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SUMMARY

It is the aim to compute efficiently the deformations of the mechanical structures that are excited or
damped by piezoelectric actuators. They are treated as 3D structures to have much flexibility. Special
design of the finite element concept is required since the structures are thin walled and locking effects
have to be avoided. Although the computations are performed in the framework of 3-dimensional
elasticity, we use ideas from modern plate elements and mixed methods.
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1. Introduction

The piezoelectric effect is used in many modern mechatronic sensors, actuators as well as
sensor-actuator-systems. We will focus here on the use of the piezoelectric effect to generate
sound (e.g. piezoelectric loudspeaker) or to compensate mechanical vibrations by distributed
piezoelectric patches on thin walled bodies. Usually these bodies consists of mechanical parts
like plates or shells with a small curvature. It is the aim to efficiently compute the deformations
of the mechanical structures that are excited or damped by piezoelectric actuators.

In order to have enough flexibility we treat the mechanical as well as piezoelectric structure
as a 3-dimensional body in the framework of 3-dimensional elasticity. It is well known, that
finite element calculations require special design in order to exclude locking effects (as e.g. shear
locking), since the thickness is here a small parameter and we want to avoid finite elements
with polynomials of higher degree. The remedy is an appropriate softening of the shear term
of the stored energy. This can be done in the framework of the method of enhanced assumed
strains (EAS-method) or by selected reduced integration when the element stiffness matrix is
assembled. Our procedure will be motivated by recent developments for the Mindlin–Reissner
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2 D. BRAESS AND M. KALTENBACHER

plate by Arnold and Brezzi [1] as well as Chapelle and Stenberg [5]; see also [4]. We apply
selected reduced integration only to a portion of the shear term. The amount of the portion
is derived by a scaling argument. In this way we obtain a robust finite element treatment and
do not encounter zero-energy modes or checkerboard modes while caring for the elimination
of locking.

The rest of this paper is organized as follows. In Sec. 2 we describe the governing equations
for piezoelectricity and discuss their finite element (FE) formulation. The theory of our new
procedure to obtain an approximate softening of the shear term is presented in Sec. 3. It is
followed by a brief section describing some practical aspects for the computer implementation.
Section 5 provides a detailed discussion of numerical results, where we compare our method
with the Mindlin–Reissner plate bending element of Hughes and Tezduyar [7] and the Mindlin–
Reissner plate bending element of Simo and Rifai based on the method of enhanced assumed
strains (EAS method) [11]. In addition, we investigate the dynamic behavior of mechanical
structures and layered mechanical-piezoelectric structures. To demonstrate the capability of
our method for piezoelectric structures we present in Sec. 5.6 the numerical computations for
a piezoelectric loudspeaker.

2. Governing PDEs and FE-Formulation

The piezoelectric transducing mechanism is based on the interaction between the electric
quantities, electric field intensity E and electric induction D, with the mechanical quantities,
i.e., the (mechanical) stress tensor [σ] and strain tensor [S]†. By applying a mechanical
load (force) to a piezoelectric transducer (e.g., piezoelectric material with top and bottom
electrode), one can measure an electric voltage between the two electrodes (sensor effect).
This mechanism is called the direct piezoelectric effect, and is due to a change in the electric
polarization of the material. The so-called inverse piezoelectric effect is obtained by loading
a piezoelectric transducer with an electric voltage. Therewith, the transducer will show
mechanical deformations (actuator effect), and the setup can be used, e.g., in a positioning
system.

The material law describing the piezoelectric effect is given by

σ = [cE ]S − [e]T E , (1)
D = [e]S + [εS ]E . (2)

Since the stress tensor [σ] as well as the strain tensor [S] are symmetric, it is convenient to
write them as vectors of six components (the three normal and the three shear components)
using Voigt notation and denote them by σ and S [3]. The material tensors [cE ], [εS ], and
[e] appearing in (1) and (2) are the tensor of elastic modulus, of dielectric constants, and of
piezoelectric moduli, respectively. The superscripts E and S indicate that the corresponding
material parameters have to be determined at constant electric field intensity E and at constant
mechanical strain S, respectively.

