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Abstract. We introduce two related concepts for smooth actions of compact

Lie groups: The homogeneity rank is a simple numerical invariant of the ac-

tion. As one of our results we determine the precise range of this invariant
for isometric actions on compact Riemannian manifolds with positive sectional

curvature and exhibit special properties of the actions with maximal homo-
geneity rank. Atoms are special components of fixed point sets. They inherit
actions with the same cohomogenity and homogeneity rank as the original ac-

tion, but with trivial principal isotropy group. Other properties of the original
action like polarity are reflected in the atoms. We determine the atoms in
some interesting concrete cases. Not only for this purpose we give a detailed
treatise on the structure of fixed point sets, in particular in cohomogeneity one

manifolds.

Introduction

The most visuable measure for the amount of symmetry that is induced by a
smooth action of a compact Lie group G on a manifold M is the cohomogeneity
cohom(M,G) of the action, i.e., the codimension of a principal orbit or, equivalently,
the dimension of the orbit space M/G. The cohomogeneity measures how much
the action deviates from a transitive action.

In this paper we consider another numerical invariant of the action that we call
the homogeneity rank of the action. It is defined by

rk(M,G) := (rankG− rankH)− cohom(M,G)

= (rankG− rankH) + (dimG− dimH)− dimM,

where H denotes a principal isotropy group of the action. The homogeneity rank
has the two basic properties that rk(M,G′) ≤ rk(M,G) if G′ is a closed subgroup
of G and that

rk(M1 ×M2, G1 ×G2) = rk(M1, G1) + rk(M2, G2)

for direct products of actions.

Theorem A. For actions on manifolds of a fixed dimension n we have

rk(Mn, G) ∈ {−n,−n+ 2, . . . , n− 2, n}

and each of these values is attained for an effective action of a torus Tk on the
torus Tn. If G×Mn →Mn is effective and G is connected then:

• rk(Mn, G) = −n if and only if G = {1l}.
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• rk(Mn, G) = −n+ 2 implies that G = T1 or G = SO(3). In the latter case
the principal orbit is S2 or RP2.

• rk(Mn, G) = n − 2 implies that the action is transitive or that G = Tn−1

acts with cohomogeneity one. In the latter case the action is weakly equiv-
alent to the direct product of the standard action of Tn−3 on itself and a
cohomogeneity one action of T2 on a manifold N3.

• rk(Mn, G) = n if and only if the torus Tn acts transitively on itself.

Our motivation to introduce the homogeneity rank as an invariant of the action
comes from an inequality of Bredon (see [Br], Theorem IV.5.3) where the homo-
geneity rank (without having any name) appears on the right hand side:

Theorem (Bredon). If the fixed point set MT of a maximal torus T of G is
nonempty then dimMT ≤ − rk(M,G).

Note that we can substitute the fixed point set of a maximal torus by the fixed
point set of a generic element in G, i.e., an element that generates a maximal torus.
Thus, if rk(M,G) > 0 then generic transformations do not have fixed points. If
rk(M,G) = 0 generic transformations can only have isolated fixed points. Adding
a few more simple arguments we can derive the following statement on the Euler
characteristic of compact manifolds M :

Theorem B. If M is compact and if rk(M,G) ≥ 0 then

χ(M) = #MT =
∑

all G-orbits O

χ(O),

where MT denotes the fixed point set of a maximal torus T .

This theorem is a direct generalization of a classical result of Hopf and Samel-
son [HS] on the Euler characteristic of a homogeneous space. It also generalizes
the formula for the Euler characteristic of an even-dimensional cohomogeneity one
manifold (see [AP]).

Theorem B can also be read in the way that negative Euler characteristic ob-
structs actions with rk(M,G) ≥ −1 and positive Euler characteristic obstructs
actions with rk(M,G) ≥ 1. The following result shows that the geometric prop-
erty ‘positive sectional curvature’ (as opposed to nonnegative sectional curvature)
restricts the range of the homogeneity rank for isometric actions as well:

Theorem C. Let M be a compact Riemannian manifold with positive sectional
curvature. Then for any isometric action G ×M → M of a compact Lie group G
we have rk(M,G) ≤ 1.

• If rk(M,G) = 1 then all orbits G · p with rankGp = rankG− 1 are isolated
and such orbits exist. All other orbits G · p have rankGp ≤ rankG− 2.

• If rk(M,G) = 0 then all orbits G · p with rankGp = rankG are isolated
and such orbits exist. Their number is bounded from above by the Euler
characteristic of M .

Note that in any fixed dimension n the homogeneity ranks of the standard actions
SO(k)× Sn → Sn, k ≤ n+ 1, attain all values in {−n, . . . ,−2, 0} for even n and all
values in {−n, . . . ,−1, 1} for odd n. Hence, the inequality in Theorem C is optimal.

Theorem C is a generalization of the first part of a theorem of Grove and Searle on
the symmetry rank (i.e., the rank of the isometry group) of compact manifolds with
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positive sectional curvature (see [GS1]): In case of an effective torus action T×M →
M we have rk(M,T ) = 2 dimT−dimM and hence dimT ≤ [(dimM+1)/2]. In the
second part of their paper Grove and Searle classify the positively curved manifolds
with maximal symmetry rank: These are diffeomorphic to spheres, lense spaces, or
complex projective spaces.1 The generalization of this rigidity result would be the
classification of compact manifolds with positive sectional curvature and maximal
homogeneity rank, i.e., rk(M,G) ∈ {0, 1}. A solution of this problem is beyond the
scope of the present paper. The classification list would include all homogeneous
spaces of positive sectional curvature, the Eschenburg space E6, and the Eschenburg
and Bazaikin spaces in dimension 7 and 13 that admit cohomogeneity one metrics
with positive sectional curvature (cf. [GSZ]).

As a general tool for classification problems of this type we introduce the notion
of an atom of an action. Atoms are connected components of fixed point sets for
which the induced effective actions have trivial principal isotropy group and the
same cohomogeneity and homogeneity rank as the action on the ambient space.
The name ‘atom’ is motivated by the fact that if an action has trivial principal
isotropy group then there do not exist any components of fixed point sets for which
the induced actions have the same cohomogeneity as the action on the ambient
space. We will show that atoms exist for all actions and that the induced action
on an atom is polar if and only if the action on the ambient space is polar.

A similar and well-known concept is the reduction or the core of an action (see
[St], [GS2]). The advantage of atoms is that the induced actions have by definition
the same homogeneity rank as the action on the ambient space. In particular, the
dimensions of the atoms and the dimension of the ambient space have the same
parity. This property allows us, for example, to give a classification of the atoms
of isometric cohomogeneity one actions on even-dimensional Riemannian manifolds
with positive sectional curvature by Proposition 5.3. Since the induced actions on
these atoms are polar, a consequence of this result is that all cohomogeneity one
actions on even-dimensional manifolds with positive sectional curvature are polar.

Atoms are also useful to characterize the geometry or topology of concrete spaces,
particularly if a space (like a homogeneous space) is constructed together with the
action by means of a prospective orbit space, a Lie group, and closed subgroups
along the orbit space. In this case the atoms may turn out to be well-known
manifolds and may thus provide information about the original space. The main
problem here is to determine the structure of the atoms from the construction data
of the space. We will solve this problem in the case of cohomogeneity one manifolds.

