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Abstract. We propose a new lightweight cryptographic payment scheme for transit systems,
called P4R (Privacy-Preserving Pre-Payments with Refunds), which is suitable for low-cost user
devices with limited capabilities for performing public-key operations. In the P4R system users
deposit money to obtain a bundle of one-show credentials, where each credential allows to make
an arbitrary ride in the system. The actual fare of a trip is determined on-the-fly at the end.
If the deposit for the credential exceeds this fare, the user obtains a refund. The system allows
to aggregate a user’s refund values collected over several trips in a single token thereby saving
memory and increasing privacy.
Our solution builds on Brands’ e-cash scheme to realize the pre-payment system and on Boneh-
Lynn-Shacham (BLS) signatures to implement the refund capabilities. Compared to a Brands-
only solution as transportation payment system, P4R allows to minimize the number of coins
a user needs to pay for his rides and, thus, it minimizes the number of expensive withdrawal
transactions as well as the storage requirements for the fairly large coins. Moreover, P4R enables
flexible pricing as it allows for exact payments of arbitrary amounts (within a certain range)
using a single fast spending (and refund) transaction. Fortunately, the mechanisms enabling
these features only induce very little computational overhead.
Choosing contemporary security parameters, we implemented P4R on a prototyping payment
device, and show its suitability for future transit payment systems. Estimation results demon-
strate that the data required for 20 rides consumes less than 10 KB of memory and the payment
and refund transactions during a ride take less than half a second.
As for security, we can show that a group of malicious users is not able to cheat the system by
receiving a total refund, which exceed the overall deposit minus the overall fare, and without
being identified during the double-spending checks. At the same time, the system protects the
privacy of honest users in the sense that transactions are anonymous (except for deposits) and
trips are unlinkable.
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1 Introduction

Deploying electronic payment systems in transportation as opposed to sticking with tra-
ditional systems (like cash or ticket-based systems) offers important benefits: significantly
reduced revenue collection costs, enhanced customer satisfaction as well as improved services
and operational efficiency. Moreover, such systems enable some advanced services and features
like dynamic pricing (i.e., reduced fares in overcrowded subways). Hence, Electronic Payment
Systems for Transportation (EPST) already are and will become an even more important
component of the critical infrastructure “transportation” that deserves careful protection
from a wide range of adversaries.

Projects like the Massachusetts Bay Transportation Authority (MBTA) “Charlie Card” [30]
or the E-ZPass [19] show the potential of electronic payment systems as a reasonable, fair,



and efficient method for revenue collection. However, at the same time they are examples
demonstrating the serious shortcomings of today’s EPST. Currently deployed systems lack
sufficient mechanisms protecting their security and especially the privacy of their users: One
problem that EPST seem to share with many other commercial systems implementing se-
curity functions is the deployment of cryptographically weak proprietary primitives as, e.g.,
demonstrated for the Charlie Card or Oyster Card [35]. Besides security issues, concerns
about the location privacy of EPST users are raised frequently, i.e., the un-/traceability of
users within the transportation system. For instance, the fact that E-ZPass and Fast Lane
toll plaza records have been used by lawyers to prove that their clients’ cheating husbands
were not where they pretended to be at a certain date and time [46], shows (i) that this
system does not protect location privacy and (ii) this might be exploited in a questionable
way. However, in order to enable a large-scale deployment and broad acceptance of an EPST,
adequate security and privacy mechanisms are an essential requirement [40].

While currently deployed EPST suffer from serious privacy and security flaws, there is
a wealth of cryptographic payment schemes offering strong security and privacy proper-
ties. However, the unique requirements of the transportation domain, especially, engineering
constraints and functional requirements, prevent the use of well-established cryptographic
protocols like e-cash schemes.

In this paper we restrict to the consideration of a transit payment scenario such as pay-
ment systems for subways. Here, payment devices can be fairly low-cost platforms such as
RFID transponders, contactless or hybrid smart cards, which are provided by the Trans-
portation Authority (TA). Given such a device, a user can charge it at a vending machine
to pay for rides in the subway system. The entry and exit points are typically physically
secured by turnstiles, which are equipped with readers. These readers are responsible for fare
calculation and conducting payment transactions with user devices. To avoid congestion in
front of turnstiles, transactions have to be fast : payments should be executable within a few
hundred milliseconds. Transactions at the vending machine are less time-critical but should
also not take longer than several seconds.

The resource constraints of the user devices together with the realtime requirements are
one of the main obstacles preventing the application of e-cash. User devices are typically
equipped with only a few tens of kilobytes of memory and an 8- or 16-bit microcontroller
running at not more than 16 MHz. On a widely used microcontroller, a modular exponentia-
tion in 1024-bit RSA requires about 5 s at 16 MHz, while a point multiplication on a 160-bit
elliptic curve takes around 400 ms [23]. Thus, it is clearly prohibitive to do much more than
a single full public-key operation on such a device during a payment transaction. However,
almost all e-cash schemes make excessive use of exponentiations or ECC point multiplications
in the spending protocol. Fortunately, by employing an ECC coprocessor as accelerator, the
runtime of a point multiplication can be improved by roughly one order of magnitude, (e.g.,
a factor 12 for the coprocessor in [37]). Note that, due to power constraints we may only
assume the usage of such a coprocessor when the payment device is in contact mode, e.g.,
when interacting with the vending machine, which fits our transit scenario.

1.1 Related Work

E-Cash. An e-cash scheme typically consists of a bank, users, merchants and the following
protocols: (1) a withdrawal protocol where a user obtains e-coins from the bank; (2) a spending
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protocol where the user sends coins to a merchant; (3) a deposit protocol where a merchant
deposits coins obtained from a user to his bank account; and (4) other protocols for identifying
malicious behavior. In his seminal paper [15] Chaum introduced anonymous electronic cash
(e-cash) that allows anonymous and unlinkable payments, while at the same time it ensures
unforgeability of e-coins. Since then, e-cash protocols have been extensively studied, e.g.,
see [4,8,10,11,12,13], to cite only a few. We restrict to consider two of the most important
state-of-the-art schemes.

Brands [8] proposed one of the first and most famous offline anonymous e-cash schemes
with the most efficient spending protocol (only two modular multiplications per coin are re-
quired). However, Brands’ coins occupy a fairly large amount of memory and coin withdrawal
is relatively expensive: For a wallet containing N coins, one needs to store 5N elements from
a group G as well as 2N elements from Z|G|. Moreover, the withdrawal requires about 12N
exponentiations on the user’s side.

Camenisch et al. [10] proposed so-called compact e-cash in which storage grows loga-
rithmically with N , rather than linearly as above, but at the cost of a less efficient spending
protocol (18 exponentiations per coin). Although, N coins can be withdrawn in one cheap
transaction, they still need to be spent one-by-one.

Payment Systems Dedicated to Transportation. Heydt-Benjamin et al. [24] were the first
to propose an informal cryptographic framework for transit payment systems. Sadeghi et
al. [41] present an RFID-based e-ticket scheme for transit applications. Their system does
not expect the user’s payment device to carry out too many expensive computations, however,
the existence of external trusted devices, so called anonymizers (such as a user’s cell phone), is
assumed for the costly operations and their system only protects a user’s privacy with respect
to outsiders and not the transportation authority. Blass et al. [5] proposed another offline
“privacy-preserving” payment system for transit applications that solely relies on a 128-bit
hash function and lots of precomputed data on the back-end’s side. Again, a user’s privacy
in their system is not protected from the TA. A payment system for public transportation
that protects user privacy even against the TA was recently proposed by Kerschbaum et
al. [28]. However, their scheme realizes a billing system which works quite differently from
the more traditional pay-upfront ticketing systems that we study and moreover, induces a
high computational overhead.

In the last few years, a whole series of cryptographic systems for privacy-preserving toll
collection have been proposed, e.g., [38], [1], [32], [17], a scenario which is related to but
significantly different from transit payments which is the focus of this paper.

1.2 Our Approach and Contribution

Due to their strong security and privacy guarantees, it would be highly desirable to build
a transit payment system based on e-cash. A good candidate for this purpose is Brands’
scheme because of its exceptionally efficient spending protocol. On the downside, Brands’
coins are large and their withdrawal is expensive. Hence, it would be ideal having to spend
only a single coin per trip. However, this conflicts with the necessity of allowing flexible and
dynamic prices, i.e., fares should not be flat but arbitrary monetary amounts: Setting the
denomination of a coin to be 1 cent certainly allows for flexible pricing, but users would need
plenty coins to pay for a trip. Setting the face value to $2 reduces the number of required
coins per trip, but severely restricts the system of fares. To do a tradeoff by using different
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denominations, one would need to deal with overpayments and change in a privacy-preserving
way. This is especially difficult in EPST where bank and merchants are the same entity.

Our proposal of a transit payment system addresses the issues discussed above. The idea
is to “let a single coin be worth exactly the (variable) cost of an arbitrary trip in the system”.
Our payment system is not a typical e-cash scheme but follows the concept of pre-payments
with refunds: a user has to make a deposit to get a coin worth an arbitrary ride and gets
a refund, if the actual fare is less than his deposit. We build our pre-payment system using
Brands’ scheme. However, our approach also works for other schemes like [2], where coins
can be made 2-showable without revealing the ID of a user. The refund system is realized by
using BLS signatures in a novel way that allows to aggregate refunds.

The way we employ BLS signatures to construct our refund system may be best described
by the term “history-free sequential aggregate blind signature”. While history-free sequential
aggregate signatures based on BLS [21] as well as blind signatures based on BLS [6] are
known, our requirements and techniques are quite different. In an aggregate signature scheme,
multiple signatures from different senders may be combined into one short signature. History-
free sequential aggregation means that aggregation is done sequentially by the signers and
each signer derives the next aggregate considering only the message to be signed, the signature
key, and the previous aggregate (but not the previous messages and public keys) [21]. In
contrast to this, in our setting, we have a single signer and moreover, part of the (actual)
message to be signed as well as the previous aggregates need to be hidden from this signer.
Furthermore, the verification of the aggregate signature is done given an aggregate of the
messages as opposed to the full message vector. Also, we do not make use of hash chains as in
[21] to realize these capabilities. Finally, as opposed to [6], blinding is done in the exponent
(rather than by multiplying a random group element) which offers certain benefits such as
avoiding a costly unblinding operation after every aggregation.

More precisely, in our setting we securely combine signatures for messages of the form
(s, wi), where s is hidden and wi is public, into a signature for the message (s,

∑
wi). To this

end, the signer is only given wi and the blinded previous aggregate ai−1, where a0 is a blinded
version of s. The next aggregate value is then computed as ad

wi

i−1 using the BLS signature key
d. Blinding an aggregate is done by raising it to some random exponent. Instead of removing
the blinding factor after every aggregation, blindings are also aggregated (multiplicatively)
to save computations. Security for our construction essentially means that a signature for
(s,

∑
wi) can only be constructed by sequentially querying the signer. While we believe that

this new technique can also be beneficial in other contexts, we restrict to prove security in
the context of our refund system construction (cf. Lemma 3).

In Section 3, we introduce a general framework and security/privacy models for pre-
payment with refund schemes. Section 4 describes our realization of such a system. As for
security, we show in Section 5 at a semi-formal level that it is infeasible for malicious users
to abuse the system. This includes users who try to dodge the fare or receive higher refunds
than they are eligible to. Such users will be identified by double-spending checks. Regard-
ing privacy, we show in Section 6 that the transportation authority cannot identify a user
behind a sequence of transactions (including trips, collecting and redeeming refunds, etc.)
or decide whether a sequence of trips involves a single or multiple users. For our proofs, we
need a generalization of the Incremental Diffie-Hellman assumption [20], besides requiring
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that Schnorr’s identification scheme is secure and Brands’ scheme is secure and (2-show)
unlinkable.

Furthermore, we implemented P4R using 160-bit elliptic curves on the Moo RFID tag [47]
housing a 16-bit MSP430 microcontroller. The results presented in Section 7 show that the
scheme is fairly efficient even on this, not for our purposes optimized, device. Assuming a
clock rate of 16 MHz for a fielded version of the device, the computations required for entering
the system can be executed in 2 ms, exiting takes 360 ms, and redeeming the refund token
340 ms. Withdrawal (5.22 s) is also not far from meeting real-world requirements and could
strongly be improved by making use of dedicated hardware (e.g., an ECC coprocessor in
contact mode).

Finally, our “pre-payment with refunds” approach leaves space for many design options
and allows to make interesting tradeoffs between security, privacy, and efficiency. Some of
these tradeoffs are discussed in Section 8.

1.3 High-Level System Description

P4R is composed of three subsystems: the Trip Authorization Token (TAT) aka ticket system,
the Refund Calculation Token (RCT) aka stamped ticket system, and the Refund Token (RT)
aka piggy bank system. The TAT system is offline. Here vending machines play the role of the
“bank” issuing TATs and (offline) readers at the entry turnstiles play the role of a “merchant”
where tokens can be spent. The RT system is online. Here roles are reversed compared to
the TAT system, i.e., readers at the exit turnstiles issue refunds and the (online) vending
machines redeem these tokens.

A TAT (aka ticket) is a credential that authorizes a user to make a single trip. A user
initially makes a deposit to obtain a number of TATs where the cost of a TAT equals the
price of the most expensive trip in the system. Of course, to reduce this deposit it is also
possible to have different types of TATs for different zones of the transportation system.
The withdrawal of a TAT is done in a blind fashion such that a later use cannot be linked.
The ID of a user is encoded in each TAT to prevent a repeated use for entering the system
(double-spending detection). At the beginning of a ride, a user presents an unused TAT to
the reader at the entry turnstile. If it is valid and the user can show (using a zero-knowledge
proof) that he knows the ID encoded in the TAT, access is granted.