†We denote the mechanical strain tensor by S, since ε is reserved for the electric permittivity within the context
of piezoelectricity
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3D-FINITE-ELEMENT-FORMULATION FOR THIN STRUCTURES 3

For deriving the coupled PDEs for piezoelectricity, we start at Navier’s equation

fV + div σ = ρü , (3)

describing the mechanical field. In (3) fV denotes any mechanical volume force, ρ the density
and u the mechanical displacement. Expressing σ by (1) and in-cooperating the strain–
displacement relation

S = ∇su = Bu (4)

with the differential operator B in Voigt notation

B =

⎛
⎜⎜⎝

∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0

⎞
⎟⎟⎠

T

, (5)

results in
ρü − BT

(
[cE ]Bu − [e]T E

)
= fV . (6)

Since piezoelectric materials are insulating, i.e., they do not contain free-volume charges,
and we do not have to consider any magnetic field, the electric field is determined by

∇ · D = 0 , (7)
∇ × E = 0 . (8)

According to (8) we can express the electric field intensity E by the gradient of the scalar
electric potential Ve

E = −∇Ve = −B̃Ve B̃ = (∂/∂x, ∂/∂y, ∂/∂z)T . (9)

By combining these results with (2) we obtain

BT
(
[e]Bu − [εS ]B̃Ve

)
= qe . (10)

Therefore, the describing partial differential equations for linear piezoelectricity read as

ρü − BT
(
[cE ]Bu + [e]T B̃Ve

)
= fV (11)

BT
(
[e]Bu − [εS ]B̃Ve

)
= 0 . (12)

By applying a standard FE-formulation, we obtain the following semi-discrete Galerkin
formulation(

Mu 0
0 0

) (
ü

V̈e

)
+

(
Cu 0
0 0

) (
u̇

V̇e

)
+

(
Ku KuV

KT
uV −KV

) (
u
Ve

)
=

(
0
f

q

)
. (13)

In (13), the matrices Mu and Ku denote the mechanical mass and stiffness matrix, KV the
electrostatic stiffness matrix, KuV the coupling matrix, and f

q
the mechanical force vector.

The mechanical damping matrix Cu is computed according to the Rayleigh damping model
via a combination of the mass matrix Mu and the linear stiffness matrix Ku

Cu = αMMu + αKKu (14)
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with αM the mass proportional and αK the stiffness proportional damping coefficients [6].
For the time discretization, Newmark’s algorithm as described in [6] is used. In the frequency
domain we obtain according to (13)(

Ku + jωCu − ω2Mu KuV

KT
uV −KV

) (
û

V̂e

)
=

(
0
f̂q

)
(15)

with ω = 2πf the angular frequency. For a detailed discussion we refer to [8].

3. Theoretical Aspects

The deformation of the body on which the piezoelectric material is mounted, will be computed
in the framework of 3-dimensional elasticity. We consider a 3-dimensional body with thickness
2t. Since t is small in applications of interest, we take special care for avoiding locking effects.
To this end we will compare the trial functions later with those of a well-established Mindlin–
Reissner plate model and justify the procedure.