As examples we will in particular consider a family of seven-dimensional coho-
mogeneity one manifolds that was recently constructed by Grove and Ziller (see
[GZ1]). The members of this family admit invariant Riemannian metrics of non-
negative sectional curvature. They can be indexed by two integers n, l ∈ Z with
even sum. Each space Pn,l is a principal S3-bundle over S4 whose Euler class is
given by the integer n(2l+1). Note that this integer classifies the principal bundle.

Proposition E. The atoms of each Grove–Ziller space Pn,l are all diffeomorphic
to the three-dimensional lense space L(|n|, 1) if n 6= 0 and to S1 × S2 if n = 0.

1Recent results on the Euler characteristics and fundamental groups of positively curved man-

ifolds with almost maximal symmetry rank are due to Rong (see [R2]).
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A consequence of this result is that the finitely many Grove–Ziller spaces Pn,l
with a fixed nonzero Euler class are distinguished by the fundamental groups of
their atoms, i.e., even though the spaces are equivalent as principal bundles, the
invariant metrics on them are essentially different. Another consequence is that the
spaces P0,l (which are all equivalent to S3 × S4 as principal bundles) do not admit
any invariant metric with positive sectional curvature.

An essential ingredient in the proofs of Theorem C and Bredon’s inequality be-
sides the slice theorem is the

Isotropy rank lemma. Let M be a sphere or, more generally, a Riemannian
manifold with positive sectional curvature. Then for any isometric action G×M →
M there is a point p ∈M where rankGp = rankG if M is even-dimensional and a
point p ∈M where rankGp ≥ rankG− 1 if M is odd-dimensional.

Actually, this statement also holds for locally smooth actions on rational homol-
ogy spheres and in this form it is stated by Bredon (see [Br], Theorem III.10.12).
For manifolds with positive sectional curvature the isotropy rank lemma has accord-
ing to our knowledge first been stated by Karsten Grove and Wolfgang Ziller (see
also the survey of Grove [Gr] from which we have taken the name of the lemma).

A large part of the paper consists of a detailed treatise on the structure of fixed
point sets in manifolds with actions of a certain cohomogeneity and/or homogeneity
rank. When we prove PropositionE we demonstrate how this structure can be
determined explicitely in cohomogeneity one manifolds.

The paper is organized as follows: In Section 1 we will combine the isotropy rank
lemma with the slice theorem in order to prove an inequality for the dimension of
the union M(H) of orbits of type (H) where H is any isotropy group of the action.
This inequality is a fundamental technical tool in this paper and should be of value
in other contexts as well. Section 2 is devoted to fixed point sets of isometries
in complete Riemannian manifolds and the properties of the induced action on
the components of the fixed point set. We will in particular prove the existence
of atoms in this section. Section 3 discusses the structure of components of fixed
point sets in cohomogeneity one manifolds. Among the examples given in this
section are the Grove–Ziller actions of PropositionE. In Section 4 we will deduce
Bredon’s inequality from the inequality for unions of isotypic orbits in Section 1 and
prove Theorem A and Theorem B. In Section 5 we will apply the preceding results
to manifolds of positive sectional curvature. In particular, we will prove Theorem C
and PropositionD in this section.

Many of the statements in this paper are formulated for isometric actions rather
than for smooth actions. Of course, this is no restriction since for any smooth
action of a compact Lie group on a (paracompact, Hausdorff) manifold there is an
invariant Riemannian metric.

This paper has its origin in the nonnegative curvature seminar at the University
of Pennsylvania in the academic year 1999–2000. The author would like to thank
the University of Pennsylvania for their hospitality, W. Ziller for organizing the
seminar and for many illuminating explanations, and especially A. Rigas for his
invaluable support and advice during and since that time. The author would also
like to thank U. Abresch for many useful discussions and comments.
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1. An inequality for unions of isotypic orbits

In this section we will consider isometric actions of a compact Lie group G on
a Riemannian manifold M . We will prove an inequality on the dimension of the
union M(H) of orbits of type (H) where H is any isotropy group of the action.

We first give the basic inequality that will be improved in Theorem 1.3 below by
self–application:

Lemma 1.1. Let G×M → M be an isometric action of a compact Lie group on
a Riemannian manifold M with principal isotropy group p.i.g. Then

rankGp − rank p.i.g. ≤ cohom(M,G)

for all p ∈M .

Proof. We will prove the theorem by induction on k = cohom(M,G). If k = 0 the
statement holds obviously. Let k > 0 and p ∈M be any point. Set H = Gp and let
V = νp(G·p) denote the normal space to the orbit G·p at p. It follows from the slice
theorem that cohom(V,H) = k and that p.i.g.(V,H) = p.i.g.(M,G). Now H acts
on the unit sphere S in V with cohomogeneity k− 1. By the induction assumption
we see that rankHv − rank p.i.g. ≤ k− 1 for all v ∈ S. By the isotropy rank lemma
there exists a v ∈ S with rankHv ≥ rankH − 1. Hence, rankH − rank p.i.g. ≤ k
as desired. �

Corollary 1.2. Let G × V → V be a representation of the compact Lie group G
on the real vector space V . Let H denote any isotropy group of this representation.
Then

dimV ≥ dimG− dimH + rankG− rankH.

Proof. It suffices to consider the case where H is a principal isotropy group. The
inequality follows immediately from the previous one since the isotropy group of
the zero vector is the full group G. �

We will now improve Lemma 1.1. Recall that the connected components of the
union M(H) of orbits with type (H) (i.e., the union of orbits for which the isotropy
groups are conjugate to the subgroup H ⊂ G) are submanifolds of M that are in
general not closed. Their tangent spaces are given by

TpM(H) = Tp(G · p) ⊕
(
νp(G · p)

)Gp
,(1)

where
(
νp(G · p)

)Gp denotes the fixed point set of Gp in the normal space νp(G · p)
to the orbit G · p. The dimension of the right summand in this decomposition is
the dimension of the local projection of M(H) to the orbit space M/G. It is clear
that if this projection has the full dimension of the orbit space M/G then G · p is
a principal orbit. The following theorem makes this more quantitative:

Theorem 1.3. Let G ×M → M be an isometric action of the compact group G
on a Riemannian manifold M . Then for any p ∈M we have

dim
(
νp(G · p)

)Gp ≤ cohom(M,G)− (rankGp − rank p.i.g.).

Hence, for the union M(H) of orbits of type (H) we have

dimM(H) ≤ dimM − (dimH − dim p.i.g.)− (rankH − rank p.i.g.),

where p.i.g. denotes the principal isotropy group of the action.
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Proof. Set H = Gp and V = νp(G · p) and let W be the orthogonal complement of
V H in V . Then p.i.g.(W,H) = p.i.g.(V,H) = p.i.g.(M,G). We apply Corollary 1.2
to the representation H ×W →W and get

dimW ≥ dimH − dim p.i.g.+rankH − rank p.i.g.

and hence

dimV H = dimV − dimW

= dimM − (dimG− dimH)− dimW

≤ cohom(M,G)− (rankH − rank p.i.g.).