When leaving the system, the actual fare is determined at the exit turnstile. This is done
as follows: on entering, the user also received an RCT (aka stamped ticket), which contains a
MAC on the TAT, the date/time, and the ID of the reader. When he leaves, he presents this
token to the exit turnstile which calculates the trip cost based on this information. He also
provides a blinded version of his RT (aka piggy bank), where blank RT tokens are available
from the vending machines, to which the reader adds the difference between the deposit for
the TAT and the actual fare. To prevent the re-use of an RCT and thus claiming the same
refund several times, the idea is to bind an RCT to the TAT which has been used on entering,
and force a user to again prove the knowledge of the ID encoded into this TAT when he leaves.
Note that an RT is used to add up several refunds instead of having a separate RT per refund.
When a user decides to cash the collected refund, he presents his RT to the vending machine,
which redeems it only if is not already marked as cashed.
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2 Preliminaries

2.1 Negligible and Overwhelming Functions

Definition 1. A function ν(k) : N 7→ [0, 1] is called negligible if for every polynomial P ,
there exists some c ≥ 1 such that for all k > c, ν(k) < |1/P (k)|. We call a function f : N 7→
[0, 1] overwhelming if f(k) ≥ 1− ν(k), where ν is negligible.

Definition 1 can be easily generalized to functions in multiple security parameters.

2.2 Required Complexity Assumptions

Let us briefly review some complexity assumptions required for the security of the components
of our scheme.

Definition 2 (Discrete Logarithm Assumption). Let k ∈ N be a security parameter.
Let G be a cyclic group of order q (k-bit prime) with generator g. Then, for every polynomial
time algorithm A, it holds that

Pr[h← G;x← A(1k, G, q, g, h) : x = logg h] ≤ ν(k)

where ν(k) is a negligible function.

The DL assumption is required for the security of Schnorr’s identification scheme as well as
Brands’ e-cash scheme, both being building blocks of our construction.

For proving the security of our refund system, we additionally need a new assumption
which we call the n-Σ-incremental DH assumption. This new number-theoretic assumption
generalizes the Incremental Diffie-Hellman (IDH) assumption used to prove a loyalty scheme
to be secure in [20]. Roughly, the IDH problem asks to compute xd

v ∈ G for a given pair
(x, hd) ∈ G2 and with access to an exponentiation oracle (·)d, which can be queried less than v
times. Currently, the best method to solve this problem is to compute the discrete logarithm
d.

Definition 3 (n-Σ-Incremental DH-Assumption). Let k ∈ N be a security parameter.
Let n ∈ N and (G, h, p, d, (hd

i
)i∈[n]) ← Gen(1k) be given, where G is a group of order p (k-

bit prime) with generator h and d ← Z∗p. Furthermore, let OG be a challenge oracle, which
when queried returns a random xi ← G, and Od be an oracle which raises a given element
to the d-th power. Consider the output (c1, v1, . . . , cm, vm)← AOd,OG(1k, G, p, h, (hd

i
)i∈[n]) of

a polynomial-time algorithm A. Then the probability that ci = xd
vi

i with vi < p − 1 for all
i ∈ [m], where x1, . . . , xm are the challenges generated by OG in the run, and A has made
less than v1 + · · ·+ vm oracle queries to Od, is negligible.

Note that the DL assumption over G is implied by the n-Σ-IDH assumption over G. For
small n and small exponents vi (i.e., of size polynomially bounded in k) we can prove the
hardness of the n-Σ-Incremental DH problem in the generic group model (GGM) [44] with
a pairing. Moreover, the assumption can also be reduced to a variant of the DL assumption
over the target group of the pairing in the semi-generic group model (SGGM) [27]. Please
refer to Appendix B for a proof in the SGGM. We would like to note that this proof also
implies hardness in the GGM.
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2.3 Pairings and the BLS Signature Scheme

Let G,GT be groups of prime order p. We will use multiplicative notation for both groups. A
mapping e : G × G → GT is called a cryptographic bilinear map or pairing if it satisfies the
following properties:

– Non-degeneracy: if g is a generator of G, then e(g, g) 6= 1.

– Bilinearity: e(ax, by) = e(a, b)xy for any a, b ∈ G and x, y ∈ Zp.
– Computability: there exists an efficient algorithm to compute e(a, b) for any a, b ∈ G.

The signature scheme due to Boneh, Lynn and Shacham (BLS) [7] is secure against
existential forgery under a chosen message attack (in the random oracle model) assuming
that the Computational Diffie-Hellman problem is hard. Let G,GT , g, e be given as described
above. BLS consists of the following algorithms:

– KeyGen picks a random d← Z∗p. The public key is h = gd and the private key is d.

– Sign signs a message m ∈ G by simply computing σ = md.

– Verify verifies a message-signature pair (m,σ) by checking whether the equation e(g, σ) =
e(h,m) holds.

2.4 Zero Knowledge Proofs of Knowledge and Schnorr’s Protocol

Our construction makes use of zero-knowledge proofs of knowledge (ZKPoK). Informally,
a ZKPoK is a two-party protocol between a prover P and a probabilistic polynomial-time
verifier V , where P convinces V that he knows a witness d to some “hard” relation (e.g., d
is the discrete logarithm of h with respect to some generator g) without the verifier learning
anything beyond the fact. In particular, a ZKPoK protocol satisfies the following properties
(cf. [22] for formal definitions):

– Completeness: For honest V, P the protocol succeeds with overwhelming probability.

– Soundness: There exists some (expected poly-time) algorithm K (called knowledge ex-
tractor), which (by rewinding) extracts a witness from every (potentially dishonest) prover
P ∗ succeeding in the protocol with non-negligible probability.

– Zero-Knowledge: For each (potentially dishonest) polynomial-time verifier V ∗, there exists
a polynomial-time algorithm S (called simulator), which, without knowing a witness, is
able to generate a transcript that is indistinguishable from a real transcript of a proof
between V ∗ and P .

In particular, we make use of Schnorr’s protocol for proving knowledge of a discrete
logarithm [42]. Let g be a generator of some group G of prime order p and let h = gd ∈ G.
To prove knowledge of the discrete logarithm d of h, P picks r ← Zp and sends a = gr to V .
The verifier then chooses a challenge element c ← Zp and sends it to the prover. Finally, P
computes the response z = r+cd and sends it to V who checks whether the equation gz = ahc

is satisfied. Note that Schnorr’s protocol is an honest-verifier zero-knowledge protocol. The
proof of knowledge of a representation of an element h = gd11 g

d2
2 with respect to generators

g1 and g2 used in Brands’ scheme is a generalization of Schnorr’s protocol: Here, P sends
a = gr11 g

r2
2 and z1 = r1 + cd1, z2 = r2 + cd2 to V , who verifies gz11 g

z2
2 = ahc.
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2.5 Brands’ E-Cash System

In the following we sketch Brands’ e-cash scheme [9]. During setup, the bank B chooses a
cyclic group G of prime order q, generators (g, g1, g2), a number x ∈ Zq and a collision-
resistant hash function H : G5 → Zq. The bank’s public key is (g, g1, g2, g

x, gx1 , g
x
2 , H), and its

secret key is x. A user’s secret key in this scheme is some element id ∈ Zq and his public key
is gid1 . The user’s secret key is encoded in each coin the user withdraws. More precisely, a coin
is a tuple (A,B, sig(A,B)), where A = gid ·s1 gs2, B = gx11 gx22 , and sig(A,B) is a signature on A
and B. The value s, which is a random element from Zq, is the serial number of a coin. B is a
commitment to random values x1, x2 ∈ Zq, which are later used during the spending protocol.
Note that the values s, x1, x2 are only known to the user who withdraws the coin. Also, the
bank does not know A,B, or sig(A,B) after an execution of the withdrawal protocol. The
details of the withdrawal protocol are shown in Figure 1.

U B
Input: id , g, g1, g2, gx, gx1 , g

x
2 , H Input: g, g1, g2, gid1

s← Zq
a, b

←−−−−−−−−−−−− w ← Zq , a = gw, b = (gid1 g2)w

A = (gid1 g2)s

y = (gx1 )idgx2 , y′ = ys

x1, x2, u, v ← Zq

B = gx1
1 gx2

2
a′ = augv , b′ = bsuAv

c′ = H(A,B, y′, a′, b′)

c = c′u−1 mod q
c−−−−−−−−−−−−→

gz
?
= (gx)ca

z←−−−−−−−−−−−− z = w + cx mod q

(gid1 g2)z
?
= ycb

z′ = v + zu mod q

Fig. 1. Brands’ e-cash: withdrawal of a coin (A,B, sig(A,B))

In the spending protocol, the user presents A,B, sig(A,B) to the merchant and proves
ownership of the coin by showing that he knows a representation of A with respect to g1 and
g2 (i.e., id and s). To hide id and s, the random numbers x1 and x2, the user had committed
to during the withdrawal, are used. If the user tries to double-spend a coin and is thus forced
to re-use these values, id and s can easily be revealed.

Unfortunately, the security of Brands’ scheme has never been fully formalized and proven
rigorously. Nevertheless, to the best of our knowledge, up to date, i.e., during the last 20
years, the security properties claimed about Brands’ scheme have not been refuted, although
the scheme has been very popular. (The attack claimed in [14] could be easily fixed and seems
to be caused by a lapse in [9]). In fact, even recently, Microsoft built its digital credential
identity management system, U-Prove [36], based on the unproven blind signatures which
are at the heart of Brands’ scheme. The security of our construction relies on the following
properties of Brands’ e-cash:

– Restrictiveness: Briefly, the idea of a restrictive blind signature is to allow a user to get a
signature on a (blinded) message, not known to the signer, only if the message satisfies a
certain property. In Brands’ withdrawal protocol, this property is basically that the secret
key of the user must be embedded in the message.
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More precisely, Brands defines restrictiveness in the following way (cf. Definition 5 in
[9]): Let m ∈ G (m = gid1 g2) be a message such that the receiver knows a representation
(a1, a2) of m with respect to a generator-tuple (g1, g2) at the start of a blind signature
protocol. Let (b1, b2) be the representation the receiver knows of the blinded number m′

(m′ = gids1 gs2) of m after the protocol has finished. If there exist two (blinding-invariant)
functions I1 and I2 such that I1(a1, a2) = I2(b1, b2), regardless of m and the blinding
transformations applied by the receiver, then the protocol is called a restrictive blind
signature protocol. Assumption 1 in [9] states that Brands’ withdrawal protocol is a
restrictive blind signature with I1(a1, a2) = a1/a2 and I2(b1, b2) = b1/b2.

– Unforgeability: Informally speaking, an e-cash system is called (one-more) unforgeable if
it is infeasible for an adversary who engaged in ` successful executions of the withdrawal
protocol to output `+ 1 different and valid coins. Proposition 7 in [9] states that Brands’
scheme is unforgeable under the assumption that Schnorr signatures are unforgeable. Note
that one-more unforgeability was never proven rigorously for Brands’ e-coins. In fact, there
exists an impossibility result on proving the unforgeability of Brands’ blind signatures in
the Random Oracle Model using the standard replay reductions [3]. Nevertheless, this
does not mean that Brands’ scheme is insecure; its one-more unforgeability remains an
open problem.

– Unlinkability: Intuitively, unlinkability in an e-cash scheme means that an adversary can-
not tell whether two different coins came from the same user if he has access to the views
of the withdrawal and spending operations. More precisely, consider a polynomial-time
adversary A, who impersonates the bank and the merchant (where e-coins are spent). Let
U0 and U1 be two honest users. The adversary A may first ask both users to withdraw
and spend a couple of coins. Then, during the challenge phase, we flip a bit b ← {0, 1}
and set the left user UL = Ub and the right user UR = U1−b. Now A may ask UL and
UR to spend some coins (where we assume that a sufficient number of coins have been
withdrawn before). In the end, A outputs a bit b′ and wins if b′ = b. We call an e-cash
scheme unlinkable if A’s chance to win is at most 1

2 +ν(k) where ν is a negligible function.
The unlinkability of Brands scheme is based on the following stronger information-theoretic
property which essentially says that any spending may correspond to any user and any
withdrawal:

Proposition 1 (Proposition 11 in [9]). For any User, for any possible view of the
Bank in an execution of the withdrawal protocol in which User accepts, and for any possible
view of Merchant in an execution of the spending protocol in which the payer followed the
protocol, there is exactly one set of random choices that the User could have made in the
execution of the withdrawal protocol such that the views of the Bank and the Merchant
correspond to the withdrawal and spending of the same coin.

– 2-Showable Coins: For our construction, we will need an e-cash scheme that allows to
show a coin twice, while different coins remain unlinkable. It is straightforward to extend

the basic Brands’ scheme to a 2-showable one by adding an extra value C = g
x′1
1 g

x′2
2 similar

to B, where x′1, x
′
2 ← Zq. Then a user may first prove knowledge of a representation of A

using x1, x2 and a second time using x′1, x
′
2.

The restrictiveness and unforgeability properties of Brands’ scheme naturally extend to
this 2-showable coin version. Concerning unlinkability, it is acceptable that two spendings
of the same coin can be linked, while it should still be infeasible to link transactions
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involving different coins. Proposition 1 can be easily extended and proven for 2-showable
coins.