The finite element functions with quadratic polynomials in z are written with orthogonal
polynomials in z

ui(x, y, z) = Ui(x, y) + zθi(x, y) +
(
z2 − t2

3
)
φi(x, y), i = 1, 2, 3. (16)

For convenience, we also write x1 = x, x2 = y and x3 = z when evaluating the strains
Sik = 1

2 ( ∂ui

∂xk
+ ∂uk

∂xi
). In particular,

Si3 =
1
2

(
θi +

∂U3

∂xi

)
+

1
2
z

(
2φi +

∂θ3

∂xi

)
+

1
2
(z2 − t2

3
)
(

∂φ3

∂xi

)
, i = 1, 2. (17)

By integrating over the thickness we obtain∫
S2

iidz = 2t

(
∂Ui

∂xi

)2

+
2
3
t3

(
∂θi

∂xi

)2

︸ ︷︷ ︸
MR-plate

+
8
45

t5
(

∂φi

∂xi

)2

, i = 1, 2,

∫
S2

12dz =
1
2
t

(
∂U1

∂x2
+

∂U2

∂x1

)2

+
1
6
t3

(
∂θ1

∂x2
+

∂θ2

∂x1

)2

︸ ︷︷ ︸
MR-plate

+
2
45

t5
(

∂φ1

∂x2
+

∂φ2

∂x1

)2

,

∫
S2

33dz = 2t θ2
3 +

8
3
t3 φ2

3,

∫
S2

i3dz =
1
2
t

(
θi +

∂U3

∂xi

)2

︸ ︷︷ ︸
MR-plate

+
1
6
t3

(
2φi +

∂θ3

∂xi

)2

+
2
45

t5
(

∂φ3

∂xi

)2

i = 1, 2.

The terms that are encountered in Mindlin–Reissner plate theory are emphasized by the mark
’MR-plate’.

The internal stored energy of the solution is proportional to t3. We avoid locking if the terms
with a factor proportional to t do not spoil the finite element solution. The terms with U1
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3D-FINITE-ELEMENT-FORMULATION FOR THIN STRUCTURES 5

and U2 are easily analyzed. It follows from Korn’s inequality that the gradients of U1 and U2
contribute to the energy if they are not small. Therefore, U1 and U2 must be small of order t,
since the contribution to the internal stored energy is of order t3. Obviously the same holds
for θ3. This is consistent with the fact that these terms are set to zero in plate theory.

The critical terms are the shear terms with Si3. The terms θi and ∂U3/∂xi are not small
while the sum is small of order t. This property cannot be modeled by standard finite elements
with polynomials of low degree, and the first term in the integral with Si3 is relaxed in finite
element computations. It is our aim to avoid a rude softening by refering to recent treatment
of Mindlin–Reissner plates.

We first consider the case that only polynomials are chosen that are linear in z, i.e., we have

φi = 0, i = 1, 2, 3,

in (16). In this case the shear term is softened as follows. The full integral is incorporated with
a factor

α =
t2

h2 + t2
(18)

while selected reduced integration is applied to the rest of the shear term, i.e., to the portion

β = 1 − α =
h2

h2 + t2
. (19)

Specifically, quadrature formulas with 1 point in the x, y-plane are used. This procedure is
equivalent (on parallelograms) to incorporating only the integral of the squared mean-value of
θi + ∂U3/∂xi on each element. The idea to apply a softening only to a portion of the shear
term in order to save coercivity was first suggested by [1]. The factors α and β in (18) and (19)
are fixed following the results in [5]. The shear term is a singular perturbation in comparison
to the other terms of the internal stored energy. The importance of keeping the coercivity and
not reducing the full term was discussed in [4, Section 6.6] in the framework of saddle point
problems with penalty terms. So our approach differs from the typical application of the EAS
concept; see e.g. [10].

The correct softening is more involved if quadratic polynomials in z are present. Only the
first term in

∫
S2

i3 is to be reduced, but the second term must not. This can be realized by
different implementations.

The most direct way is to keep the three terms in
∫

S2
i3 separated during the assembling of

the stiffness matrix and the whole finite element computation. So it is possible to apply the
selected reduced integration only to the critical term, i.e., the first one.

An alternative is a separation of the even and the odd functions in z, and it goes with
φ3 = 0. Recalling (17) we see that a softening of the even part of Si3 is required. Note that

+t∫
−t

S2
i3(x, y, z)dz = 1

2

+t∫
−t

( Si3(x, y, z) + Si3(x, y,−z) )2 dz

+ 1
2

+t∫
−t

( Si3(x, y, z) − Si3(x, y,−z) )2 dz.