The second inequality follows from the first one and from (1). �

2. Fixed point sets

We consider an isometric action G × M → M of a compact Lie group G on
a complete Riemannian manifold M . We are interested in the structure of the
components of fixed point sets

MK = {p ∈M | g · p = p for all g ∈ K}

where K is a subgroup of G. There are three basic facts that will be used fre-
quently below: First, we have MK = M K̄ where K̄ denotes the closure of K in G.
This fact will frequently be applied to subgroups of G that are generated by one
element. Second, the normalizer N(K) ⊂ G acts naturally on MK and hence its
identity component N0(K) acts naturally on each component of MK . Third, the
components of MK are complete totally geodesic submanifolds of M . Thus each
component is determined by a point and its tangent space at this point. For these
and other standard facts about fixed point sets we refer to [Br] and [Ko].

2.1. Transitive actions. If the action of the group is transitive then the following
result is known:

Theorem 2.1 (see [Br], Corollary II.5.7). Let K ⊂ H ⊂ G be compact Lie groups.
Then the orbit space of the N(K)-action on (G/H)K is finite.

The proof of this theorem is not constructive. Only in special cases the complete
structure of the fixed point set is given explicitely. For example, the fixed point set
of H in G/H is N(H)/H and the fixed point set of a maximal torus T of H in G/H
is

(
N(T ) ·H

)
/H ≈ N(T )/(N(T )∩H). In general, the components of (G/H)K can

differ even by dimension.

2.2. The infinitesimal structure of fixed point sets. Since each component of
a fixed point set MK is determined by a point and its tangent space at this point
it is sufficient to discuss the infinitesimal structure of the component. In order to
do this, we first give a technical definition: For any subset A ⊂M we set

A0 := {p ∈ A | A ⊂M(Gp) in some neighborhood of p}.

Note that M0 just denotes the union of principal G-orbits and that A ∩M0 ⊂ A0.

Lemma 2.2. The subset A0 is open and dense in A.
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Proof. The set A0 is open by construction. Since there are only finitely many orbit
types in a sufficiently small distance tube around any orbit, we can find a point
p ∈ A where the isotropy group is locally minimal (i.e., if there is a point q ∈ A
close to p such that Gq can be conjugated into Gp then Gq and Gp are already
conjugate) in an arbitrary small neighborhood of any point of A. By the slice
theorem we have A ⊂ M(Gp) in a neighborhood around p and therefore p ∈ A0.
Hence, A0 is dense. �

In any point p ∈ MK the action of K ⊂ Gp on TpM clearly leaves Tp(G · p)
invariant and therefore also the normal space νp(G · p). Hence,

TpM
K =

(
Tp(G · p)

)K ⊕
(
νp(G · p)

)K
.

We identify the two summands in this decomposition:

Lemma 2.3. We have(
Tp(G · p)

)K = Tp
(
N(K̄) · p

)
for all p ∈MK ,(

νp(G · p)
)K =

(
νp(G · p)

)Gp for all p ∈ (MK)0,

where νp(G · p) denotes the normal space to the orbit G · p.

Proof. The first identity follows immediately from Theorem 2.1. By definition we
have MK ⊂ M(Gp) in a neighborhood of any point p ∈ (MK)0, hence TpMK ⊂
TpM(Gp). This gives us the inclusion ‘⊂’ in the second identity. The converse
inclusion follows from K ⊂ Gp. �

2.3. Properties of the induced action. We will now derive some immediate
consequences of Lemma 2.3 and the inequality for unions of isotypic orbits in Sec-
tion 1.

Corollary 2.4. Suppose MK 6= ∅. Then for the action of N0(K̄) on each connected
component V of MK the following holds:

(1) The set V0 is a subset of the union of all principal N0(K̄)-orbits in V .
(2) For all p ∈ V0 we have

cohom
(
V,N0(K̄)

)
≤ cohom(M,G)−

(
rankGp − rank p.i.g.(M,G)

)
.

(3) We have cohom
(
V,N0(K̄)

)
= cohom(M,G) if and only if V ∩M0 6= ∅.

(4) If rankN(K̄) = rankG (e.g., if K̄ is contained in a maximal torus of G)
then

rk
(
V,N0(K̄)

)
≥ rk(M,G).

(5) If V ∩M0 6= ∅ then the natural map V/N0(K̄) →M/G is surjective.

Proof. It follows from the decomposition of TpMK in Lemma 2.3 that for any p ∈
(MK)0 the isotropy group acts trivially on the normal space. Hence, the orbit
N0(K̄) · p is a principal orbit in V .

The second and third statements are straightforward consequences of Theo-
rem 1.3 and the discussion preceding it. The fourth statement follows from the first
two since rankN(K̄) = rankG and rank p.i.g.

(
V,N0(K̄)

)
≤ rankGp for p ∈ V0.

The fifth statement can be deduced from Lemma 2.3 and Lemma2.12. �
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Proposition 2.5. Suppose V ∩M0 6= ∅ for some component V of MK and let W
denote any component of V ∩M0. Then the natural map φ : W/N0(K̄) → M0/G
is a Riemannian covering map with finitely many sheets.

Proof. First note that the fiber of the map φ is finite over each point inM/G because
of Theorem 2.1. Note also that W/N0(K̄) inherits a canonical Riemannian manifold
structure from W because W consists of principal orbits of the N0(K̄)-action on V .
Since the horizontal spaces of the two Riemannian submersions W → W/N0(K̄)
and M →M/G are identical, the map φ is a local isometry.

We now need the following lemma that can be found in Kleiner’s thesis [Kl]: If
c : [0, 1] → M is a shortest curve from the orbit G · p to the orbit G · q, then the
isotropy groups Gc(t) are constant for 0 < t < 1 and equal to the subgroup of G
that fixes all points of c. This means in particular, that M0 is G-convex in the sense
that a shortest curve between the orbits G · p and G · q with p, q ∈ M0 is entirely
contained in M0.

Using this lemma it follows as in Lemma2.12 that the composed map W ↪→
M0 → M0/G is surjective, and the proof that φ is a Riemannian covering map
proceeds as in the case of a local isometry between complete Riemannian manifolds.

�

If the map φ in the preceding proposition is an isometry (e.g., if M0/G is simply
connected) then its extension W̄/N0(K̄) → M/G is an isometry of metric spaces,
i.e., M/G is isometric to the closure of an open subset of V/N0(K̄).

Remark 2.6. Note that N0(K̄) is not necessarily the full subgroup of G that leaves
a component V of the fixed point set MK invariant. The full invariance group
I(V ) = {ψ ∈ G |ψ(V ) = V } is the normalizer of the subgroup F (V ) of all elements
of G that fix V pointwise. Since V is totally geodesic, F (V ) is easy to determine
in the tangent space of any point p ∈ V as the subgroup of the isotropy group Gp
that fixes all v ∈ TpV . Corollary 2.4 and Proposition 2.5 remain valid if N0(K̄) is
substituted by I(V ).

