) to the origin.
Consider for example the point x0 = (−1 3)T ∈ int(T ) and note that ru = 1, rx = 5 and
rx = 5

√
2 fulfill the assumptions in Lem. 3. Obviously, ΨT (x0) = 0.6, i.e, x0 ∈ 0.6T .

Consequently, choose µ = 0.6. According to Lem. 3, for every x0 ∈ µ T , there exists
an admissible control sequence ϑ2 such that ΨT (ϕ(2, x0, ϑ2)) ≤ λ̃ΨT (x0), where λ̃ =

1− 1
5
√
2

(

1
µ
− 1

)

= 1−
√
2

15 ≈ 0.906 follows from (17). A suitable trajectory, namely the one

that is instrumental for the proof of Lem. 3, is illustrated in Fig. 1 (solid line). Following
the proof with regard to the present example, we find that the control law ̺ : Rn → U with
̺(x) = 0 for every x ∈ R

n is such that condition (20) holds. Moreover, with ∆ru = ∆ru =

11



(1−µ) ru = 0.4, ∆rx = 0.4
√
2 and ∆rn = 0.4, we find that x0 can be steered to any state in

the ball ϕ(2, x0, ̺) + B2(∆rn), where ϕ(2, x0, ̺) = (1 − 3)T (see Fig. 1 for an illustration
of this region). Choosing x(n) = λ̂ ϕ(2, x0, ̺) as in (33) with λ̂ = 1 − 0.4√

10
≈ 0.874

according to (34) results in ϕ(2, x0, ϑ2) = λ̂ ϕ(2, x0, ̺) = (0.874 − 2.621)T , where the
admissible control sequence ϑ2 = {u(0), u(1)} = {−0.126 , 0.379} follows from (31) in
combination with (21) and (25). Obviously, ϕ(2, x0, ϑ2) is closer to the origin than x0. In
fact, ΨT (ϕ(2, x0, ϑ2)) =

2.621
5 ≤ λ̃ΨT (x0) = 0.906 · 0.6 = 2.718

5 as predicted by Lem. 1.

5 Conclusion and outlook

We presented formal proofs for some important relations between null-controllable and
controlled invariant sets for linear constrained systems. The main result of the paper was
to show that the closure of the largest null-controllable set Nmax is always equivalent to
the largest controlled invariant set C1

max (given Assumption 1 holds). We highlighted that
this results is specific to linear systems and generally does not hold in the nonlinear case.

Future work has to address the extension to stabilizable sets. Moreover, some results of
this paper (more precisely Lem. 3) can be used to design simple null-controlling as well as
stabilizing feedback laws (see [12] for details).
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