(20)

A separation of the first and the second term is performed here via a symmetry argument.
Only a portion of the even part (with the weight β) is incorporated into the selected reduced
integration. This method will be applied to our computational scheme as described in Section 4.
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6 D. BRAESS AND M. KALTENBACHER

A third possibility provides the EAS method (more precisely selected EAS method). We
replace the standard trial functions for Si3 by

Si3 + Ŝi3

with the enhanced strain being in each element of the form Ŝi3 = a(x−xc)+b(y−yc), where xc

and yc are the (local) coordinates of the center of the element. The mean value of the enhanced
strain in each element is zero, and yields an appropriate softening. Since it does not depend
on z, it acts only on the even part of the shear term. – Although one finds in the literature
investigations with the EAS method applied to the complete shear term, the extension to a
portion with a given factor is straight forward.

Now we can justify the numerical procedure by referring to arguments concerning dimension
reduction, but here in the opposite direction. As was shown in [9,12] and the references therein,
the plate models are exact of order t or t1/2. (The latter occurs if boundary layers are present.)
Since the finite element functions (16) contain more trial functions than the plate models [1,5],
our finite element solutions in 3D produce even smaller errors. In particular, locking effects are
avoided by a procedure which requires less softening than is found in most EAS applications.

Fortunately there are no point loads in mechatronic systems with piezoelectric actuators.
Otherwise we would have to compare with MITC elements (see e.g. [4, p. 328]) or
nonconforming elements in [2] as was pointed out in [9].

4. Practical Aspects of the Computer Implementation

As described in the previous section, the shear components are proportional to the thickness t
of the structure, whereas the bending terms scale with t3. We decompose the material tensor
[cE ] with the scaling from (18) and (19) as follows.

[cE ] = [cE ]α + [cE ]β (21)

[cE ]α =

⎛
⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 αc44 0 0
0 0 0 0 αc44 0
0 0 0 0 0 c66

⎞
⎟⎟⎟⎟⎟⎟⎠

, α =
t2

h2 + t2
, (22)

[cE ]β =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 βc44 0 0
0 0 0 0 βc44 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, β =
h2

h2 + t2
. (23)

In (22) and (23) h denotes the largest side length and t the smallest side length (for thin
structures t corresponds to the thickness) of the elements. Therewith, the element stiffness
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3D-FINITE-ELEMENT-FORMULATION FOR THIN STRUCTURES 7

matrix ke
u of the mechanical part computes as

ke
u =

14∑
i=1

BT
i [cE ]α B |Ji| wstd

i

+
1
2

9∑
i=5

(Bi+5 − Bi)
T [cE ]β (Bi+5 − Bi) |Ji| wstd

i

+
1
2

(B3 + B1)
T [cE ]β (B3 + B1) |J1| wred

1

+ BT
2 [cE ]β B2 |J2| wred

2 (24)

where |Ji| denotes the Jacobian determinant at integration point i. As can be seen from (24),
the first two terms are integrated by the standard scheme (see Tab. I) and the last two terms
by the reduced scheme (see Tab. II). In particular, only the symmetrical part of the critical
shear term is delt with by reduced integration, and the decomposition (20) is used for this
purpose.