3 A Framework and Security Model for Transit Payments with Refunds

In a transit payment scheme with refunds we consider four different parties: the users U , the
Transportation Authority (TA) T , the online vending machines V, and the offline readers R
(at the turnstiles). V and R are usually owned and fully controlled by T . In the following
we define such a system as a composition of three subsystems, the TAT, the RCT, and the
RT subsystem comprising various algorithms and protocols which are executed by the above
parties. For the sake of simplicity, we only present a high-level system interface at this point
not listing every single input which may be required by the parties to execute the protocols.

TAT Subsystem. This subsystem includes algorithms and protocols allowing users to register
to the system and use TAT tokens, specifically:

– KGenTAT(1k1) is a probabilistic algorithm executed by T to setup the TAT subsystem.
On input of 1k1 , it generates T ’s public and private key (pkTAT, skTAT).

– Register(U(IDU , pk
TAT), T (·)) is an interactive protocol executed between a user with

identity IDU and T . As output U obtains a public/private key pair (pkU , skU ) and the
TA registers U ’s public key and identity information IDU to a user database DBU (to be
used to identify a user who double-spends a TAT).

– BuyTAT(U(pkTAT, pkU , skU ),V(skTAT)) is an interactive protocol between a user with pub-
lic key pkU and a vending machine who knows the secret key skTAT. If the protocol is
successful, U obtains a TAT token TATi issued by V, which “encodes” U ’s secret key in a
blind fashion.

– ShowTAT(U(TATi, sk
U ),R(pkTAT)) is executed between a user and a reader to spend/show

TATi. After a successful interaction, R stores TATi together with the transcript of the
protocol in a TAT database DBTAT.

– IdentTAT(DBTAT) is an algorithm executed by T to check if there exist two different
transcripts for the same TATi in the TAT database. If this is the case, it outputs the
identity IDU of the cheating user along with his secret key as a proof.

RCT Subsystem. This subsystem comprises algorithms and protocols between users and
readers required to handle refund calculation:

– KGenRCT(1k2) is executed by T and returns a k2-bit RCT key K.
– GetRCT(U(TATi),R(idR,K)) is an interactive protocol between a user and a reader that

is executed immediately after ShowTAT. The execution ends with the user obtaining a
refund calculation token RCTi for the TAT token TATi just spent.

– ShowRCT(U(RCTi, sk
U ),R(K, pkTAT)) is a protocol executed by a user to enable the

reader to calculate his refund when he exits the system. To this end, R checks the validity,
freshness, and ownership of RCTi sent by U . Then it calculates and outputs the refund
value w based on the information in RCTi and stores the transcript of the protocol to an
RCT database DBRCT together with RCTi.

– IdentRCT(DBRCT) is executed by T to check if there exist two different transcripts for the
same RCTi in the RCT database. In that case it outputs the identity IDU of the cheating
user along with his secret key as a proof.
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RT Subsystem. This subsystem, handling the refund collection and redeem process, comprises
the following algorithms and protocols:

– KGenRT(1k3) is a probabilistic algorithm executed by T that outputs a public and secret
key pair (pkRT, skRT).

– GetRT(U(pkU , skU ),V(·)) is an interactive protocol between a user and a vending machine
to create a refund token RT for the user. V adds RT to a database DBRT.

– GetRefund(U(RT),R(w, skRT)) is executed immediately after ShowRCT between the user
and the reader to add the calculated refund w for a single trip to the user’s (blinded) RT
RT.

– RedeemRT(U(RT, pkU , skU ),V(pkRT)) is an interactive protocol between U and V in order
to redeem the user’s refund token RT. If the token is valid, and not marked as “redeemed”
in DBRT, U receives the corresponding refund amount. After that, RT is marked as “re-
deemed” in DBRT.

3.1 Informal Discussion of Security and Privacy Aspects

In the following, we will discuss which kind of adversaries and attacks are covered by our
security and privacy models, such that readers who prefer to skip the formal models and
proofs do not miss important details.

3.1.1 Security Let us take a quick look at the type of adversaries captured by our security
definition given in Section 3.2.1. We consider adversaries who want to pay less than the real
fare and, for this, they are in full control of a group of malicious colluding users and may
also eavesdrop on honest users. Hence, the adversary may manipulate the messages (e.g.,
TAT, RCT, RT tokens, or other values) sent during protocol runs of malicious users but only
perform passive attacks on honest users. In particular, the latter means that he may not
jam or modify the (wireless) communication between honest users and authorities or perform
relay attacks. Note that mounting such attacks on a large scale, however, seems to be hard.

Although, the adversary may act maliciously with respect to the protocol interactions
of colluding users, all users are assumed to always execute the corresponding protocols in
the right sequence. In particular, we do not consider physical attacks to evade the fare. For
instance, a user may not leave the system by jumping over the exit turnstile, not executing
ShowRCT, and is thus still in possession of an unused RCT or can call GetRCT a second
time at the entry turnstile. More generally, we assume that for every call of GetRCT a user
does, he also has to execute ShowRCT and there are never two calls of GetRCT without an
intermediate call of ShowRCT. More illustratively, this means that when starting a ride, after
the entry turnstile has sent an RCT, the user must always (be forced to) properly terminate
this ride by leaving through an exit turnstile and presenting the received RCT there. This
ensures that a user physically inside the transportation system is always in possession of
exactly one unused RCT.

Moreover, colluding users are assumed not to share their secret IDs, i.e., skU . Otherwise,
two users in our scheme could exchange their RCTs while traveling and obtain higher refunds
than they are eligible to.5 While this might seem like a strong assumption, note that in our

5 Note that we do not run into this problem in case of a single user registering with two different IDs. Our
restriction with respect to the protocol sequence ensures that when this user is inside the transportation
system, he is in possession of only one unused RCT (issued using one or the other of his IDs).
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system, sharing ID information also entails a high risk for a user: Others might spend a user’s
RCT twice and thus the user’s ID is revealed to the TA or the ID is used to buy TATs in
the user’s name which might then be misused. So there is also a strong incentive for users to
behave honest in this way. Users may also be forced not to share by using tamper resistant
payment devices making it very hard to extract skU from the device.

Although, our adversarial model is restricted in some ways as described above, it still
covers a broad class of attacks. In particular, adversaries may try to forge, double-spend, and
use eavesdropped TATs, RCTs and RTs or manipulate other protocol values in order to ride
for free or receive higher refunds than they are eligible to.

3.1.2 Privacy Let us now discuss what type of adversaries and attacks are covered by our
privacy model given in Section 3.2.2. In this model the adversary may act as the TA with
respect to honest users. Additionally, he may try to learn from training phases where users
are not anonymous in interactions and receive orders from the adversary. Essentially, the
adversary’s goal is to identify the user behind a sequence of certain events (including trips,
the redemption of an RT, etc.) or to decide whether a sequence of events involves one and the
same or multiple users. In particular, our model guarantees that except for user registration
and buying TATs, any other event, including rides (i.e., showing TATs, obtaining and showing
RCTs, collecting refunds) as well as obtaining and redeeming RTs, is perfectly anonymous.
That means, for a given user identity, any sequence of trips is equally likely (with respect to
an adversary only considering protocol transcripts). Furthermore, even if the user ID could
be linked with the redemption of an RT token (by external means) and thus the total refund
amount is leaked for this user, our model still ensures that the user’s sequence of trips cannot
be distinguished from any other one leading to the same refund amount. This also includes
sequences, where the individual trips involve different users.

Note that we consider adversaries who only make use of the information provided by
protocol runs, but not any kind of background knowledge (like user profiles, the likelihood
of certain trip combinations, etc.). We additionally need to make the restriction that the
adversary, when acting as the TA, honestly follows the GetRefund protocol. This is needed
as, for efficiency reasons, users (owning constrained devices) in our system will not verify
the amount added to their RT. Thus, by adding some bogus refund to the RT of one out
of two users, instead of the claimed amount, or by using separate signature keys for the
two users, the adversary could distinguish them. As a practical countermeasure, however,
one could introduce spot-checks where users with more powerful devices like smartphones
actually verify issued refunds.

In the following, we will argue that in theory (again ignoring any background knowledge
and side information) the refund amount revealed by RedeemRT should not be of much help
in restricting the set of possible sequences of trips an (anonymous) user redeeming a refund
of v cent could have taken. This set, now containing all combinations of trips (in the records)
leading to a refund of v cents, should usually be pretty large for the following reasons: Note
that the number of decompositions of v into single-trip refunds equals the number of integer
partitions of v. Hence, we are interested in the number pS(v) of partitions of integers v where
parts are restricted to come from a certain set S (the set of single-trip refunds). Unfortunately,
there are no explicit formulas for this number for arbitrary S, but only for S satisfying certain
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conditions. For instance, in the case S = {w1, . . . , wk} with wi < wi+1 and gcd(S) = 1, Schur
shows [43] that pS(v) ≈ vk−1((k − 1)!w1 · · ·wk)−1, where pS(v) > 0 for v large enough.
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Fig. 2. Number of partitions (solid line) and 10-
partitions (dots) of integers in the range [0, 200] with
parts from the range [1, 20]

Fortunately, in our application scenario
the parameters wi and k are usually pretty
small and should be publicly known. Hence,
we can compute pS(v) in a naive way and do
not rely on such explicit formulas.

For instance, let us consider a toy exam-
ple of a distance-based EPST, where the re-
fund unit is dimes, a user has to pay one
dime per traveled station, and the longest
trip consists of 20 stations which translates
to a deposit of 20 dimes for a TAT. Thus, we
are interested in the number pS(v) of com-
binations of single-trip refund values wi ∈
S := {1, . . . , 20} leading to a fixed sum v.
The graph on the left-hand side (solid line)
of Figure 2 depicts these numbers (in the
range 0 ≤ v ≤ 200). One can see that pS(v)
grows super-polynomially for these parame-
ters and we exceed a number of 1000 partitions already for v = 22. Moreover, the graph
on the right-hand side (dots) of Figure 2 shows the numbers pS(v, 10) of possible partitions
consisting of 10 parts. This reflects the situation, where the size of the partition would also
be known, which is the case for a variation of our basic system described in Section 8. Clearly,
pS(v, 10) is a Gaussian function and a number of 1000 partitions is exceeded between v = 34
and v = 176. By means of this toy example, we would like to demonstrate that already for a
small total refund amount, the number of possible trip sequences can be pretty large which,
however, depends on the parameters.

Now, note that for each particular partition v = wi1 + · · · + wim there typically should
not only be a single, but numerous sequences of trips in the records satisfying this partition.
Thus, in the extreme (but pointless) case where all trips lead to the same refund w, there is
only a single partition for each particular v, but there naturally should be plenty of different
sequences leading to v.

Finally, we would like to stress that the actual level of location privacy of a user in a real
implementation will certainly depend on numerous factors including the background knowl-
edge of an adversary, his actual goals (tracing users, meeting disclosure, etc.), user behavior
(e.g., when are RTs redeemed), transportation system characteristics (e.g., popularity of par-
ticular trips), etc. For instance, in rare cases it could happen that since the issue date of
a refund token nobody but the owner of this token did trips that could have resulted in a
particular refund amount v (though, in theory many sequences are possible). Also, the price
system might be set up in a way that allows to decide whether a user redeeming an RT has
taken one particular trip or not (e.g., if all trips lead to refunds of 50 cents and only one
particular trip leads to a refund of 51 cents). Nevertheless, we believe that for real-world
transportation systems this is not a serious issue. In fact, the TA should publish the set
of possible trips and corresponding refund values which would allow to (partly) check the
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existence of such a problem. An analysis of the actual degree of location privacy provided by
P4R, taking all these factors into account, would certainly be a very interesting contribution
on its own but is out of scope of this paper.

3.2 Security and Privacy Model

We define the desired properties by means of experiments using a probabilistic polynomial
time adversary A. The considered adversary is in full control of a (dynamically growing)
set of malicious colluding users and may also eavesdrop on honest users. To this end, A
can adaptively query a set of interactive oracles that are defined below and basically mirror
the system interface. The protocols ShowTAT/GetRCT and ShowRCT/GetRefund that are
executed consecutively are combined. We assume that the system parameters and keys have
already been determined and omit them from the oracle descriptions below for simplicity.
Of course, A is assumed to receive all the messages exchanged in the scope of the executed
protocols. In addition, A may manipulate the messages (e.g., TAT, RCT, RT tokens, or other
values) sent during protocol runs of malicious users (but only act as passive adversary with
respect to honest users).

– Register∗(IDU ) is used to register a user with identity IDU by running protocol Register.
We assume that the user’s secret key skU , generated in the scope of the registration,
is randomly chosen, globally unique, verifiably linked to the user, and unknown to the
adversary.

– Corrupt(IDU ) is used by the adversary to corrupt some previously honest registered user
IDU . The adversary receives all internal data of the party except for its secret key skU

and, from then on, the adversary acts on behalf of this party. In particular, the adversary
may try to use forged data or data from a different user in interactions involving this
corrupt user. Note that for honest users the adversary is not able to control which data is
used during interactions, but may only decide which protocols the user executes (provided
the order of executions does not violate our policy below). We collect identities of corrupt
users in an initially empty set C.

– BuyTAT∗(IDU ) can be used to make an honest or corrupt user IDU interact with a vending
machine to retrieve a TAT (running BuyTAT).

– GetRT∗(IDU ) makes a user interact with a vending machine to obtain a new RT.