Remark 2.7. There is the important special case where K is generated by one
element ψ ∈ G, i.e., K = 〈ψ〉 = {ψk | k ∈ Z}. If ψ is contained in the identity
component G0 of G then K̄ is a finite cyclic group or a torus in G and the centralizer
C(ψ) of ψ in G is the union of all maximal tori of G that contain ψ. In particular,
C(ψ) is connected, N0(K̄) = C(ψ), and rankC(ψ) = rankG.

2.4. Atoms of actions. A useful method in the theory of transformation groups is
the reduction to trivial principal isotropy group. This reduction is done by passing
from the manifold M to its so called core or reduction (see [GS2], [St]). The core is
the closure of the fixed point set (M0)H in M where H denotes a principal isotropy
group for the isometric action G×M →M . The group N(H)/H acts on the core
with trivial principal isotropy group and the orbit space of this action is isometric
to M/G.

The disadvantage of this method is that it usually does not preserve the homo-
geneity rank and even not the parity of the dimension. For manifolds with positive
sectional curvature for example the parity of the dimension is very significant. For
this reason we suggest a different reduction to trivial principal isotropy group that
preserves the homogeneity rank and hence by Theorem A in particular the parity
of the dimension.
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We first give the natural definition for the object that we are seeking:

Definition 2.8. An atom of the G-action on M is a component V of a fixed point
set MK with V ∩M0 6= ∅ and such that the principal isotropy group of the action
I0(V ) × V → V acts trivially on V and rk(V, I0(V )) = rk(M,G). Here, I0(V )
denotes the identity component of the subgroup I(V ) of G that leaves V invariant.

Thus, if V is an atom and we pass to the effective action corresponding to
I0(V )× V → V then the principal isotropy group of this effective action is trivial.
Note that by Corollary 2.4 the action I0(V )× V → V has the same cohomogeneity
as the action G ×M → M . The orbit spaces of these two actions need not be
isometric. However, by Proposition 2.5 they are closely related.

Examples 2.9. The atoms of a compact homogeneous space G/H are compact Lie
groups whose rank is rankG− rankH. For any isometric torus action T ×M →M
the only atom is M itself.

We will now show that atoms always exist. In order to do this we fix a point
p ∈ M0 and construct a finite sequence of subactions Gj × Vj → Vj of the action
G ×M → M with p ∈ Vj . The isotropy groups of p for these subactions will be
denoted by Hj .

Algorithm 2.10. Set V1 = M and G1 = G0, the identity component of G. Until
Hj acts trivially on Vj proceed inductively in the following way:

• Choose an element ψj ∈ Hj that acts nontrivially on Vj , if possible from
the identity component of Hj .

• Let Vj+1 be the component of V ψj

j that contains p and let Gj+1 = I0(Vj+1)
be the identity component of the subgroup of G that consists of all elements
which leave Vj+1 invariant.

Note that Vj+1 is the component of M 〈ψ1,...,ψj〉 that contains p.

Lemma 2.11. Each sequence of subactions Gj × Vj → Vj obtained by Algo-
rithm2.10 has the following elementary properties:

(1) The length l of the sequence does not exceed dimM since dimVj+1 < dimVj.
(2) The inclusion maps Vj ↪→M are equivariant totally geodesic embeddings.
(3) cohom(Vj , Gj) = cohom(M,G) for all j.
(4) The orbit Gj · p is a principal orbit of each action Gj × Vj → Vj.
(5) rankGj = rankG and rankHj = rankH for all j.
(6) rk(Vj , Gj) = rk(M,G) for all j.
(7) The final submanifold Vl is an atom of the action G×M →M .

Proof. We will only prove the fifth statement, the other statements are obvious or
direct consequences of Corollary 2.4. Since Gj is connected, the centralizer CGj

(ψj)
of ψj in Gj is the union of all the maximal tori of Gj that contain ψj . Hence,
rankGj+1 = rankGj since CGj

(ψj) leaves Vj+1 invariant. If ψj is in the identity
component of Hj then by the analog reasoning we have rankHj+1 = rankHj . If
the identity component (Hj)0 of Hj acts trivially on Vj , then clearly (Hj)0 ⊂ Hj+1

and hence we have rankHj+1 = rankHj as well. �

In concrete cases atoms may be easier to find than with Algorithm 2.10. In
particular, it is often not necessary to calculate the full invariance groups.
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2.5. Polar actions. An isometric action G ×M → M of a compact Lie group
G on a complete Riemannian manifold M is called polar, if there is a properly
embedded submanifold (called section) that meets all orbits and intersects all of
them perpendicularly. A section is automatically totally geodesic.

The following lemma is a well-known partial converse:

Lemma 2.12. Let V be a complete totally geodesic submanifold of M with TpV =
νp(G · p) for some p ∈ V . Then V meets all G-orbits.

Proof. Consider any other orbit G · q and suppose that q is chosen such that a
minimal geodesic c between G · p and G · q that starts in p ends in q. Then
ċ(0) ∈ TpV by the first variation formula. Since V is totally geodesic it follows that
q ∈ V . �

Using our discussion of the infinitesimal structure of fixed point sets it is easy
to reprove the following simple criterion for polarity (see [PT], Corollary 5.5). We
will need this criterion in Section 5.

Proposition 2.13 (Palais-Terng). Let G ×M → M be an isometric action for
which rankG = rank p.i.g.(M,G), i.e., rk(M,G) = − cohom(M,G). Then the
action is polar.

Proof. Let T be a maximal torus of G. Then N(T ) · p is discrete for all p ∈ MT .
It follows from Lemma 2.3 that TpMT ⊂ νp(G · p) for all p ∈MT . Now let V be a
component of MT that has a nonempty intersection with the union of the principal
orbits M0 and let p ∈ V ∩M0. Since the orbit through p is principal, the isotropy
group Gp acts trivially on the normal space to the orbit. Hence, TpV = νp(G · p).
Therefore, V meets all orbits by the preceding lemma. �

The component V of MT is a section for the action G×M →M and it clearly
is an atom of the action G×M →M as well.

Examples of polar actions where the ranks of all isotropy groups are the same
are numerous. Among them are the actions of connected compact Lie groups on
themselves by conjugation.

We will now show that whether any given action is polar or not can be decided
by inspecting an atom of the action (or a more general fixed point set).

Proposition 2.14. Let G ×M → M be an isometric action and K be a closed
subgroup of G such that V ∩M0 6= ∅ for some component V of MK . Then the
action G×M →M is polar if and only if the action N0(K̄)× V → V is polar.

Proof. Suppose that Σ is a section of the action N0(K̄) × V → V that passes
through p0 ∈ V ∩M0. Then Tp0Σ = νp0(G · p0) by Lemma2.3 and hence Σ meets
all G-orbits in M by Lemma 2.12. For arbitrary p ∈ Σ we have

TpΣ ⊂ νp(N0(K̄) · p) ∩ TpV = νp(G · p)K ⊂ νp(G · p)
by Lemma 2.3 and hence Σ intersects all G-orbits perpendicularly.