Table I. Points and weights for the standard integration

ξi ηi ζi wstd
i

0.7958 0.0 0.0 0.8864
-0.7958 0.0 0.0 0.8864

0.0 0.7958 0.0 0.8864
0.0 -0.7958 0.0 0.8864
0.0 0.0 -0.7958 0.8864

0.7588 0.7588 -0.7588 0.3352
0.7588 -0.7588 -0.7588 0.3352

-0.7588 0.7588 -0.7588 0.3352
-0.7588 -0.7588 -0.7588 0.3352

0.0 0.0 0.7958 0.8864
0.7588 0.7588 0.7588 0.3352
0.7588 -0.7588 0.7588 0.3352

-0.7588 0.7588 0.7588 0.3352
-0.7588 -0.7588 0.7588 0.3352

Table II. Points and weights for the reduced integration

ξi ηi ζi wred
i

0 0 −1/
√

3 8/3
0 0 0 8/3
0 0 1/

√
3 8/3
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5. Numerical Case Study

In a first part, we investigate purely thin mechanical structures, and we compare our results
with those of the Mindlin–Reissner plate bending element of Hughes and Tezduyar [7] (referred
to as MR HT) and the Mindlin–Reissner plate bending element of Simo and Rifai (referred to
as MT SR). The latter are based on the method of enhanced assumed strains [11]. Contrary
to these two formulations, we perform a full 3D-analysis of the structures with hexahedral
elements of 2nd degree. Specifically, we apply our new approach with balanced reduced
integration (referred as present) as well as standard finite elements that do not contain
precautions to locking (referred as standard).

The three structures of investigation are a square, a rhombic, and a circular plate. The data
are chosen as described in [11]. In these examples, a simply supported boundary condition
is used on the lateral boundary. This means in our displacement formulation that we set the
mechanical displacement in thickness direction for all nodes along the bottom line of the outer
boundary to zero (see e.g. Fig. 1). If a symmetry of the plate is exploit, the computation need
only be performed on a half or a quarter of the plate and the displacement in the direction of
the normal is set to zero on the ’symmetry boundaries’.

In the second part, we first discuss results of a harmonic analysis for a circular plate in order
to test our approach for describing the dynamic behavior of thin mechanical structures. We
then investigate in mechanical structures driven by a thin piezoelectric layer.

Finally, we test our approach by computing the sound pressure level generated by a
piezoelectric loudspeaker.

simple support

symmetry

Figure 1. Mesh for rectangular plate (due to symmetry, only one fourth of the structure is meshed)

5.1. Square Plate

In a first numerical example, we consider the bending of a square plate. The plate has a length
of L = 10 m, a thickness of 0.1 m and is simply supported. The modulus of elasticity E and
Poisson ratio ν are chosen to be 10.92 N/m2 and 0.3, and the plate is loaded by a uniform
pressure p of 1 N/m2. We use symmetry boundary conditions in order to just model a quadrant.
Figure 1 displays the mesh using 4 by 4 elements in the plane and one element in the thickness
direction.

Table III shows the numerical results. [A value of 4.0644 ·104 is reported in [11] for the result
of a series.] Moreover the stiffness of the 3D model is 0.5 − 1% smaller than that of the plate.
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3D-FINITE-ELEMENT-FORMULATION FOR THIN STRUCTURES 9

Table III. Bending of a square plate (all meshes just have one finite element in thickness direction)

center displacement × 104

mesh MR HT MT SR standard present

2 x 2 3.9712 3.9712 3.6688 4.0036
4 x 4 4.0439 4.0436 4.0438 4.1766
8 x 8 4.0593 4.0593 4.0711 4.1497

16 x 16 4.0632 4.0632 4.0831 4.1173
32 x 32 4.0913 4.1035
64 x 64 4.0947 4.1025

This is explained by the additional degrees of freedom of the 3D model. It is not an effect of
the reduced integration since the standard finite elements show the same effect asymptotically.

5.2. Rhombic Plate

The 30o skew plate, as displayed in Fig. 2, has a side length of 100 m, thickness of 1 m and
is loaded by a uniform pressure of 1 N/m2. The modulus of elasticity E is chosen to be
103 N/m2 and the Poisson ratio ν to 0.3. All along the boundary the plate is simple supported,

Figure 2. Mesh for rhombic plate

which means for a displacement formulation setting the mechanical displacement in thickness
direction to zero. The results of our computations as well as the one reported in [11] are listed
in Tab. IV.