– Enter(IDU , idR, ts) makes the party IDU interact with the reader idR at time ts to show
a TAT (executing ShowTAT) and to get an RCT afterwards (executing GetRCT). If both
protocol executions are successful, Enter outputs “granted”, otherwise it returns “denied”.
Before Enter can be executed again on behalf of the same user, Exit must be called first for
this user and terminate with “granted”. Honest users may not be asked to double-spend
a TAT.

– Exit(IDU , id
′
R, ts

′) makes the party IDU interact with reader id ′R at time ts′ to get a
refund, running ShowRCT and GetRefund. If both protocol executions are successful, Exit
outputs “granted”, otherwise it returns “denied”. Before Exit can be called (again after a
successful execution) for a user, this user must have been involved in a successful execution
of Enter. Honest users may not be asked to show an RCT twice (or an RCT other than
the one they received before using Enter). The refund of a user is calculated from the
presented RCT and denoted by w. The authentic trip costs denoted by u are determined
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by id ′R, ts
′ and the data idR, ts from the last call of Enter for this user. Note that in case

the user is able to cheat here, w may be higher than the deposit for a TAT minus u.
– RedeemRT∗(IDU ) makes user IDU redeem an RT at the vending machine. Honest users

may not be asked to redeem an RT twice.

3.2.1 TA Security To put it simply, a transportation payment system with refunds should
primarily guarantee that the TA does not lose any money. In other words, users should not be
able to receive reimbursements which exceed the overall deposit for TATs minus the overall
fare of their trips without being identified by the TA.

To model attacks, we define an adversary A, who acts as a group of malicious colluding
users, who also eavesdrop on honest users. The TA including vending machines and turnstiles
are assumed not to be corrupted by this adversary and behave according to the specified
protocols. The key material (in particular skTAT, skRT,K) of these entities is not known to
A. We capture the security notion stated above by means of following game-based definition
using the oracles introduced in Section 3.2:

Definition 4 (TA Security). We call a transportation payment scheme with refunds TA-
secure if, for any PPT adversary A the probability of outputting 1 in the experiment below is
negligible.

Experiment TA Security. Let (skTAT, pkTAT) ← KGenTAT(1k1), K ← KGenRCT(1k2), and
(skRT, pkRT) ← KGenRT(1k3). Furthermore, let pk = (pkTAT, pkRT) be the public parameters
and keys. Then run ARegister∗,Corrupt,BuyTAT∗,GetRT∗,Enter,Exit,RedeemRT∗(pk) and let

– `U be the total deposit for TATs made during executions of BuyTAT∗,
– F1, . . . ,Fm be the authentic trip costs incurred in interactions with Enter/Exit,
– R1, . . . ,Rk be the reimbursements paid by V in interactions with RedeemRT∗,

involving users eventually in C. The experiment outputs 1 if
∑k

i=1 Ri > `U−
∑m

j=1 Fj or m > `
and when running the double-spending identification algorithms IdentTAT and IdentRCT, T
cannot output any identity IDU and secret key skU belonging to one of the previously registered
users in C.

Remark 1. Note that skU is randomly chosen and unknown to T when a user registers. By
just guessing skU at the end of the experiment, T has a negligible chance to identify a double
spender (or even a valid user). So the experiment is well-defined in this respect.

Furthermore, note that although the Corrupt oracle does not reveal the user’s secret key
to the adversary, it is still possible that A may try to spend a user’s TAT (or RCT) twice
to obtain skU . With this knowledge, A can use the user’s RCT with a different user and get
a higher refund. However, we would like to stress that in this way also the TA detects this
double-spending, so the adversary does not break security in the sense of Definition 4. In
practice, the TA would also blacklist the ID of the cheating user such that no TATs can be
purchased anymore encoding this ID.

It is not hard to see that the first inequality in Definition 4 essentially covers all attack
scenarios a TA may want to be protected from as they result in losing money. The second
inequality m > ` is only meant to prevent scenarios where the number of trips exceeds
the number of purchased TATs which does not necessarily result in the TA losing money:
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Consider an adversary who buys one TAT worth $k, but is able to do k rides worth $1. For
some reason he does not (or is not able to) claim any refunds. Such an attack does not violate
the first inequality, as the adversary did trips worth a total of $k for which he pre-paid $k
and did not get any refund.

3.2.2 User Privacy Our model should cover adversaries who try to identify the user
behind a sequence of protocol runs or try to link certain protocol runs.

A natural attempt to define such a model is to follow the definition of blindness in blind
signature schemes. That is, consider an honest-but-curious adversary who impersonates the
transportation authority (vending machines and readers) and runs executions with two honest
users U0 and U1. The adversary first asks both users to buy TATs. Then, the two users are
assigned as left and right user in random order according to a secret random bit b and the
adversary may instruct them to get an RT and ride for a predetermined amount. Finally both
users cash-in their RTs. An adversary should not be able to identify the order bit b better
than by guessing. Note that similarly to blind signature schemes, if some executions abort, it
may be easy to distinguish the users. We thus declare the adversary to lose if this happens,
provided formally by outputting a random guess for b.

The above approach, however, guarantees less than we would like to achieve. In partic-
ular, it does not necessarily provide unlinkability of rides. The definition does not rule out
adversaries knowing which trips belong together, it merely prevents them from identifying
the user behind each of the two sequences. We ensure unlinkability by allowing the adversary
to ask specific users to take trips (for a known amount) before and after entering a challenge
phase in which the order of the users is random. Some caution has to be taken with regard
to RTs though: an RT issued during the (non-anonymous) pre-challenge phase may not be
redeemed during the challenge phase and an RT issued during the challenge phase may not
be redeemed during the (non-anonymous) post-challenge phase. Moreover, we need to stip-
ulate that the sums of refunds collected by both users during the challenge phase with an
RT obtained in the pre-challenge phase need to be identical. Note that our more elaborated
approach still covers the basic requirement that one cannot identify the user behind a trip
sequence, because we let the adversary decide if and how often users take trips in the non-
anonymous pre-challenge and post-challenge phase. In particular, the adversary could ask
both users to immediately enter the challenge phase.

For our definition below, we make use of the same oracle-based attack model Register∗,
BuyTAT∗, GetRT∗, Enter, Exit, RedeemRT∗ as before, except that the adversary now takes
over the roles of T , R, and V. All users are assumed to be honest.

Definition 5 (User Privacy). A pre-payment system with refunds is called private, if the
probability for any PPT adversary A in predicting b in the experiment below is negligibly close
to 1

2 . The scheme is called semi-honest private if the above holds under the condition that the
adversary honestly follows the GetRefund protocol.

Experiment User Privacy. Let us assume that A already created the system’s public data and
two identities ID0, ID1. Let two honest users U0 and U1 register to the system by means
of Register∗ using ID0 and ID1. The remaining experiment consists of the following three
phases which are run sequentially. We assume that Enter and the corresponding call to Exit
for a trip are always both executed in the same phase. Additionally, an RT issued during the
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pre-challenge phase may not be redeemed during the challenge phase and an RT issued during
the challenge phase may not be redeemed during the post-challenge phase.

– Pre-Challenge Phase: A may ask both users to run BuyTAT∗, GetRT∗, Enter, Exit, RedeemRT∗,
multiple times and concurrently. A ensures that both users withdraw sufficiently many
TATs for doing trips during the upcoming challenge phase.

– Challenge Phase: We pick a random and secret bit b ← {0, 1} and assign user Ub as the
left user UL and user U1−b as the right user UR. We assume that both users use at most
one refund token from the pre-challenge phase to collect some refunds in the challenge
phase. A may execute the following steps repeatedly:
• instruct UL or UR to run GetRT∗ to issue a new RT token
• instruct UL or UR to run RedeemRT∗ to redeem an RT previously issued during the

challenge phase
• instruct UL or UR to run Enter for the next fresh TAT and a trip of value c
• instruct UL or UR to run Exit for a trip previously started during the challenge phase,

where the user may be asked to use an RT from the pre-challenge or the challenge
phase to collect the refund

Let vL, vR be the sum of refunds of the users UL and UR collected using their refund tokens
from the pre-challenge phase.

– Post-Challenge Phase: A may ask both users to run BuyTAT∗, GetRT∗, Enter, Exit,
RedeemRT∗ multiple times and concurrently.

A outputs a guess b′ for b. If one of the executions with the honest users has aborted, or if
vL 6= vR, then output a random b′ instead.

Remark 2. Note that in the experiment above, the adversary does not have access to the
Corrupt oracle since we only care about the privacy of honest users. In fact, if A could
corrupt those users, he would always win in the experiment as, e.g., he could count how
many unused TATs each user owns before and after the challenge phase. Additionally, as the
pre- and post-challenge phases are identifying by definition, whereas the challenge phase is
not, we need to ensure that linkable transactions (e.g., obtaining and redeeming an RT) can
only be executed in phases of the same “kind”.

4 P4R: A Privacy-Preserving Transit Payment System

Our new payment system dedicated to transit applications follows the general framework
given in Section 3. In our basic scheme, the TAT and RCT subsystems are loosely coupled
and realized based on an extension of Brands’ protocol. Our RT system is realized by using
BLS signatures in a new way.

The essential parts of our basic scheme are shown in Figure 3. Note that for efficiency
reasons we assume that users (with constrained devices) do not check signatures on RTs or
MACs on RCTs. In other words, users trust the TA to issue correct refunds.

4.1 TAT Subsystem

To realize this subsystem, we build on Brands’ scheme due to its efficient spending protocol.
We slightly extend his scheme such that the ownership of a TAT can be shown twice without
leaking a user’s ID (which is needed for the RCT system).
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– KGenTAT(1k1) chooses a cyclic (elliptic curve) group G of prime order q = Θ(2k1), group
generators g, g1, g2 ∈ G, a random number x ∈ Z∗q , and a collision-resistant hash function

H : G5 → Zq. The public key of T is pkTAT = (G, q, g, g1, g2, g
x, gx1 , g

x
2 , H) and its secret

key is skTAT = x.

– Register(U(IDU , pk
TAT), T (.)) is a protocol similar to the account setup in Brands’ scheme.

A secure and authenticated channel between U and T is assumed (T may also be rep-
resented by V). U first presents some identity information IDU to T like a credit card
number, a bank account, a passport or a social security number. T first verifies the ID
information and then U samples a random idU ∈ Zq, verifies that gidU1 g2 6= 1, and sends

pkU = gidU1 to T . U proves his knowledge of the discrete logarithm of pkU with respect

to g1 and stores (pkU , skU ) = (gidU1 , idU ), since he will later need this information when

buying TATs. T checks whether gidU1 is already contained in the user database DBU and
if not it is stored along with IDU .

– BuyTAT(U(pkTAT, pkU , skU ),V(skTAT)) is used by registered users to buy TATs. To this
end, U sends pkU to V who checks whether there exists an entry for the user in the
database. After that, U proves knowledge of his secret key skU . Then a TAT is computed
interactively as an extended coin in Brands’ scheme: TATi = (Ai, Bi, Ci, sigskTAT(Ai, Bi, Ci)),

where Ai = (pkU )sigsi2 = gidUsi1 gsi2 , Bi = gxi1 g
yi
2 , and Ci = g

x′i
1 g

y′i
2 . Notice the additional

commitment Ci in comparison to a coin in Brands’ scheme. This value is later used in the
RCT system to show ownership of TATi a second time. Multiple TATs can be withdrawn
without repeating the identification in the beginning.

– ShowTAT(U(TATi, sk
U , si, xi, yi),R(pkTAT)) corresponds to spending a coin in Brands’

scheme. U sends TATi to R who verifies the signature and U proves ownership of the TAT
using the secrets skU , si and the randomness xi and yi he has committed to by means of
Bi. It is important to note that the order in which Bi and Ci appear in TATi is fixed due
to the signature. This prevents U from interchanging Bi and Ci or using Ci for a second
trip with that TAT. TATi is stored along with the response (z1, z2) of the user in the TAT
database DBTAT.

– IdentTAT(DBTAT) is run by T to check for double-spending. If there exists two different
response tuples (z1, z2) and (z∗1 , z

∗
2) for the same TAT (with respect to Bi) in the TAT

database, it recovers the user’s secret key idU = (z1 − z∗1)/(z2 − z∗2) mod q. By looking

up gidU1 in the user database the cheater’s identity IDU can be revealed.

4.2 RCT Subsystem

By presenting an RCT to a reader at an exit turnstile, a user shows that he is eligible to
receive a certain refund, which depends on the origin of his trip. Naturally, the TA wants
to prevent a user from re-using an RCT, e.g., to demand the same refund several times, or
exchanging his RCT with one from another user in order to fake the origin of his trip and
obtain a higher refund. In order to discourage this kind of misbehavior, the idea is to bind
a user’s ID to the RCT tokens. Certainly, this cannot be done in a straightforward manner
since it would violate anonymity. So instead, we bind an RCT to the TAT which just has
been used to enter the system and force a user to prove ownership of this TAT when again
he is leaving.
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add SNRT to DBRT
(5) User redeems RT

r ← Z∗p, RT′ = RTr, R = Rr mod p
SNRT,RT
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−−−−−−−−−−−−−−−−−→ check validity of SNRT

v
?
< p− 1
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?
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mark SNRT in DBRT

U R (offline)

(3) User shows TAT and receives RCT when entering system

TATi−−−−−−−−−→ check validity of TATi

z1 = xi + c(idUsi) mod q
c←−−−−−−−−− c← Zq

z2 = yi + csi mod q
z1, z2−−−−−−−−−→ gz11 gz22

?
= Ac

iBi

add (TATi, z1, z2, c) to DBTAT
RCTi←−−−−−−−−− RCTi = (TATi, ts, idR,

MACK(TATi, ts, idR))

(4) User shows RCT and collects refund on his RT when leaving system

RCTi−−−−−−−−−→ check validity of RCTi,TATi

z′1 = x′i + c′(idUsi) mod q
c′←−−−−−−−−− c′ ← Zq

z′2 = y′i + c′si mod q
z′1, z

′
2−−−−−−−−−→ g

z′1
1 g

z′2
2

?
= Ac′

i Ci

add (TATi, z
′
1, z
′
2, c
′) to DBRCT

r ← Z∗p
w←−−−−−−−−− determine refund w ∈ Zp−1

RT′ = RTr RT′−−−−−−−−−→

v = v + w, R = Rr mod p, RT = RT′′
RT′′←−−−−−−−−− RT′′ = RT′d

w

Fig. 3. Main parts of our a lightweight pre-payment system with refunds

– KGenRCT(1k2) is executed by T and returns a random k2-bit key K.