Conversely, let Σ be a section of the action G ×M → M that passes through
p0 ∈ V ∩M0. Then

Tp0Σ = νp0(G · p0) = νp0(G · p0)K ⊂ Tp0V

and hence Σ ⊂ V since V and Σ are totally geodesic. The equation above also says
that the normal space to the orbit N0(K̄) ·p0 in V is equal to Tp0Σ. Hence, Σ meets
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all N0(K̄)-orbits in V and it is clear that it intersects all of them perpendicularly,
since it even intersects the G-orbits perpendicularly. �

Remark 2.15. Note that recent progress (cf. [HLO], [GZ2]) suggests to call an action
polar if there exists an immersed submanifold that meets all orbits perpendicularly.
Proposition 2.14 clearly remains true for this weakened notion of polarity.

3. Fixed point sets in cohomogeneity one manifolds

In this section we will show how the structure of the components of fixed point
sets in cohomogeneity one manifolds can be determined by the results of the pre-
vious section. We will only consider the most complicated typ of actions here,
namely those, where the orbit space is a closed interval. At the beginning, we will
summarize the facts that are relevant for this section and Section 5. As references
for these facts we refer to [Mo], [Nm], [Br], [AA].

3.1. Preliminaries. Let M be a compact Riemannian manifold and G be a com-
pact Lie group that acts isometrically on M such that M/G is a closed interval.
The orbits that project to the boundary points of the interval are singular or ex-
ceptional and the others are principal. Any shortest curve from one non-principal
orbit to the other extends to a geodesic R →M that intersects each orbit perpen-
dicularly. We will call such a geodesic a Cartan geodesic. The group G clearly acts
transitively on the set of Cartan geodesics. We fix a Cartan geodesic and denote the
principal isotropy group along this geodesic by H and the isotropy groups of two
adjacent intersection points p−, p+ with non-principal orbits by H− and H+. The
subgroups H− and H+ act transitively on the unit spheres S−, S+ in the normal
slices at p−, p+, respectively, and the groups NH−(H)/H and NH+(H)/H act sim-
ply transitively on the fixed point sets SH− and SH+ . Consequently, NH−(H)/H and
NH+(H)/H are isomorphic to S0 = Z2, S1, or S3, and there exist unique involutions
σ−, σ+ in these groups. The two involutions σ−, σ+ ∈ N(H)/H generate the Weyl
group, i.e., the group of elements of G that leave the Cartan geodesic invariant
modulo the group of elements of G that fix the Cartan geodesic pointwise. If the
Weyl group is the dihedral group Dk then the Cartan geodesic is an embedding
of a circle with length 2k diam(M/G) and k is the number of intersection points
with each non-principal orbit. If the Weyl group is the dihedral group D∞ then the
Cartan geodesic is an injective immersion of R. All singular isotropy groups along
the Cartan geodesic are given by Hj

− = ρjH−ρ
−j and Hj

+ = ρjH+ρ
−j where j ∈ Z

and ρ := σ+ ◦ σ− is a primitive rotation/translation in the Weyl group.
The manifold M is the union of the two closed distance tubes M− and M+

around the two singular orbits with radius r = diam(M/G)/2. The two parts M−
andM+ intersect in their common boundary, i.e., in the principal orbit that projects
to the midpoint of the interval. By the slice theorem M− and M+ are equivariantly
diffeomorphic to G ×H− D− and G ×H+ D+ where D− and D+ denote the disks
with radius r in the normal slices at p− and p+. The identification between the two
boundaries G×H− S− and G×H+ S+ coming from M is given by [g, v−] ∼ [g, v+]
where v− denotes the tangent vector of the fixed Cartan geodesic at p− and v+ the
negative tangent vector at p+.

Now let G be a compact Lie group G and H ⊂ H−,H+ ⊂ G three closed sub-
groups such that H−/H and H+/H are spheres of dimension l−, l+, respectively.
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From the classification of transitive actions on spheres it follows that there are
unique orthogonal representations H− × Rl−+1 → Rl−+1, H+ × Rl++1 → Rl++1

such that the isotropy groups of some vectors v− ∈ Sl− , v+ ∈ Sl+ are H. If we
identify the boundaries of the two unit disk bundles G×H−D

l−+1
− and G×H+D

l++1
+

by an arbitrary equivariant diffeomorphism, i.e., by the map [g, v−] 7→ [g, nv+] for
some n ∈ N(H), then the equivalence classes (with respect to equivariant diffeomor-
phism) of the resulting cohomogeneity one manifolds correspond to the connected
components of the double coset space (see [Nm])

N(H) ∩N(H−) \N(H) /N(H) ∩N(H+).

In particular, the cohomogeneity one manifolds obtained by the glueing process do
not depend on the choices of v− ∈ (Sl−)H and v+ ∈ (Sl+)H .

In the following we will always associate to a tupel (G,H,H−,H+) as above
the manifold M that is obtained by the identification [g, v−] 7→ [g, v+]. It is easy
to see that there exist G-invariant metrics on M for which the curve given by
t 7→ [1l, tv−] ∈ G×H− D− for 0 ≤ t ≤ 1 and t 7→ [1l, (2− t)v+] ∈ G×H+ D+ extends
to a Cartan geodesic.

If G is connected and H = {1l} (i.e., if the manifold is an atom) then the
cohomogeneity one manifolds associated to (G, 1l,H−,H+) and (G, 1l,H ′

−,H
′
+) are

equivariantly diffeomorphic if and only if H ′
− is conjugate to H− in G and H ′

+ is
conjugate to H+ (or the same holds if H ′

− and H ′
+ are interchanged). This will

be used in the proof of Proposition 5.3. Note that the application of an external
automorphism of G to the tupel (G, 1l,H−,H+) induces a weak equivalence of the
associated manifolds.

3.2. The structure of components of fixed point sets. Let M be a compact
Riemannian manifold and G ×M → M be an isometric action such that M/G is
a closed interval. Let K ⊂ G be a subgroup with MK 6= ∅. By Corollary 2.4 the
group G̃ := N0(K̄) acts on any component V of MK either transitively or with
cohomogeneity one. In the first case, V is located in one of the two non-principal
orbits and the structure of V is clearly determined by G̃ and any of its isotropy
groups in V . In the second case V contains regular points, i.e., points in the union
M0 of principal G-orbits. We fix a point p ∈ V ∩M0. By Lemma 2.3 the totally
geodesic submanifold V contains the Cartan geodesic through p. Of course, this
geodesic is also a Cartan geodesic for the action G̃× V → V . Using Corollary 2.4,
we see that the points of the Cartan geodesic that are regular with respect to the
G-action are regular with respect to the G̃-action as well. However, singular or
exceptional points with respect to the G-action may become regular points for the
G̃-action, i.e., the orbit space V/G̃ can be larger than M/G. There are now two
different cases:

(1) There are non-principal isotropy groups along the Cartan geodesic with
respect to the G̃-action. In this case V can be reconstructed as described
above from G̃, the principal isotropy group H̃ = G̃ ∩Gp, and two adjacent
non-principal isotropy groups H̃− and H̃+.

(2) All points on the Cartan geodesic have the same isotropy group with respect
to the G̃-action. In this case the orbit space of the action G̃× V → V is a
circle, and V → V/G̃ = S1 is a fiber bundle with fiber G̃/H̃. These bundles
are classified by the components of NG̃(H̃)/H̃. The relevant component
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for V is determined by an element τ̃ ∈ NG̃(H̃)/H̃ which is given as follows:
Set k0 = inf{k ∈ N | ρk ∈ NG̃(H̃)/H̃}. If k0 <∞ then τ̃ = ρk0 . Otherwise,
τ̃ is the identity in G̃.