There is the well-known complication that we have not only the danger of locking, but
also less regularity at the 120o corner. Therefore, the convergence of the 3D finite element
computations is slower. [Note that the FE results of the plate models do not reflect the reported
result of a series which is 4.455 · 10−2.]

5.3. Circular Plate

For the circular plate example we use the same material parameters as for the square plate
above. The radius is chosen to be 5 m, the thickness 0.1 m, and the plate is loaded by a uniform
pressure of 1 N/m2. The plate is simply supported on its boundary. Again, we model just one
quadrant of the plate for symmetry reasons. The thickness of the plate will be discretized
for the computation by one element, and we will use isoparametric elements in the plane as

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 06:1–6
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10 D. BRAESS AND M. KALTENBACHER

Table IV. Bending of a rhombic plate (all meshes just have one finite element in thickness direction)

center displacement × 10−2

mesh MR HT MT SR standard present

4 x 4 3.8803 3.9841 1.9628 3.0288
8 x 8 4.1565 4.2727 3.0536 3.8631

16 x 16 4.3883 4.4668 3.8283 4.3217
32 x 32 4.3270 4.5258
64 x 64 4.5474 4.6593

128 x 128 4.6460 4.6965

Figure 3. Mesh for circular plate

shown in Fig. 3. Since isoparametric elements of second degree are used, the curved boundary
is approximated by quadratic polynomials. – Table V contains the numerical results.

Table V. Bending of a circular plate (all meshes just have one finite element in thickness direction)

center displacement × 104

mesh MR HT MT SR standard present

12 elements 3.9070 3.6966 3.7595 3.8788
48 elements 3.9649 3.9140 3.8366 3.8784

192 elements 3.9789 3.9664 3.8640 3.8741
768 elements 3.9822 3.9791 3.8696 3.8726

5.4. Dynamic Behavior of a Circular Plate

For many applications, the dynamic behavior of thin mechanical structures is of great interest.
For this reason, we perform a harmonic analysis over a certain frequency range, and we will
compare the standard formulation with our new approach. We set the radius of the plate to
20 mm, its thickness to 0.2 mm. The modulus of elasticity E is chosen to be 4 · 1010 N/m2, the
Poisson ratio ν = 0.3, and the density ρ = 8.4 103kg/m3. The two damping parameters αM
(proportional to the mass) and αK (proportional to the stiffness) have been chosen as 6.2675
and 3.39789 · 10−7, resp., constant over the frequency range of interest.
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Figure 4. Amplitude of center displacement over frequency

The results of the standard and the present approach are shown in Fig. 4 for the coarsest
mesh with 12 elements; (see Sec. 5.3). For comparison we have also computed the center
displacement over the frequency range on the finest mesh with 768 elements, referred to as
reference in Fig. 4. As can be seen, our new formulation captures the center displacement even
on the coarse mesh quite well, whereas the standard formulation shows quite large differences
at higher frequencies.

5.5. Rectangular Plate with Piezoelectric Layer

We now consider a rectangular plate of thickness 0.1 mm covered by a piezoelectric layer of the
same thickness. The side lengths are 40 mm and 20 mm and the structure is simple supported.
We use a fixed discretization of one element for both the plate as well as the piezoelectric layer
in thickness direction and vary the in-plane discretization as shown in Fig. 5. The material
parameters for the plate are chosen to be E = 7.08 · 1010, ν = 0.338 and ρ = 2.7 · 103 N/m2.
The piezoelectric layer is made of PZT-5H with ρ = 7.75 ·103 N/m2 and the following material
tensors:

[cE ] =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.26 · 1011 7.95 · 1010 8.41 · 1010 0.0 0.0 0.0
7.95 · 1010 1.26 · 1011 8.41 · 1010 0.0 0.0 0.0
8.41 · 1010 8.41 · 1010 1.17 · 1011 0.0 0.0 0.0