– GetRCT(U(TATi),R(idR,K)) is executed immediately after ShowTAT. R sends RCTi =
(TATi, ts, idR,MACK(TATi, ts, idR)) to U , where ts is a timestamp and idR is the reader’s
ID. Note that TATi does not have to be sent back to U .

– ShowRCT(U(RCTi, sk
U , si, x

′
i, y
′
i),R(K, pkTAT)) is executed between a user and a reader

at the exit turnstile. U sends RCTi to R who checks the MAC and the signature. If both
are valid, U proves ownership of TATi contained in RCTi using the randomness x′i and y′i
committed to by Ci. If the proof succeeds, R determines the refund for user U based on

19



the timestamp and idR contained in RCTi. TATi and a transcript of the proof are stored
in DBRCT for RCT re-use detection.

– IdentRCT(DBRCT) works as IdentTAT with respect to Ci.

4.3 RT Subsystem

Our realization of the RT system employs BLS signatures over bilinear groups in a new way
to allow for a secure and privacy-preserving aggregation of refunds. The basic ideas are (i)
to represent a refund value w as a w-times BLS signature SNd

w

RT, where SNRT is a unique
random serial number chosen by the TA and d is the TA’s secret BLS signature key and (ii)
let R do the sequential aggregation.

– KGenRT(1k3) is a probabilistic algorithm run by T to choose cyclic groups G,GT of prime
order p = Θ(2k3) with an efficiently computable non-degenerated pairing e : G×G→ GT .
It also chooses a random generator h ∈ G and an exponent d ∈ Z∗p. Let W be the set of

all possible single-trip refunds. Then, the public key is pkRT = (G,GT , p, e, h, (h
dw)w∈W )

and the secret key is skRT = d. Note that pkRT does not need to be stored on constrained
user devices assuming users do not verify RTs.

– GetRT(U(·),V(·)) is run by a user to receive a fresh blank refund token: V randomly
samples an element SNRT ∈ G which is not already contained in the RT database, DBRT,
a central database accessible to all vending machines, sends it to the user, and adds it to
this database. U sets RT = SNRT and the corresponding refund amount v stored on the
token to zero. Additionally, some variable R used to aggregate blinding factors is set to
1.

– GetRefund(U(R, v,RT, G, p),R(w, skRT)) is executed immediately after ShowRCT to add a
refund for a single trip to the user’s RT. First, R sends the value w to U , where w ∈ Zp−1

represents the refund amount in some unit (e.g., dimes). Then U computes a blinded
version of his refund token RT as RT′ = RTr, where r ← Z∗p, and sends it to R. The

reader signs RT′ by raising it to dw. Upon receiving RT′′ = RT′d
w

, U does not remove the
blinding factor using r−1 mod p but instead blindings are aggregated. That means, the
blinding variable R is updated as R = Rr mod p and the refund token as RT = RT′′ by U .
In this way, we can save one exponentiation per refund. Moreover, v is set to v = v + w.

– RedeemRT(U(R, v,RT,SNRT, G, p,V(skRT)) is run by U to redeem his refund token: U
computes a blinded version RT′ = RTr of his RT, where r ← Z∗p, and updates R =
Rr mod p. The refund token RT′, the serial number SNRT, the collected amount v, and
the aggregated blinding factor R are sent to V. V checks that SNRT is valid and has not
already been redeemed by looking up SNRT in DBRT. Then, V verifies whether the refund
amount is within the allowed range [0, p− 1] and if the signature is valid by checking

e(SNRRT, h
dv) = e(SNRT, h)Rd

v
= e(SNRd

v

RT , h) = e(RT′, h)

involving the pairing e. Finally, SNRT is marked as redeemed in DBRT.

5 Security of P4R

As discussed in Section 3.2, TA-security demands that an adversary cannot cheat the system
by receiving reimbursements, which exceed the overall deposit minus the overall fare, with-
out being identified during the double-spending checks. In order to show that P4R satisfies
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Definition 4 we prove that certain security properties hold for the individual subsystems and
then argue why this is sufficient for TA-security.

Security in the TAT subsystem. The TAT subsystem needs to guarantee that an adversary
cannot do more trips than the number of TATs he bought. In order to do this, he would have
to create a valid TAT by himself (at least one more than he legally withdrew), use a foreign
(eavesdropped) TAT, or use a TAT issued to him more than once. As the TAT system is
realized by a minor modification of Brands’ scheme, all these possibilities are ruled out by
the security of this e-cash scheme.

Lemma 1 (TAT Security). Consider an adversary A as in Definition 4 and let ` and
m denote the number of times BuyTAT∗() and Enter() was run successfully for users in C,
respectively. Let us assume that the DL assumption holds and Brands’ blind signature protocol
is restrictive and unforgeable. Then, with overwhelming probability it holds that m ≤ ` unless
IdentTAT() detects a double-spending by a user in C.

Proof Sketch. Ignoring the slight change we applied to the signature protocol in Figure 1,
the Lemma immediately follows from the assumption that Brands’ e-cash is secure, as m > `
corresponds to the case that more coins can be spent than have been legally withdrawn.

More precisely, due to the unforgeability of Brands’ scheme, A cannot have obtained
more than ` valid TATs. Assuming the DL problem is hard and using the soundness of
Schnorr’s identification protocol (which is executed in the scope of BuyTAT∗()) as well as
the soundness of the TAT registration protocol, each user (in C) can only buy TATs in his
name. That means, we can be sure that the public key gidU1 can only be used by a user who
registered with secret key idU . Furthermore, restrictiveness essentially guarantees that the
value Ai contained in each of these TATs is indeed of the form Ai = gidUsi1 gsi2 , where idU is
the secret key of the corresponding user and si is a serial number chosen by the user. The
soundness of Brands’ spending protocol ensures that if Enter() terminates successfully, the
user must have presented a valid TAT, known a representation of Ai in terms of g1 and g2,
and used a representation of Bi as blinding terms in the proof of knowledge. In particular, the
representation of Ai can be extracted in case we see two protocol runs involving two different
challenges but the same blinding terms. Now the DL assumption implies that it is infeasible,
given a foreign TAT (for which idU is not given), to find any representation of Ai, and thus
to run Enter() successfully with this TAT. Furthermore, it implies that it is infeasible given
a TAT for which one representation of Ai and Bi, respectively, is known to come up with a
second, different representation for Ai or Bi (cf. Corollary 8 in [8]). Thus, each time Enter()
is run for a particular TAT issued to a user, this user must prove knowledge of idU and si
and use the same fixed blinding terms xi and yi. Hence, in case the same TAT is used more
than once, idU can be extracted by means of IdentTAT() with overwhelming probability.

Finally, it is easy to see that the additional parameter Ci we added to Brands’ basic
scheme does not change anything. In particular, Ci cannot be used as a replacement for Bi
in the scope of a ShowTAT protocol run (with the goal to use a TAT twice) as the order of
the components in a TAT tuple is fixed due to the signature. ut

Security in the RCT subsystem. This system ensures that the user gets charged exactly as
much as his trip costs. In particular, it prevents an adversary from creating RCTs himself,
using the same RCT twice, or using a “foreign” RCT.
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Lemma 2 (RCT Security). Consider an adversary A as in Definition 4. Let m denote
the number of times Exit() was run successfully for users in C and let F1, . . . ,Fm denote the
authentic fares and F′1, . . . ,F

′
m the calculated fares thereby incurred.6 Assume that the DL

assumption holds, Brands’ blind signature protocol is restrictive, and the MAC used in the
RCT system is unforgeable. Then, with overwhelming probability it holds that Fi = F′i unless
IdentRCT() detects a double-spending by a user in C.

Proof Sketch. Note that a calculated fare, F′i, may only differ from the authentic fare,
Fi, for a trip if the RCT presented during Exit() contains a reader ID or a timestamp which
differs from the real entrance point or time, i.e., the data given as input to Enter(). Due to
the unforgeability of the employed MAC scheme, it is not possible for A to create fake RCTs
or modify the reader or timestamp information of a given RCT. Thus, in order to run Exit()
successfully, the RCT needs to be at least issued by a legitimate reader (via Enter()) to some
user for some trip. Now there are two cases we have to consider: Either the RCT has not
been issued to the particular user for which Exit() is executed (foreign RCT), or it is has been
issued to this user but not for the current trip (i.e., not during the preceding call of Enter() for
this user). Note that showing an RCT successfully also means to prove knowledge of idU and
si encoded in the TAT included in the RCT. Similar arguments as in the proof of Lemma 1
rule out the first case, using the soundness of Brands spending protocol and the assumptions
that the DL problem is hard and Brands’ signatures are restrictive. Furthermore, since in our
model an RCT has to be presented at the end of each trip, the second case implies that the
RCT has been used before by that user. Hence, by the security properties of Brands’ scheme
and the DL assumption, IdentRCT() will reveal the secret key of the double-spender in C with
overwhelming probability. ut

Security in the RT subsystem. The RT system guarantees that the sum of refund amounts
cashed in never exceeds the sum of refund values issued by the readers. In particular, it
prevents an adversary from forging RTs, redeeming an RT twice, or stealing refunds from
honest users.

Lemma 3 (RT Security). Consider an adversary A as in Definition 4. Let k′ and k denote
the number of times Exit() and RedeemRT∗() was run successfully for users in C, respectively.
Let R′1, . . . ,R

′
k′ be the corresponding single-trip refund values issued to them and R1, . . . ,Rk

be the total refund amounts redeemed by them. Let n denote an upper bound on the single-trip
refunds and assume that the n-Σ-Incremental DH assumption holds. Then with overwhelming
probability we have

∑k
i=1 Ri ≤

∑k′

i=1 R
′
i.

Proof Sketch. The adversary wins the RT security game if he manages to redeem a bigger
refund amount than the one issued to the group of malicious users. To accomplish this, A
could either (a) steal refunds from the group of honest users or (b) leverage the refunds issued
to malicious users.

Our model considers a passive adversary with regard to the set of honest users. Hence,
an RT owned by a user in C (i.e., originally issued to him), cannot be sneaked in into an
execution of Exit() of an honest user not in C to obtain his refund surreptitiously. Thus, A is

6 Note that in our model the numbers of authentic and calculated fares coincide: During each successful run
of Exit() exactly one fare is calculated and as we demand that there is exactly one preceding successful
execution of Enter(), there is also one authentic fare associated.
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not able to simply collect single-trip refunds on behalf of honest users. Moreover, A cannot
redeem an RT owned by a user who is not in C, provided that the DL assumption holds (which
is implied by n-Σ-Incremental DH).7 Basically, the reason is that A would have to provide
the correct (random) blinding factor R, which is used as an exponent, for the verifications
performed in the scope of RedeemRT (cf. Appendix A for a formal proof). Thus, A cannot
steal refunds from honest users.

Let us now discuss why A cannot receive a higher refund than the total one issued to
malicious users. First, A cannot redeem an RT (of a user in C) twice as the online double-
spending check ensures that each redeemed refund Ri must be associated with a different
random serial number. Hence, it is not hard to see that the only remaining possibility for
A to cheat the RT system is to claim a higher refund for an RT serial number. However,
this is infeasible under the Σ-Incremental DH assumption: Due to the checks performed by
the reader, in order to claim a refund Ri, a user needs to present the blinding factor Ri,

the serial number of the refund token SNRTi
, and the refund token RT′i such that RT′

R−1
i

i

equals the dRi-th power of SNRTi
, where SNRTi

is a random number chosen by the TA. To

see this, note that the verification equation satisfies e(SNRi
RTi

, hd
Ri ) = e(RT′, h) and Ri <

p − 1, and therefore e(SNRTi
, hd

Ri ) = e(RT′
R−1

i , h). Thus, we are in the setting of the n-Σ-
Incremental DH assumption where SNRT1 , . . . ,SNRTk

are the challenges. Signing with dR
′
i can

be interpreted as applying the Od-oracle R′i times. So the oracle would be applied
∑k′

i=1 R
′
i

times in total. The case
∑

Ri >
∑

R′i would violate the assumption. ut

Security in the overall system. Putting all pieces together, we can show the following Theorem
for P4R:

Theorem 1 (TA Security). Let us assume that the n-Σ-Incremental DH Assumption
holds, Brands’ blind signature protocol is restrictive and unforgeable, and the MAC scheme
used in the RCT system is unforgeable. Then P4R (with single-trip refunds bounded by n) is
TA-secure in the sense of Definition 4.