In the following examples we will only encounter the first case. However, it is
easy to see that the fixed point set of the whole principal isotropy group in each of
these examples is just a Cartan geodesic. The identity component of the normalizer
is the trivial group and the orbit space clearly is a circle.

3.3. Principal S3-bundles over S4. Grove and Ziller defined in [GZ1] a family
of seven-dimensional cohomogeneity one manifolds Pn,l (n, l ∈ Z with n + l even)
by the following construction data:

G = S3 × S3, H− = {(eip−θ, eiθ) | θ ∈ R} ∪ {(jeip−θ, jeiθ) | θ ∈ R},

H =∆{±1,±i,±j,±k}, H+ = {(ejp+θ, ejθ) | θ ∈ R} ∪ {(kejp+θ, kejθ) | θ ∈ R}.

Here p− = 2n + 2l + 1, p+ = −2n + 2l + 1 are both in 1 + 4 Z and ∆ denotes
the diagonal embedding. Grove and Ziller showed that each of these spaces is a
principal S3-bundle over S4 whose Euler class is given by the integer n(2l+ 1) and
that this integer classifies the type of the principal bundle.

Proposition 3.1. The atoms of each space Pn,l are all diffeomorphic to the three-
dimensional lense space L(|n|, 1) if n 6= 0 and to S1 × S2 if n = 0.

Proof. We consider the fixed point set of the transformation given by the element
(i, i) ∈ S3 × S3; the transformations given by (j, j) and (k, k) are treated similarly.
The identity component of the normalizer of the subgroup of S3 × S3 generated by
(i, i) is the group G̃ = {(eiθ1 , eiθ2) | θ1, θ2 ∈ R}. The principal isotropy group of the
action of G̃ along the Cartan geodesic is H̃ = ∆{±1,±i}. In order to determine
the singular isotropy groups we first have to calculate the singular isotropy groups
H0
− = H−, H0

+ = H+, H1
−, H1

+, H2
−, . . . of the S3 × S3-action along the Cartan

geodesic. The unique elements of order 2 in NH−(H)/H and NH+(H)/H are given
by σ− = (eip−π/4, eiπ/4) and σ+ = (ejp+π/4, ejπ/4), respectively. The composition
ρ := σ+ ◦ σ− corresponds to a rotation by 2π/3 if n is even and π/3 if n is odd.
Using this rotation we obtain:

H1
− = ρH−ρ

−1 = {(ekp−θ, ekθ) | θ ∈ R} ∪ {(iekp−θ, iekθ) | θ ∈ R},

H1
+ = ρH+ρ

−1 = {(eip+θ, eiθ) | θ ∈ R} ∪ {(jeip+θ, jeiθ) | θ ∈ R}, . . .

Since G̃ ∩H+ = G̃ ∩H1
− = H̃ are principal isotropy groups for the action of G̃ the

data of the component of the fixed point set is given by

G̃ = {(eiθ1 , eiθ2) | θ1, θ2 ∈ R}, H̃− = G̃ ∩H− = {(eip−θ, eiθ) | θ ∈ R},

H̃ = ∆{±1,±i}, H̃+ = G̃ ∩H1
+ = {(eip+θ, eiθ) | θ ∈ R}.

In order to determine the data of the corresponding effective action we identify G̃
with R2/(4Z)2. The torus that acts effectively is now given by the lattice Z (4, 0)+
Z (0, 4)+ Z (1, 1). This lattice is generated by the two vectors

( p−
1

)
and

(−4
0

)
. The

singular directions
( p−

1

)
and

( p+
1

)
are given by the coordinates (1, 0) and (1, n)

with respect to these two vectors. The result follows now from the classification of
three-dimensional cohomogeneity one manifolds by Neumann (see [Nm]). �
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If n+l 6= 0 (i.e., p− 6= 1) then the transformation given by (1, e2πi/p−) ∈ H− fixes
S3 × S1/{(eip−θ, eiθ)} ≈ S3 in the singular orbit G/H−. Analogously, if n − l 6= 0
(i.e., p+ 6= 1) then the transformation (1, e2πi/p+) ∈ H+ fixes an S3 in G/H+.

It is an interesting question for which of the spaces Pn,l there exists a trans-
formation that fixes an S3 in each of the singular orbits. With a few elementary
computations one can show that this is the case if and only if there exist two num-
bers m− ∈ Z r (Z · p−) and m+ ∈ Z r (Z · p+) such that m−

p−
+ m+

p+
∈ Z. If this

condition holds then the transformation given by (1, e2πim−/p−) has the desired two
components. An example is the space P5,−3 with p− = 5 and p+ = −15 where the
transformation given by (1, e2πi/5) is contained in H− and in H+. Note that for
any invariant metric on these spaces the S3 in the one singular orbit is contained
in the cut locus of any point of the S3 in the other singular orbit (see [Ko]).

3.4. Principal S3 × S3-bundles over S4. Grove and Ziller defined in [GZ1] also
a family of ten-dimensional cohomogeneity one manifolds. The members of this
family can be indexed by four integers n1, l1, n2, l2 where both n1 + l1 and n2 + l2
are even. Each space Pn1,l1;n2,l2 is a principal S3 × S3-bundle over S4. The type of
this principal bundle is classified by the two integers n1(2l1 + 1) and n2(2l2 + 1).
The construction data for the space Pn1,l1;n2,l2 is given by

G = S3 × S3 × S3,

H =∆{±1,±i,±j,±k},

H− = {(eip−θ, eiq−θ, eiθ) | θ ∈ R} ∪ {(jeip−θ, jeiq−θ, jeiθ) | θ ∈ R},

H+ = {(ejp+θ, ejq+θ, ejθ) | θ ∈ R} ∪ {(kejp+θ, kejq+θ, kejθ) | θ ∈ R}

where p− = 2n1+2l1+1, p+ = −2n1+2l1+1, q− = 2n2+2l2+1, q+ = −2n2+22+1
are all in 1 + 4 Z.

Proposition 3.2. The atoms of each space Pn1,l1;n2,l2 are all diffeomorphic to the
product T2×S2 if n1 = n2 = 0 and to the product S1×L(gcd(|n1|, |n2|), 1) otherwise.

Proof. We consider the fixed point set of (i, i, i) only. Analogously to the previous
proof the data of the component of the fixed point set is given by

G̃ = {(eiθ1 , eiθ2 , eiθ3) | θ1, θ2, θ3 ∈ R}, H̃− = {(eip−θ, eiq−θ, eiθ) | θ ∈ R},

H̃ = ∆{±1,±i}, H̃+ = {(eip+θ, eiq+θ, eiθ) | θ ∈ R}.

We identify G̃ with R3/(4Z)3. The torus that acts effectively is now given by the
lattice

Z (4, 0, 0) + Z (0, 4, 0) + Z (0, 0, 4) + Z (1, 1, 1).