0.0 0.0.0 0.0 2.3 · 1010 0.0 0.0
0.0 0.0.0 0.0 0.0 2.3 · 1010 0.0
0.0 0.0 0.0 0.0 0.0 2.32 · 1010

⎞
⎟⎟⎟⎟⎟⎟⎠
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12 D. BRAESS AND M. KALTENBACHER

[e] =

⎛
⎝ 0.0 0.0 0.0 0.0 17.0 0.0

0.0 0.0 0.0 17.0 0.0 0.0
−6.5 −6.5 23.3 0.0 0.0 0.0

⎞
⎠

[εS ] =

⎛
⎝ 1.51 · 10−8 0.0 0.0

0.0 1.51 · 10−8 0.0
0.0 0.0 1.27 · 10−8

⎞
⎠

Figure 5. Mesh for mechanical structure with piezoelectric layer

In Tab. VI we list the results obtained by standard FE-formulation using 2nd order finite
elements and our approach as a function of the ratio h/t, where h denotes the discretization in
the plate plane and t the thickness of the rectangular plate and piezoelectric layer, respectively.
Therewith, we obtain with this value the maximal ratio of the side length of the finite elements.

Table VI. Bending of rectangular mechanical structure with piezoelectric layer

center displacement × 10−6

h/t = 50 h/t = 25 h/t = 10 h/t = 5

standard 11.290 11.580 11.669 11.652
present 11.398 11.764 11.805 11.721

5.6. Practical example

Figure 6 displays the grid of a configuration that is used for piezoelectric loudspeakers. A thin
plate is coated by 80% with a thin piezoelectric layer. The dimensions of the plate are 30 mm
by 40 mm with a thickness of 250 µm, and the thickness of the piezoelectric layer is 50 µm.
The main goal for the numerical computation is to optimize the geometry as well as material
parameter towards an acoustic pressure response, which should be as flat as possible over a
wide frequency range by simultaneously being as large as possible. Therewith, the task is a
fast and reliable (forward) computation of this pressure response over the frequency range of
interest. A first approximation of the sound pressure response is the deformed volume V 2

def of
the plate

pacoustic ≈ const.f2V 2
def (25)

where f is the frequency. The calculations are performed with the same material parameters
as in Sec. 5.4.
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Figure 6. Setup of the piezoelectric loudspeaker and coarse mesh
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Figure 7. Normalized pressure over frequency range

In a first step, we have computed a reference solution by a very fine discretization exhibiting
4136 3D hexahedral 2nd order finite elements and resulting in 71219 unknowns. In a second
step we have then coarsened the mesh up to 202 3D hexahedral 2nd order finite elements

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 06:1–6
Prepared using nmeauth.cls



14 D. BRAESS AND M. KALTENBACHER

resulting in 3891 unknowns. Figure 7 shows the reference solution on the fine grid and the
computed solutions with the standard formulation as well as the present formulation on the
coarse mesh. Very similar to Sec. 5.4 our new formulation obviously resolves the dynamic
behavior already on a quite coarse grid very well.

6. Conclusion

We have considered plates on which piezoelectric material is mounted. Since such a compound
structure builds a thin-walled body, the displacement formulation without extra design would
suffer from locking. An efficient selected reduced integration method for 3D finite elements has
been derived from recent results on Mindlin–Reissner plates.

The implementation is less involved than the popular EAS method. Numerical examples for
static and time-dependent problems are presented, which show very satisfactory results.
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9. J. Pitkäranta and M. Suri. Upper and lower error bounds for plate-bending finite elements. Numer. Math.,

84, 611–648, (2000)
10. S. Reese. A large deformation solid-shell concept based on reduced integration with hourglass instability.

Int. J. Numer. Methods Eng., (in press)
11. J. Simo and M. Rifai. A class of mixed assumed strain methods and the method of incompatible modes.

Int. J. Numer. Methods Eng., 29:1595–1638, 1990.
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