Proof Sketch. As in Definition 4, let U be the cost of one TAT and let ` and m denote
the number of times BuyTAT∗() and Enter()/Exit() was run successfully for users in C, i.e., `
is the number of bought TATs and m is the real number of trips. Furthermore, let F1, . . . ,Fm
denote the authentic fares, F′1, . . . ,F

′
m the calculated fares, and R′1 = U − F′1, . . . ,R

′
m =

U− F′m the corresponding refund values thereby incurred. Finally, by R1, . . . ,Rk we denote
the reimbursements paid by V in successful executions of RedeemRT∗() to users in C.

Then from Lemma 1, we know that m ≤ ` unless a TAT double spending has been
detected. Furthermore, we have

k∑
i=1

Ri

L.3
≤

m∑
j=1

R′j =
m∑
j=1

U− F′j
L.2
=

m∑
j=1

U− Fj
L.1
≤ `U−

m∑
j=1

Fj ,

unless a TAT or RCT double-spending has been detected (see also Appendix C). ut
7 Actually, A is able to redeem a blank RT (containing no refunds), preventing an honest user from later

cashing in his collected refunds. While this does not violate our security definition, it may be undesirable
as it constitutes a denial of service attack against honest users. Fortunately, they can easily be protected
with little overhead, e.g., by forcing users to do a PoK of a secret y when redeeming, where y is randomly
chosen by the anonymous user when obtaining an RT and hy is associated with this RT by the TA.
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6 User Privacy of P4R

We show that P4R is semi-honest private according to Definition 5. This property essentially
follows from the fact that all values that would allow to link transactions (such as user IDs,
refund tokens, etc.) are information-theoretically hidden.

Theorem 2 (Privacy). P4R is semi-honest private following Definition 5.

Proof Sketch. Let A be an honest-but-curious adversary as in Definition 5 and let U0 and
U1 denote the two honest users of the privacy game. We show thatA has a negligible advantage
in winning the privacy game by considering a simulation game which is independent of the
challenge bit b but perfectly indistinguishable from the real game. In this simulation game,
the challenger behaves exactly like the real challenger in the pre-challenge and post-challenge
phases but acts differently in the challenge phase: he assigns U0 as the left user and U1 as the
right user in a fixed manner and independent of the bit b. Clearly, the probability to guess b
in this game is 1

2 .

The challenge phase in the simulation game differs from the one in the real game if the
challenger instructs a different user, e.g., U0 instead of U1 or vice versa, to do a trip or
get/redeem a new refund token. The crucial observation is that the views generated by these
transactions for U0 and U1 are perfectly indistinguishable.

This is obvious for GetRT∗ and RedeemRT∗ as these transactions do not contain any
user-specific information whatsoever. Hence, U0 may perform these transactions on behalf
of U1 (or vice versa) in the challenge phase without the adversary taking notice. As the
action of obtaining and redeeming the same RT is linkable, our model forbids to do one of
these transactions in a phase where the user is non-anonymous by definition, i.e., pre- or
post-challenge phase, while performing the other in the challenge phase.

Also Enter/Exit views for U0 and U1 are perfectly indistinguishable: Let us ignore RCTs
and RTs for a moment. Then Proposition 1 guarantees that a particular Enter/Exit transcript
may belong to any user and any execution of BuyTAT∗.

It is easy to see that this also holds in the presence of RCTs which are computed over
TATs and do not contain any additional information about users. They can only be used to
link an Enter transcript with an Exit transcript which is intended and can be done anyway in
a 2-showable coins scheme. For this reason, our privacy experiment does not allow to execute
Enter in the pre-challenge phase and the corresponding call to Exit in the challenge phase or,
similarly, execute Enter in the challenge phase and run Exit in the post-challenge phase, as
the pre- and post-challenge phase is identifying.

Moreover, one needs to observe that also for the views generated by GetRefund an information-
theoretic statement similar to Proposition 1 holds, i.e., there are unique choices such that
the pre-/post-challenge phase view for a user and the challenge-phase view for, possibly, a
different user “can be made correspondent”. The main argument is that for any two observed
(randomized) refund tokens RT′1 and RT′2 (not necessarily from the same user) there is a
unique r ∈ Z∗p such that RT′2 = RT′1

r
.

Finally, as the adversary can link an RT issued during the pre-challenge and redeemed
during the post-challenge phase to a specific user, we need that the sum of refunds (which
is revealed to the adversary) collected during the challenge phase with this kind of RT to
be the same for both users. This allows a challenge phase view, i.e., a series of Exit calls
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for a particular (hidden) user involving a pre-challenge RT, to correspond to any of the two
RedeemRT∗ calls in the post-challenge phase.

Based on the arguments above, one can conclude that the real game and the simulation
game are perfectly indistinguishable. ut

7 Performance Evaluation

We evaluate P4R’s performance by estimating the storage space required on the user device
and the overall database requirements for the scheme. Furthermore, we present implementa-
tion results for a platform that can be seen as an approximation of future payment tokens.
Our evaluation of the execution time is limited to the user device, since the vending machines
and turnstiles can be equipped with powerful hardware, or connected to a back-end system
and efficiently execute complex algorithms. However, as argued in Section 1 payment devices
must be assumed to be low-cost and low-power devices, such as contactless smart cards or
RFID tokens.

The UMass Moo [47], a computational RFID tag designed at the University of Mas-
sachusetts, approximates hardware that could be used in future contactless payment devices.
It is passively powered, i.e., it harvests its energy from the RF-field generated by the reader
and can communicate over a distance of up to several meters. Its core is an MSP430F2618
microcontroller, an ultra-low power MCU from Texas Instruments. This microcontroller has
a 16-bit RISC processor, 8 KB of RAM and 116 KB of flash memory. Beneficial for the
implementation of the elliptic curve arithmetic is its memory-mapped hardware multiplier
supporting multiply-and-accumulate, i.e. taking 16-bit inputs and accumulating the 32-bit
results. While, as a prototyping device, the Moo is costly, it can be assumed that if rolled
out at a large quantity, its price would be in the range of a few dollars. That a high quantity
roll-out is a realistic scenario for payment devices for public transport has been shown with
the Octopus Card, where over 25 million cards are in circulation today. Furthermore, this
example shows that paying a small amount ($6.5 for an Octopus Card) for a payment device
is not a roadblock for its acceptance.

Our work optimizes and extends the implementation of Brands’ e-cash scheme presented
in [25].

7.1 Elliptic Curve Cryptography

The RT subsystem is based on BLS signatures over bilinear groups. In our setting only
vending machines need to verify BLS signatures, thus, we provide them with the BLS secret
key. Then, the complex pairing computation can be converted to a scalar multiplication on
the elliptic curve: instead of checking the pairing equation during RedeemRT, V only needs

to check whether RT′
?
= SNRd

v

RT holds.

We use the same curve for the group G underlying the TAT system and the group G
underlying the RT system, which leads to Zp=̂Zq. Assuming that an 80-bit security level
presents sufficient security for a micro-payment system, we base the scheme on secp160r1 [39],
which is based on a generalized Mersenne prime.

The Montgomery Powering Ladder [34] was used to implement the point multiplication
on the elliptic curve, thus making timing attacks more difficult. For the execution of the
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point multiplication, the input points were converted to Jacobian coordinates. Meloni found
that, when executing a point addition using Jacobian coordinates, the number of required
modular multiplications can be reduced, if the input points share the same Z-coordinate
[33]. Moreover, updating the Z-coordinate of the original point to make it the same as the
Z-coordinate of the resulting point can be done at no extra cost. With our implementation,
a point multiplication on the chosen elliptic curve can be executed in 5.6 million clock cycles
on the MSP430F2618, i.e., 350 ms at an operating frequency of 16 MHz.

7.2 Hash Functions and Message Authentication Code

During the setup, T decides on hash functions and a message authentication code. Hash
functions should accept as input elements in Gq and elements in Zq and produce as output
an element in Zq. To ensure that the output of the hash function lies in Zq we seek for a 160-
bit output instead of 161 bits. We implemented AES-hash [16] and based the hash function
on the 160-bit Rijndael block cipher Rijndael160. Furthermore, we re-use Rijndael160 to also
implement the block cipher-based message authentication code CMAC [18], thereby saving
code space.

7.3 Identification Protocol

As suggested in Section 4, we use Schnorr’s protocol whenever the user needs to prove knowl-
edge of his secret key. We implement non-interactive Schnorr signatures enabling a user on
the one hand to identify himself and at the same time to specify the number of TATs he
would like to withdraw in an authenticated fashion. The message m being signed specifies
the desired number of TATs together with date/time information.

7.4 Storage Estimation

In our implementation, G and G are cyclic groups generated by the points on the curve
secp160r1, spanned by the base point g of order q = p, where q is a 161-bit prime. We store
points in affine coordinates, thus requiring 40 B of storage for an element in G = G and 21 B
for a scalar in Zq = Zp. Based on these parameter choices, our storage space estimations for
P4R are summarized in Table 1. The total storage requirements on a user device to make 20
trips is at most 1× 0.06 KB + 20× 0.37 KB + 1× 0.12 KB + 1× 0.04 KB = 7.62 KB.

A user’s TAT key comprises of two elements, an element in G and one in Zq, which
requires 61 B of storage. This data is generated once, when the user opens an account and
will not be deleted for the lifetime of the user device. For each TAT 6 elements in G and
Zq have to be stored respectively. This sums up to 0.37 KB of data that has to be stored
for each TAT and can be deleted after using it. To collect refunds the user receives a refund
token and maintains some other associated data, consisting of two elements in G and two in
Zp, which requires 0.12 KB of storage. This data can be deleted when redeeming the refund.
Please note that refunds are accumulated using the 161-bit variable v, which leads to a more
than sufficiently large upper bound for the refund amount. During a trip, an RCT token has
to be stored. The TAT belonging to this RCT is already contained in the memory of the user
device and does not require any extra storage. We estimate ts and idR to require 10 B of
memory each, while storing MACK(TATi, ts, idR) requires 21 B, which adds up to additional
41 B of data.
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Table 1. Storage space estimation for payment data

Elements Storage Comments

pkU , skU idU , gidU
1 0.06 KB Stored once

TAT Ai, Bi, Ci, sig(Ai, Bi, Ci) 0.37 KB Can be deleted after use
si, xi, yi, x

′
i, y
′
i

RT RT,SNRT, R, v 0.12 KB One for a bundle of TATs

RCT MACK(TATi, ts, idR), idR, ts 0.04 KB Stored only during a trip

7.5 Database Estimation

Here we estimate the size of the four databases required for P4R. DBU stores identifying
information for each user along with his public key and is a comparably small database.
DBTAT and DBRCT keep track of the used TATs and RCTs of a user, in order to detect
double-spending. Here we store the values A, z1, z2 per TAT and A, z′1, z

′
2 per RCT, which

results in 82 bytes per TAT and RCT token, respectively. Additionally, T uses a database
DBRT to store all RTs. Per RT token a serial number is stored along with a boolean value,
indicating whether this RT has been redeemed, resulting in 41 bytes per RT.

Let us now consider an average ridership of 1.28 million passengers per day, which was
the case in the MBTA system in Boston in February 2013 [31]. Hence, DBTAT and DBRCT
grow by 105 MB per day or 38.3 GB per year, respectively. Assuming that on average a user
buys bundles of 10 TATs and uses a single RT token per bundle to collect the corresponding
refunds, 47 million RTs are issued per year. This results in a growth rate of 1.9 GB of storage
per year. Thus, the overall storage requirements for the databases involved in our system are
pretty modest. Also, note that the size of these databases can be limited by changing system
parameters on a regular basis or restricting the lifetime of TAT and RT tokens by attaching
expiration dates.

7.6 Implementation Results

We implement our scheme in C using the IAR Embedded Workbench IDE for TI MSP430.
Time-critical parts, i.e., multiplication and squaring in Zp have been sped up using assembly
language. Implementation results for the user side’s computation on the Moo are presented
in Table 2 for 4 MHz and 16 MHz. The maximum frequency supported by the MSP430F2618
is 16 MHz, but the microcontroller on the Moo is operated at only 4 MHz, due to power
constraints that result from powering it passively.

The results show that the protocols for entering the system (ShowTAT & GetRCT) can
be executed efficiently even on the chosen unoptimized prototyping device. We note that
ShowTAT & GetRCT and ShowRCT & GetRefund are considered the time-sensitive operations
as they happen during the actual transportation, e.g., at a turnstile during rush hour. The
execution time for receiving a refund (ShowRCT & GetRefund) is a little more time critical,
but could easily meet real-world requirements, when making use of dedicated hardware or
allowing for clock rates higher than 4 MHz. The most time consuming, but also less time
critical step is buying TATs (BuyTAT). Yet, buying TATs is done at vending machines, where
the device could be physically connected to the machine and hence additional power would be
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Table 2. Timing results for the user side’s computation of buying a TAT (BuyTAT), receiving a refund token
(GetRT), paying a fare (ShowTAT & GetRCT), getting a refund (ShowRCT & GetRefund) and redeeming an
accumulated refund (RedeemRT)

Cycle Count Execution time Execution time
@ 4 MHz in s @ 16 MHz in s

BuyTAT 83,567,483 20.89 5.22
GetRT 242 ≈ 0 ≈ 0
ShowTAT & GetRCT 35,657 0.009 0.002
ShowRCT & GetRefund 5,786,013 1.45 0.36
RedeemRT 5,519,689 1.38 0.34

available to power hardware accelerators, that can speed up the execution of an elliptic curve
point multiplication by an order of magnitude or more, resulting in a total execution time of
a second or less. Of course, this would increase the cost of a payment device. However, in the
case of millions of payment devices being rolled out, which can be assumed for metropolitan
areas, the cost of such dedicated hardware would be reasonably low.