This lattice is generated by the three vectors
( p−
q−
1

)
,

(−4
0
0

)
,

(
0

−4
0

)
. The singular

directions
( p−
q−
1l

)
and

( p+
q+
1l

)
are given by the coordinates (1, 0, 0) and (1, n1, n2)

with respect to this basis. We now use Parker’s classification of compact four-
dimensional cohomogeneity one manifolds (see [Pa]). If n1 = n2 = 0 then we can
use the classification list directly to see that the atom is T2 × S2. Otherwise, we
have to apply an automorphism of T3: Set n′1 := n1/ gcd(|n1|, |n2|) and n′2 :=
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n2/ gcd(|n1|, |n2|). Let a1, a2 be integers with a1n
′
1 +a2n

′
2 = 1. The automorphism

given by the matrix ( 1 0 0
0 a1 a2
0 −n′2 n′1

)
transforms the coordinates of the singular isotropy groups into the coordinates
(1, 0, 0) and (1, gcd(|n1|, |n2|), 0). �

3.5. The Berger space B7 = SO(5)/SO(3). The Berger space B7 is one of the
three exceptional homogeneous spaces where the normal homogeneous metric has
positive sectional curvature. The embedding of SO(3) into SO(5) is given by the
action of SO(3) on the traceless symmetric 3 × 3-matrices by conjugation. The
action of a standard SO(4) from the left has cohomogeneity one and if one passes
to the corresponding ineffective S3× S3-action then the cohomogeneity one data of
B7 is given by

G = S3 × S3, H− = {(e−3iθ, eiθ) | θ ∈ R} ∪ {(je−3iθ, jeiθ) | θ ∈ R},

H =∆{±1,±i,±j,±k}, H+ = {(ejθ, e−3jθ) | θ ∈ R} ∪ {(kejθ, ke−3jθ) | θ ∈ R}.

The Weyl group of this cohomogeneity one space is D3.

Proposition 3.3. The atoms of B7 are all diffeomorphic to RP3.

The proof of this fact is similar to the proofs above. If B7 is equipped with
the (up to scaling) unique normal homogeneous metric then the sectional curvature
pinching of B7 is 1/37 (see [El]) and the minimum of the sectional curvature is
attained on planes tangential to the atoms. The atoms inherit Berger metrics
with pinching 1/17. This can be seen in the following way: The Berger space can
equivalently be described as the quotient of Sp(2) by a maximal SU(2) (for example
the one of [El]). In this description, the cohomogeneity one atoms above are the
fixed point sets of the conjugation by i, j, or k. The centralizer of each of these
elements is a U(2) ⊂ Sp(2) which intersects with the maximal SU(2) in a common
circle. Hence, the isotropy groups of the transitive U(2)-action on the atoms are
cricles and the induced metrics are Berger metrics.

There are two more three-dimensional fixed point sets in B7: The transformation
given by the element (1, e2πi/3) fixes S3 × S1/{(e−3iθ, eiθ)} ≈ S3 in the singular
orbit G/H−. Note that this transformation does not have a fixed point in the other
singular orbit G/H+. If B7 is equipped with a normal homogeneous metric then the
minimum and the maximum of the sectional curvature of B7 are attained on planes
tangential to this fixed point set. Analogously, the fixed point set of (e2πi/3, 1) is
an S3 that is located in G/H+.

4. Implications by the size of the homogeneity rank

We will now derive Bredon’s inequality as a consequence of the inequality for
unions of isotypic orbits in Section 1 and the infinitesimal structure of fixed point
sets. We will then use Bredon’s inequaltity to derive properties of the action if the
range of the homogeneity rank attains certain values.

Theorem 4.1 (see [Br], Theorem IV.5.3). If the fixed point set MT of a maximal
torus T of G is nonempty then dimMT ≤ − rk(M,G).
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Proof. The inequality follows immediately from Theorem 1.3 and Lemma 2.3, since
N(T ) · p is discrete for p ∈MT . �

Lemma 4.2. For manifolds of fixed dimension n we have

rk(Mn, G) ∈ {−n,−n+ 2, . . . , n− 2, n}.

Proof. From the definition of the homogeneity rank it follows immediatly that −n ≤
rk(M,G) ≤ n. It is a well-known fact that for any compact Lie group dimG has the
same parity as rankG. This implies that rk(M,G) has the same parity as n. �

Lemma 4.3. If G×Mn →Mn is effective with rk(M,G) = n− 2k then

rankG ≤ n− k, rank p.i.g.(M,G) ≤ k, and cohom(M,G) ≤ k.

Proof. The effectivity of the action implies that G acts effectively on each principal
orbit. A consequence of Bredon’s inequality is that

dimG/H ≥ rankG+ rankH(2)

if the action of G on G/H is effective (see [Br], Corollary IV.5.4). Hence,

2 rankG− n ≤ rk(M,G) ≤ 2(dimG− dimH − rankH)− n

≤ n− 2 rankH
(3)

where H denotes the principal isotropy group of the action. �

It is now easy to prove Theorem A from the introduction. We will only explain
the most complicated case rk(M,G) = n − 2. In this case rankH ≤ 1. We see
from (3) that G acts transitively or with cohomogeneity one and that the latter
can only happen if rankH = 0. In the cohomogeneity one case it follows from
the definition of the homogeneity rank that dimG = rankG = n − 1 and hence
that G = Tn−1 and H = {1l}. These actions are easy to classify: If there are only
principal orbits then the action is equivalent to the direct product of the standard
action of Tn−1 on itself and a one dimensional manifold. If there are non-principal
isotropy groups then these determine the action up to equivalence. We can apply
an external automorphism of Tn−1 to move them into a standard T2-factor of Tn−1.
It follows from elementary considerations in the non-compact case and Neumann’s
classification list [Nm] in the compact case that all possible isotropy groups are
already attained for the direct products of the standard action of Tn−3 on itself
and a cohomogeneity one action of T2 on a manifold N3.

Theorem 4.4. If M is compact and if rk(M,G) ≥ 0 then

χ(M) = #MT =
∑

all G-orbits O

χ(O),

where T denotes a maximal torus of G.

Proof. We can assume that G is connected. If M is not orientable, we can lift the
action of G to the two-fold orientable covering space of M and the action of the
maximal torus will have twice as many fixed points as on M (see [Br], Chapter I).
Hence, we can assume that M is orientable.

Since MT = Mψ, where ψ ∈ T generates the torus, we see from Bredon’s
inequality that the isometry ψ is a Lefschetz map, i.e., it has only finitely many
fixed points. The Lefschetz number L(ψ) is equal to the number of fixed points (see
[Ko]). Since ψ is homotopic to the identity in G we have L(ψ) = L(id) = χ(M)
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and hence χ(M) = #MT . The same argument applies to the fixed point set of the
maximal torus T in each orbit, which proves the second part of the equation. �

The Euler characteristic of a homogeneous space G/H has first been determined
by Hopf and Samelson (see [HS]). They proved that the Euler characteristic is equal
to the number of fixed points of the left multiplication with a generic element in G.
If rankH < rankG then there are no fixed points and the Euler characteristic is
zero. If rankH = rankG then the fixed points are given explicitely by (N(T )/T )·H
and thus the Euler characteristic of G/H divides the order of the Weyl group, i.e.,
the Euler characteristic of G/T where T is a maximal torus.