7.7 Performance Comparison of P4R with Brands’ E-cash

In this section, we briefly compare the performance of P4R and a transportation payment
system directly built from Brands’ e-cash. As justified in Section 1.2, we consider Brands’
e-cash with only a single and small denomination value to allow for flexible pricing and avoid
the problem of overpayments and privacy-preserving change.

Table 3. Comparison of Brands’ e-cash for coins with a denomination of 10 cents and P4R (for MSP430
operating at 4 MHz when user enters/leaves and at 16 MHz when he charges his payment device)

Charging Enter Exit
device System System

Arbitrary trip in P4R 5.22 s 0.009 s 1.45 s
$1 trip with Brands’ e-cash 42.57 s 0.081 s -
$2.30 trip with Brands’ e-cash 98 s 0.19 s -
$4.90 trip with Brands’ e-cash 209 s 0.40 s -

Table 3 shows the performance of both schemes for different fares assuming Brands e-
coins with a denomination of 10 cents. Clearly, the runtime of withdrawal and spending in
Brands’ scheme grows linearly with the number of required coins and thus with the fare of
a trip, whereas in P4R we have a constant runtime independent of the fare. Last, assuming
an average fare of $2.50, the database for Brands’ scheme (required for double-spending
detection) would grow by 957.8 GB each year compared to 78.5 GB in total per year for the
P4R databases DBTAT, DBRCT and DBRT.

8 Extensions and Variations of the Basic Scheme

Discouraging the Theft of Readers. It is important to note that in our RT system;
readers act as money printing machines, where all readers share the same key to sign refunds.
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Hence, it is vital to protect readers from becoming compromised or stolen, e.g., by using
tamper-resistant hardware. We propose an additional measure to discourage the compromise
of readers, namely, we ensure that the sum of all issued refunds never exceeds the total
deposit for TATs. In this way, an adversary in possession of a stolen reader is able to get the
full deposit for a purchased TAT and thus a ride for free but is not able to print additional
money. This can be realized by binding the issuing of a fresh RT to the purchase of a bundle
of TATs. More precisely, if k TATs are purchased, each for the price of t cents, then the
serial number of the blank RT is associated with an upper bound of kt cents which is checked
when the RT is redeemed. In this way, we can improve the TA security of our basic system.
However, on the downside, a user also loses some privacy by this measure since redeeming
refunds is not anonymous anymore and the TA knows the number of addends a user’s total
refund amount is composed of. The right-hand side of Figure 2 illustrates the implications of
the latter by an example.

Reducing Information Leakage due to Disclosure of Refunds. In our basic
scheme, there exists a direct link between total refunds and trips: if an anonymous user
redeems a refund token worth $5, then, his sequence of trips is within the set of all possible
trips such that the issued refunds sum up to $5. Combinations of trips which cannot lead
to this amount are excluded, e.g, trips worth $2 and $3.10, respectively. Our goal now is to
make this link a little more “fuzzy” and enlarge the set of possible trips. Instead of forcing a
user to add the complete refund issued by a reader to a single refund token, we let the user
split up the refund amount into fractions of his choice which are then added to several of his
refund tokens.

For instance, a user could always have two RTs in parallel for collecting refunds. If he is
eligible for a refund of w cents, he chooses a number r between 0 and w uniformly at random
and tells the reader that he would like r cents to be added to the one RT and w−r to the other
RT (he needs to send blind versions of both RTs to the reader). Of course, this modification
leads to some overhead regarding storage, computation, and communication compared to the
basic scheme. In particular, the user device needs to blind multiple RTs to obtain a refund.
We leave a more thorough and formal analysis of the “gain” in terms of privacy achieved by
this approach as future work.

Encouraging the TA to Play Honest. For efficiency reasons, we assume in the basic
scheme that low-cost user devices do not verify whether the correct refund was received.
However, more powerful devices, e.g., NFC-enabled smart phones are able to store the large
keys and do the pairing-based signature verification. So in order to further encourage the
TA to play fair, we propose a hybrid system where parts of the users participate in the
transportation payment system using smart phones or where at least some authority regularly
verifies the correctness of issued refunds by means of more powerful devices.

In the following we describe some simple ideas which can be used to alleviate the storage
requirements by avoiding the need to store a key hd

w
for each possible refund value w on

the user devices. A first approach would be to let the TA sign all possible keys hd
w

using a
separate signature scheme and store the public key of this scheme on each user device. Then
a reader issuing a refund w could send hd

w
along with the corresponding certificate to the

user. Of course, this results in an additional signature verification for the user. Alternatively
or in addition readers may issue a refund of w =

∑k
i=0wiB

i cents, where B is some basis

(e.g., B = 10), 0 ≤ wi ≤ B−1, by sending the elements a0 = RT′d
w0B

0

, a1 = ad
w1B

1

0 , . . . , ak =
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ad
wkBk

k−1 to the user. To verify the signatures on the ai’s the user only needs to be given the

elements hd
wBi

for 1 ≤ w ≤ B − 1 and 0 ≤ i ≤ k. For instance, if we want to allow refunds
up to $9.99 where the refund unit is cents, we could set B = 10 and k = 2. This results in 27
public key elements (instead of 999) and 3 signatures per refund that need to be verified.

Ensuring Security in Case of an Aborted Entrance. Our security model demands
that every entry operation of a user is properly terminated by a corresponding exit operation.
In an actual system implementation this has to be ensured, e.g., by physical means. Although,
this is a reasonable requirement, many existing transportation infrastructures allow users
to abort an entry operation, i.e., to show a ticket but not entering the system with this
ticket. Thus, it would increase the practicality of P4R if the scheme could live without this
requirement. Aborting an entry operation in our scheme after GetRCT has already been
executed would leave the user with a spare RCT token. The essential problem is that the
user can now enter the system at some point with a second TAT and will be in possession
of two unused RCTs which both can be used to get (higher) refunds: the user can show the
spare RCT to get a higher refund on his first trip, leaving him with the second (real) RCT
as spare RCT, and the process can be repeated. Let us consider the following modification
of the system: We allow a user to only have a single RT at a time and bind this RT (and
the current balance) to an RCT at entrance. This can be realized by personalizing RTs (by
means of a PoK of skU ) and including the current (blinded) RT in the MAC computation.
The crucial observation is that this modification ensures that the spare and the real RCT
will both be bound to the same RT balance. Hence, either the spare or the real RCT are of
use but not both (more precisely, either the refund collected with the spare or with the real
RCT can be redeemed but not both). As the user paid twice the full deposit to obtain the
two RCTs but only does one trip (he aborted the other) and is only able to get one refund, he
will eventually pay the maximal fare for this trip, even if he is able to get the maximal refund
with the spare RCT. A more formal proof is left as future work. Note that this modification
also has some privacy implications as obtaining and redeeming refunds is not anonymous
anymore.

9 Conclusion

This paper considers privacy-preserving pre-payments with refunds for the transit domain.
We present a formal framework including security and privacy models for this type of system
as well as an efficient instantiation, called P4R, based on Brand’s e-cash and BLS signatures.
P4R improves the performance, reduces storage requirements, and allows for flexible pricing
as compared to a naive e-cash based solution. Additionally, we show the flexibility of our
approach by presenting several tradeoffs with respect to security, privacy, and efficiency.
Last but not least, a proof-of-concept implementation as well as implementation results and
estimates are presented.

While our implementation results suggest that the withdrawal protocol might be a bot-
tleneck with respect to our unoptimized prototyping device, we believe that this is not an
issue anymore for a dedicated payment device (featuring a crypto-coprocessor in contact
mode) which we can expect to be available in a large transportation system. An interest-
ing future work is also to improve the performance at the protocol level, e.g., by optimizing
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Brands’ withdrawal protocol or by replacing the whole pre-payment system with a more ef-
ficient instantiation than Brands’ e-cash. An ad-hoc approach in this direction might be to
assume that users do not need to check the validity of a TAT which immediately saves four
exponentiations.

Although, in this paper we limited our considerations to the case of subway systems, P4R
can easily be applied to toll collection systems as well. Here cars pass a toll booth at an
entrance and exit of a highway. While the range of prices might be larger, this could easily be
accounted for with different denominations of TATs. Further transportation systems, such as
buses and trains could also benefit from P4R, if they could be modified in a way that a user
is forced to pass a reader at the entrance and exit points of the transportation system. We
leave an adaption of P4R to make it more suitable for this domain, e.g., by leaving it up to
the user to show his RCT at the exit to get a refund, as an open problem.

Another interesting modification would be the extension of P4R to also allow for attribute-
based discounts, like a percental discount on the fare for elderly people and children for
example. While we believe this is not too hard to realize, it requires several extensions of the
security and privacy model (e.g., re-defining authentic trip costs), the system (e.g., in the
simplest case, introducing different types of TATs to represent attributes), and the proofs
(show that attributes cannot be misused to get higher refunds). In fact, to construct a fairly
complex and flexible attribute system with P4R, we could draw from ideas in [26] where
such a system is built on top of Brands’ e-cash. However, we would like to note that this
type of modification would also reduce the level of privacy since additional side information
is given to an adversary which helps to link trips (of anonymous users). Trips involving
different attributes may not form a plausible trip sequence. Hence, one has to be careful not
do introduce too many different attribute types and values.

Acknowledgements. We would like to thank Marc Fischlin for valuable input to the se-
curity and privacy proofs as well as the anonymous reviewers of FC 2013 for their helpful
comments.
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A Redeeming a Foreign RT implies Solving the DL Problem

Lemma 4. Let (G,GT , h, p, e, d) ← KGenRT(1k), W ⊂ Zp−1, and (hd
w

)w∈W be given. Let
OG be a challenge oracle, which when queried, returns a random SNRT ← G and Od be an
oracle which on input (RT, w), where w ∈W and RT may either be one of the values returned
by OG or a previous output of Od itself, returns RTr, RTd

wr for some fresh r ← Z∗p. Assume
there exists an adversary A that in time t and with probability ε outputs (SNRT, v, R,RT)←
AOd,OG(G,GT , h, p, e,W, (h

dw)w∈W ) such that

e(h,RT) = e(hd
v
, SNRRT) ,

with 0 < v < p−1, R ∈ Zp, and SNRT and RT are previous outputs of OG and Od, respectively.
Then there exists an algorithm B which solves the DL problem over G in time t′ ≈ t and with
success probability ε′ ≈ ε.

33

http://www.mbta.com/fares_and_passes/charlie/
http://www.mbta.com/fares_and_passes/charlie/
http://www.secg.org/collateral/sec2_final.pdf
http://msl1.mit.edu/furdlog/docs/2007-08-10_wbz_fastlane_tracking.pdf
http://msl1.mit.edu/furdlog/docs/2007-08-10_wbz_fastlane_tracking.pdf
https://web.cs.umass.edu/publication/docs/2011/UM-CS-2011-020.pdf
https://web.cs.umass.edu/publication/docs/2011/UM-CS-2011-020.pdf


Proof. Let (G,GT , h, p, e, d)← KGenRT(1k) be the output of the generator which is executed
by B. Let g, gx ∈ G, where x ← Z∗p, be an instance of the DL problem given as input to B.
The algorithm embeds a randomized instance of this problem into each output SNRT of OG
and SNrRT, SNd

wr
RT of Od.

More precisely, B computes (hd
w

)w∈W to setup a problem instance for A. Note that this
is possible as B generated d itself. Also, the algorithm B simulates the two oracles: When OG
is queried, it returns gy for some fresh y ← Zp. On input (gy, w) for OG, the algorithm B
returns ((gx)yz, (gx)yzd

w
for some fresh z ← Z∗p. Note that xz is uniformly distributed over

Z∗p and forms the value r chosen by the original oracle. For a different form of input to OG,
the algorithm behaves exactly like the original oracle.

Let us now consider an output (SNRT,RT, v, R) of A satisfying the equation

e(h,RT) = e(hd
v
,SNRRT)

⇔ e(h, (SN′RT)d
v′R′) = e(hd

v
, SNRRT)

⇔ e(h, (gy
′
)d

v′R′) = e(hd
v
, (gy)R)

⇔ e(h, g)y
′dv
′
R′ = e(h, g)yd

vR

⇔ y′dv
′
R′ ≡ ydvR mod p

As B simulates the oracles and RT as well SNRT are outputs by those oracles, the algorithm
also knows d, y, y′, v′, and the value R′′ in R′ = xR′′. Hence the discrete logarithm x can be
computed as x = (y′)−1ydv−v

′
(R′′)−1R mod p, where the right-hand side of this equation is

defined with overwhelming probability.

B Σ-Incremental DH in the Semi-Generic Group Model

In this section we analyze the hardness of our new problem in the Semi-Generic Group
Model (SGGM). This model has been proposed in [27] as a replacement for the Generic
Group Model (GGM) [44] to analyze problems in pairing-based settings. In the SGGM the
(elliptic curve) group G is modeled as a generic group, while the target group GT is given in
the standard model, i.e., algorithms may perform any computation over GT that is possible
(in the subgroup of a finite field). Compared to the GGM, the SGGM is closer to the standard
model and thus provides stronger evidence towards hardness assumptions in pairing-based
cryptography. We are able to reduce the Σ-Incremental DH assumption in this model to a
variant of the DL assumption over the target group. Note that this result also implies the
hardness of Σ-Incremental DH in the GGM since the considered variant of DL is intractable
if we model the target group as generic group.

In the SGGM, an algorithm A interacts with a semi-generic group oracle O, which com-
putes the group operation, evaluates the pairing, and in our case also generates signatures,
on behalf of A. The oracle O receives as input an instance of the problem, i.e., (hd

i
)0≤i≤n,

as well as the secret signature key d. It maintains a list E ⊆ G, with Ej denoting the j-th

entry of the list, which is initialized with (hd
i
)0≤i≤n. By [a] we denote the smallest index j

(also called encoding) such that Ej = a.8 The index [a] is undefined, if a 6∈ E . We may always

8 As in the original paper, we base the formalization of the SGGM on Maurer’s deterministic technique for
encoding elements [29], but our proofs can be adapted to Shoup’s random encoding technique [44] as well.
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assume that semi-generic algorithms only provide defined indices as input to the oracle. Dur-
ing initialization of the list, the corresponding indices pointing to the contained elements are
sent to the algorithm. The oracle implements the following procedures, which may be called
by A:

– GroupOp([a], [b]): This procedure takes as input two indices [a], [b], determines the group
elements a, b ∈ G looking into the list E , computes c = a · b ∈ G, appends c to E , and
returns [c].

– BilinearMap([a], [b]): This procedure takes as input two indices [a], [b]. It determines the
corresponding group elements a, b ∈ G and returns e(a, b) in the standard representation
of G (i.e., as finite field element).

– Rand(): This procedure samples some random r ∈ Zp, adds hr to E , and returns [hr].
– GetSig([a]): This procedure takes as input an index [a], determines the group element
a ∈ G, computes the signature ad, adds it to E , and sends [ad] to the algorithm.

After interacting with the oracle, A will eventually output m encodings [c1], . . . , [cm] and
integers v1, . . . , vm ∈ Zp, where m equals the number of calls to Rand(). Let hr1 , . . . , hrm

denote the m outputs of Rand() and u the number of calls to GetSig(·). It wins if ci = hrid
vi

for all i = 1, . . . ,m and v1 + · · ·+ vm > u.
Theorem 3 describes our hardness result in the model specified above. Note that the

reduction is efficient as long as n as well as the exponents vi chosen by A are relatively small
(i.e., polynomially bounded in log p). In our refund scheme, this can be satisfied by bounding
n (the maximal single-trip refund) and vi (i.e., the total refund amounts) by a constant which
is small compared to p. Admittedly, the reduction is not very tight and might be improvable.
On the other side, it might be inevitable for a lightweight public key system to build on a
potentially easier problem.

Theorem 3. Suppose there exists a semi-generic group algorithm A solving the n-Σ-Incremental
DH problem in time t, where A issues u′ ≥ 0 queries to GetSig and m ≥ 1 queries to Rand,
and with success probability ε. Let w′ be an upper bound on the integers vi, A outputs, and
set u := u′+n. Then there exists an algorithm B solving the 2u-DL problem over GT in time
t′ ≈ t+ Õ(w log p), where w = max(w′, u), and with success probability ε′ ≥ ε

m .

In order to prove the theorem above, we need the following two lemmas. Essentially, we
need the first lemma to show that Σ-incremental DH is a non-trivial problem in the sense
that there is no algorithm that solves the problem with non-negligible probability without
“looking” at the specific problem instance. The second lemma is used to show that a solution
to a non-trivial CDH type problem (in the SGGM) reveals a discrete logarithm.

For the first lemma we make use of the definition of straight-line programs over a polyno-
mial ring. Informally speaking, such a straight line program is a fixed sequence of operations
on its inputs without branching or looping. In our case straight-line programs are restricted
to add polynomials and multiply them by a fixed variable.

Definition 6. A (k1, k2)-restricted straight-line program (RSLP) S over Zp in inputs X1,
. . ., X` is a sequence of polynomials P−`, . . . , P0, P1, . . . , Pk1+k2 ∈ Zp[X1, . . . , X`], where
P−` = X`, . . ., P1 = X1, P0 = 1 and for all 1 ≤ i ≤ k1 + k2 we have that Pi = Pj ± Pk or
Pi = Pj · P−` for some j, k < i. Moreover, the operations ± and · have been applied in this
sequence k1 and k2 times, respectively.
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Lemma 5 can be shown by induction over k2.

Lemma 5. Let k1, k2, ` ∈ N and S be a (k1, k2)-RSLP in inputs X1, . . . , X`. For i = 1, . . . , `−
1 let Qi denote a monomial of the RSLP of form Qi = XiX

ei
` ∈ Zp[X1, . . . , X`], where

0 ≤ ei ≤ k2, whose degree ei is maximal with respect to all monomials of this form. Then it
holds that e1 + · · ·+ e`−1 ≤ k2.

Lemma 6 has been implicitly used and proven as part of the proof of Theorem 3 in [27].

Lemma 6. Let P ∈ Zp[X1, . . . , X`] be a non-zero polynomial and x1, . . . , x` ∈ Zp be el-
ements such that for some s ∈ {1, . . . , `} holds that Q := P (x1, . . . , xs−1) 6≡ 0 mod p
and P (x1, . . . , xs) ≡ 0 mod p. Furthermore, let M denote the set of all monomials of Q ∈
Zp[Xs, . . . , X`]. Then there is at least one non-zero monomial of the form aXes

s M ∈M, where
es > 0 and M = X

es+1

s+1 · · ·X
e`
` for some es+1, . . . , e` ≥ 0. Let aXes

s M
∗ be an arbitrary but

fixed monomial of this form. Then the univariate polynomial∑
a′X

e′s
s M∗∈M

a′Xe′s
s ∈ Zp[Xs]

is non-zero and xs is one of its roots.

Proof (Theorem 3). Given an instance of the 2u-DL problem, B’s task is to setup an instance
of the n-Σ-incremental DH problem in the semi-generic model in a way that it can leverage
a solution to the latter computed by A to solve the 2u-DL instance. In particular, B will play
the role of the semi-generic oracle. Since A is “blind” with respect to the internal details of
G, GT , e, Rand, and GetSig, we set G := GT , e(h, h) := h and simulate the aforementioned
operations on this structure.

We will now describe our reduction algorithm B: B takes as input an instance a0 =
h, a1 = hx, a2 = hx

2
, . . . , a2u = hx

2u
of the 2u-DL problem over GT . It then chooses i∗ ←

{1, . . . ,m+ 1}. If i∗ = m+ 1, then the unknown DL x is treated as the private key d of the
signature scheme, else x is used as the random choice ri∗ (see Rand below). Furthermore, B
chooses r1, . . . , ri∗−1, ri∗+1, . . . , rm+1 ← Z∗p where d is set to rm+1 if i∗ 6= m+ 1.

B sets up an n-Σ-incremental DH problem instance and simulates the semi-generic group
oracle O for A as follows:

– The internal list E is initialized with (hd
i
)0≤i≤n. The corresponding encodings are sent

out to A.

– GroupOp can be simulated since B knows how to perform the group operation on G = GT .

– Rand is simulated as follows: Let i denote the number of calls to Rand so far. Then hri+1

is added to E and [hri+1 ] is sent out.

– GetSig([b]) is simulated as follows: Let k ≤ u′ denote the number of times this operation
has been called so far. Let us consider the case i∗ = m+1 first. In this case, the input can
be written as b =

∏k+n
i=0 (hzi)d

i
, where d = x is unknown but the parameters n, k, and zi

are known to B. Since B is given hd
i

for 1 ≤ i ≤ n+k+ 1 (as part of the 2u-DL instance),
the signature on b can be computed as

∏k+n
i=0 (hd

i+1
)zi =

∏k+n
i=0 a

zi
i+1. Let us now consider

the case i∗ 6= m+ 1. In this case the secret key d = ri∗ has been chosen by B and thus it
can sign b as usual.
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– BilinearMap([b], [c]) can also be simulated perfectly: Let k denote again the number of
GetSig operations so far. First, we consider the case i∗ = m+1. Here one can easily show
that

e(b, c) = e(h
∑k+n

i=0 zid
i
, h

∑k+n
j=0 z

′
jd

j

) =
k+n∏
i=0

k+n∏
j=0

(hd
i+j

)ziz
′
j =

k+n∏
i=0

k+n∏
j=0

a
ziz
′
j

i+j

where zi and z′j are known to B. In other words, by knowing hd
i+j

for all 0 ≤ i, j ≤ k+ n
and 0 ≤ k ≤ u′ one can compute the pairing for all elements provided by A. Since B is
given a 2u-DL instance (where u = u′+n) this is ensured. It remains to consider the case
i∗ 6= m+ 1, i.e., ri∗ = x. Here we can write

e(b, c) = e(hz0+z1ri∗ , hz
′
0+z′1ri∗ ) = hz0z

′
0(hri∗ )z0z

′
1+z′0z1(hr

2
i∗ )z1z

′
1 = a

z0z′0
0 a

z0z′1+z′0z1
1 a

z1z′1
2

for unknown ri∗ and known z0, z
′
0, z1, z

′
1. So again we can compute the output of e since,

at least, we know a0, a1, a2.

Obviously, in this way B has set up a proper instance of Σ-incremental DH in the SGGM
and is able to perfectly simulate the oracle for this instance.

How can A’s output be leveraged? Let us assume that A has done m queries to Rand

during its run and let xi = hri denote the corresponding random elements. Then the algorithm
eventually outputs m encodings [c1], . . . , [cm] and integers v1, . . . , vm ∈ Zp. With probability
ε, we have ci = xd

vi

i = hrid
vi for all i = 1, . . . ,m and v1 + · · · + vm > u′. Note that every

element ci computable by A can be written as ci = hPi(r1,...,rm,d), where

Pi =

u∑
j=0

ajD
j +

u′∑
j=0

m∑
`=1

aj,`R`D
j ∈ Zp[R1, . . . , Rm, D]

is a polynomial known by B. So in other words, A wins if

Pi(r1, . . . , rm, d) = (RiD
vi)(r1, . . . , rm, d) mod p

for i = 1, . . . ,m and v1 + · · · + vm > u′. From Lemma 5 we know that for at least one i it
holds that Pi 6≡ RiDvi mod p. Clearly, it is easy for B to identify such a a polynomial.

To summarize, with probability ε, B obtains a polynomial∆ := Pi−RiDvi ∈ Zp[R1, . . . , Rm, D]
such that ∆ 6≡ 0 mod p and ∆(r1, . . . , rm, d) ≡ 0 mod p. This can be split into disjoint events
E1, . . . , Em+1, where for 1 ≤ j ≤ m Ej is defined by

∆(r1, . . . , rj−1) 6≡ 0 and ∆(r1, . . . , rj) ≡ 0

and Em+1 is defined by

∆(r1, . . . , rm) 6≡ 0 and ∆(r1, . . . , rm, d) ≡ 0.

Denoting the probability of event Ej by αj , it holds that ε = α1+· · ·+αm+1. Now assume that
event Ei∗ occurs, which happens with probability ε/m. In this case we know from Lemma
6 that we can extract an univariate polynomial ∆′ from ∆ such that x is a root of this
polynomial. The coefficients of this polynomial can be easily computed since the coefficients
of ∆ are known and r1, . . . , ri∗−1 have been chosen by B. By applying an efficient standard
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algorithm for computing roots of polynomials over Zp, such as [45, Algorithm 14.15], B can
find the wanted DL x by computing all roots of the polynomial ∆′. These are at most
w = max(w′, u) different roots which can be computed in time Õ(w log p) [45, Corollary

14.16]. Whether a root x′ equals x can be tested by verifying hx
′ ?

= a1. ut

C Overall Security Argument

In order to prove Theorem 1 we basically need to show that an adversary, A, as defined in
the TA security definition cannot achieve to get more reimbursements than the cost of TATs
withdrawn minus the real trip costs (unless a double spending has been detected).

Let R1, . . . ,Rk denote the claimed and granted refunds, R′1, . . . ,R
′
k′ denote the issued

single-trip refunds, let ` be the number of bought TATs, U the cost of a TAT, m the real
number of trips, and F1, . . . ,Fm the authentic fares of these trips. Then we need to prove
that: m ≤ ` (i.e., the adversary cannot do more trips than the number of purchased TATs)
and

k∑
i=1

Ri ≤ `U−
m∑
j=1

Fj .

Since we assume that in each of the m trips the protocols at the exit turnstiles have been
executed, a fare F′i and a corresponding refund R′i = U− F′i has been calculated for each of
these trips (i.e., k′ = m). From Lemma 3 we know that the RT system guarantees that

k∑
i=1

Ri ≤
m∑
j=1

R′j =
m∑
j=1

U− F′j

or, in other words A cannot cheat by claiming higher values on the RTs that he collected
(else he would have to break the

∑
-incremental DH assumption). Then, Lemma 2 yields that

unless an RCT double spending has been detected

k∑
i=1

Ri ≤
m∑
j=1

U− F′j =
m∑
j=1

U− Fj .

Thus, it is impossible for an adversary to create fake RCTs and use them to collect refunds
(or else he would be breaking unforgeability of the MAC scheme).

Finally, from Lemma 1 we know that unless a TAT double spending has been detected it
holds that m ≤ ` and thus

k∑
i=1

Ri ≤
m∑
j=1

U− F′j =
m∑
j=1

U− Fj ≤ `U−
m∑
j=1

Fj .ut
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