Since rk(M,G) = rankG − rankH ≥ 0 for transitive actions, Theorem 4.4 is a
direct generalization of this classical result of Hopf and Samelson.

5. Manifolds with positive sectional curvature

In this section we will apply the preceding results to Riemannian manifolds with
positive sectional curvature.

5.1. Maximal homogeneity rank. We combine the inequality for unions of iso-
typic orbits with the isotropy rank lemma. Note that an orbit is called isolated if
there aren’t any orbits of the same type in a neighborhood of this orbit.

Theorem 5.1. Let M be a compact Riemannian manifold with positive sectional
curvature. Then for any isometric action G ×M → M of a compact Lie group G
we have rk(M,G) ≤ 1.

• If rk(M,G) = 1 then all orbits G · p with rankGp = rankG− 1 are isolated
and such orbits exist. All other orbits G · p have rankGp ≤ rankG− 2.

• If rk(M,G) = 0 then all orbits G · p with rankGp = rankG are isolated
and such orbits exist. Their number is bounded from above by the Euler
characteristic of M .

Proof. The isotropy rank lemma and Lemma 1.1 imply that rk(M,G) ≤ 1. If
rk(M,G) = 1 and rankGp ≥ rankG− 1 for some p ∈M then Theorem 1.3 implies

dim
(
νp(G · p)

)Gp ≤ cohom(M,G)− (rankGp − rank p.i.g.)

≤ cohom(M,G)− (rankG− rank p.i.g.)− 1 = 0.
(4)

This shows that G · p is isolated and that rankGp = rankG− 1 since equality must
hold throughout in (4). The case rk(M,G) = 0 is considered analogously. �

5.2. Positivity of the Euler characteristic. For the sake of completeness we
quote the following result from [PS]:

Theorem 5.2. Let M be a compact even-dimensional Riemannian manifold with
positive (nonnegative) sectional curvature and G×M →M be an isometric action
of a compact Lie group G with rk(M,G) ≥ −5. Then M has positive (nonnegative)
Euler characteristic.
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5.3. Cohomogeneity one manifolds. Our aim in this subsection is to show how
homogeneity rank and the notion of atoms give some structure to the classification
of compact cohomogeneity one manifolds with positive sectional curvature. This
classification is still open. Partial results exist (see [Se], [PV1], [PV2], [Ve]). So
far, a new manifold of positive sectional curvature has not been discovered by
cohomogeneity one methods. However, Grove, Shankar, and Ziller found many
interesting cohomogeneity one actions on the known examples (see [GSZ]).

Let M be a compact Riemannian manifold with positive sectional curvature and
G×M →M be an isometric action with cohomogeneity one. It follows from The-
orem 5.1 and from the definition of the homogeneity rank that −1 ≤ rk(M,G) ≤ 1.
We will discuss each of three cases separately. We refer to Section 3 for the required
facts about cohomogeneity one manifolds.

The case rk(M,G) = −1. In this case, dimM is odd, all isotropy groups have the
same rank, and the action is polar by Proposition 2.13, i.e., the Cartan geodesic is
closed. The only atom for such an action is a Cartan geodesic. An example for a
nontrivial action with rk(M,G) = −1 is the action of SU(3) on the unit sphere in
the traceless Hermitian 3 × 3-matrices by conjugation. In this case the principal
isotropy group is a maximal torus of SU(3) and the singular orbits are complex
projective planes.

The case rk(M,G) = 0. In this case, dimM is even, the rank of the principal
isotropy group is one less than the rank of G and at least one of the singular
isotropy groups has the same rank as G. The structure of the atoms is determined
by the following result:

Proposition 5.3. Let M be a compact even-dimensional Riemannian manifold
with positive sectional curvature, and let G be a compact connected Lie group that
acts isometrically with cohomogeneity one on M such that the isotropy group of the
principal orbits is trivial. Then the universal covering space of M is equivariantly
diffeomorphic to S2, S4, or CP2 with one of the following three actions:

(1) The standard action of SO(2) on S1 ⊂ R2 suspended to S2.
(2) The standard action of SU(2) on S3 ⊂ C2 suspended to S4.
(3) The standard isotropy action of SU(2) ⊂ U(2) on CP2.

In particular, the isometric action G×M →M is polar.

Proof. Note that if M is not orientable, we can lift the action of G to the two-
fold orientable covering space of M (see [Br], Chapter I), which is in this case the
universal covering space. Thus, it suffices to consider the case where M is simply
connected. Since the principal isotropy group is trivial the singular isotropy groups
H− and H+ have to be spheres, i.e., S0, S1, or S3. Because M is simply connected,
exceptional orbits cannot appear (see [Br] again). Hence, S0 = Z2 is excluded.
Since rk(M,G) = 0 we have rankG = 1 and hence G is SO(2) ≈ S1, SU(2) ≈ S3,
or SO(3). The possible combinations are now:

(1) G = SO(2), H− = SO(2), H+ = SO(2): This is the SO(2)-action on S2.
(2) G = SU(2), H− = SU(2), H+ = SU(2): This is the SU(2)-action on S4.
(3) G = SU(2), H− = SU(2), H+ = SO(2): This is the isotropy action on CP2.
(4) G = SU(2), H− = S1

1, H+ = S1
2: Theorem 4.4 implies that χ(M) = 4.

(5) G = SO(3), H− = S1
1, H+ = S1

2: Theorem 4.4 implies that χ(M) = 4.
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By a result of Hsiang and Kleiner [HK] any 4-manifold M of positive sectional
curvature with continuous symmetry has χ(M) ≤ 3. Hence, the forth and the fifth
case can be excluded. Note for the third case that all S1 in SU(2) are conjugate. �

It is easy to see that the manifolds in the fourth and the fifth case are CP2#−
CP2 and S2 × S2, respectively. Note that the isometric SU(2)-actions on all four
dimensional manifolds with nonnegative curvature are classified in the unpublished
parts of Kleiner’s thesis [Kl].

Since the action on all possible atoms is polar, all cohomogeneity one actions on
positively curved manifolds with rk(M,G) = 0 are polar, i.e., the Cartan geodesics
are closed.

The case rk(M,G) = 1. This is the most complicated but also most interesting
case. The dimension of M is odd, the rank of the principal isotropy group is two
less than the rank of G, the rank of one of the singular isotropy groups is one less
than the rank of G, and the rank of the other singular isotropy groups is at least
one less than the rank of G. The known examples are several actions on spheres,
the action on the Berger space B7 discussed in Section 3, and the cohomogeneity
one actions that exist on some of the Eschenburg and Bazaikin spaces (see [GSZ]).
Note that the Eschenburg spaces are atoms for the actions on the Bazaikin spaces.
A general classification of the atoms in the case rk(M,G) = 1 does not exist so
far. If the principal isotropy group is trivial, then rankG = 2. The manifolds on
which G = T2 acts with cohomogeneity one and trivial principal isotropy group
are classified (see [Nm]). For the other rank 2 groups we do not have an analogous
classification.
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