
Calcolo manuscript No.
(will be inserted by the editor)

An a posteriori error estimate and a
Comparison Theorem for the nonconforming
P1 element

Dietrich Braess ?

Faculty of Mathematics, Ruhr-University of Bochum, D-44780 Bochum, Germany

January 30, 2010

Abstract. A posteriori error estimates for the nonconforming P1

element are easily determined by the hypercircle method via Marini’s
observation on the relation to the mixed method of Raviart–Thomas.
Another tool is Ainsworth’s application of the hypercircle method to
mixed methods. The relation on the finite element solutions is also
extended to an a priori relation of the errors, and the errors of four
different finite element methods can be compared.

AMS subject classification: 65N55, 65N30.
Key words: hypercircle method, Crouzeix–Raviart element, Raviart–

Thomas element

1. Introduction

Classical a posteriori error estimators for the nonconforming P1 el-
ement are more involved than the analogous ones for the conform-
ing element [5]. The situation is quite different when the hypercircle
method is applied.

The hypercircle method [7] requires the knowledge of an equili-
brated flux. Marini [6] established a connection between the noncon-
forming P1 element and the mixed method of Raviart–Thomas. This
relation provides a direct construction of a flux as wanted. The con-
struction of such a flux is the most costly part when the hypercircle
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method is applied to conforming elements. Here, we only need an
H1 function that is sufficiently close to the given nonconforming P1

element. Such a function, in turn, is given by Ainsworth’s construc-
tion [1] for the Raviart–Thomas element behind which the hypercircle
method is concealed.

The hypercircle method, also called the two energies principle, is
based on the theorem of Prager and Synge; see [7] or e.g., [3, p. 181].
Here and throughout the paper we restrict ourselves to the Poisson
equation on a polygonal domain Ω ⊂ R2 with homogeneous Dirichlet
boundary conditions:

−∆u = f in Ω. (1)

Theorem 1. (Theorem of Prager and Synge) Let σ ∈ H(div), v ∈
H1

0 (Ω), and assume that

div σ + f = 0. (2)

If u denotes the solution of the Poisson equation (1), then,

‖∇u−∇v‖2 + ‖∇u− σ‖2 = ‖∇v − σ‖2. (3)

Proof. We provide the short proof for the reader’s convenience, and it
also provides a hint to the name of the method. By applying Green’s
formula and noting that ∆u = div σ = −f we obtain∫

Ω
∇(u− v)(∇u− σ)dx

= −
∫
Ω

(u− v)(∆u− div σ)dx+

∫
∂Ω

(u− v)(
∂u

∂n
− σ · n)ds = 0.

The boundary term above vanishes, since u − v = 0 on ∂Ω. This
orthogonality relation and the Pythagorean rule yield (3).

Obviously, the estimates can be used for finite element solution
v = uh in H1(Ω) as well as for a solution σh ∈ H(div) of a mixed
method. The symmetry of the formula (3) is violated by the equilibra-
tion condition (2). We emphasize this asymmetry for the background
of the investigation in this paper.

The hypercircle method has become popular recently, since it
yields upper bounds without generic constants. There is also a case
where it yields a better asymptotic than the standard residual esti-
mator [4]. In this paper we will also obtain more results than in the
usual applications. The a posteriori error estimates lead to a com-
parison of the nonconforming finite element solution with other finite
element methods.
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More information and more literature can be found in all the cited
papers. We add only [2] from the early papers, since it is seldom cited.

For convenience, we restrict ourselves to the case that f is piece-
wise constant on the actual triangulation, and we ignore the correc-
tion which results from the data oscillation. The correction is a term
of higher order, cf. Remark 1. Moreover, it can even be added to
the main term in the manner of Pythagoras and not by the triangle
inequality; cf. [1, Theorem 1].

2. The connection with the Raviart–Thomas element and
the error estimator

Let Th be a partition of Ω into triangles and denote the space of finite
elements due to Crouzeix–Raviart by

M1
∗ := {v ∈ L2(Ω); v|T is linear for every T ∈ Th,

v is continuous at the midpoints of the triangle edges}.

The finite element solution forM1
∗ that vanishes at the midpoints of

the edges on ∂Ω, is denoted as uCR,∑
T

∫
T
∇uCR∇vdx =

∫
Ω
fvdx ∀v ∈M1

∗.

The mixed method of Raviart-Thomas is described by the pair of
spaces

RTh := {τ ∈ H(div); τ |T = aT + bT x, aT ∈ R2, bT ∈ R for T ∈ Th},
M0 := {v ∈ L2(Ω); vT = aT , aT ∈ R for T ∈ Th},

and the equations

(σRT, τ)0 + (div τ, uRT)0 = 0 ∀τ ∈ RTh,
(div σRT, v) = −(f, v)0 ∀v ∈M0.

(4)

Since div σRT ∈ M0, the relation div σRT + f = 0 holds pointwise.
Here and in the following (·, ·)0 denotes the L2 inner product and
‖ · ‖0 the L2 norm. The analogous expressions for subsets of Ω are
given with the subset added to the index, and

‖v‖0,h :=
{∑
T∈Th

‖v‖20,T
}1/2

, |v|1,h :=
{∑
T∈Th

‖∇v‖20,T
}1/2

refer to the broken Sobolev norms.
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Marini [6] observed that the Raviart–Thomas finite element so-
lution (σRT, uRT) can be obtained from the Crouzeix–Raviart FE
solution on the same triangulation:

σRT = ∇uCR − 1
2fT (x− xT ),

uRT = 1
|T |
∫
T

[
uCR + 1

4fT (z − xT )T (z − xT )
]
dz,

}
x ∈ T. (5)

Here, fT := 1
|T |
∫
T f dx, and xT denotes the centroid of the triangle

T . The gradient is understood as a pointwise derivative.
Following [1] we introduce an auxiliary function that consists of

piecewise quadratic polynomials:

u0(x) := uCR(x)− 1
2fTψ(x),

ψ(x) := 1
2 (x− xT )T (x− xT )− 1

|T |
∫
T (z − xT )T (z − xT )dz.

}
x ∈ T.

Likewise, (5) may be replaced by

σRT(x) = ∇u0(x),

uRT(x) = 1
|T |
∫
T u

0 dz,

}
x ∈ T (6)

for the definition of σRT and uRT. Finally, a continuous, piecewise
quadratic function u1 is constructed by an averaging procedure. Specif-
ically, u1 is given by its values at the nodes that are vertices of the tri-
angles or midpoints of their edges: Given a node ξ, let K(ξ) := ∪ξ∈TT
and denote the number of triangles in K(ξ) by Nξ. Now set

u1(ξ) =


0, if ξ ∈ ∂Ω,
1
Nξ

∑
T∈K(ξ)

u0|T (ξ), otherwise. (7)

We emphasize that the finite element functions σRT, uRT, u0, and
u1 are determined from the given solution uCR by local postprocessing
procedures. We obtain from them a reliable error estimate without
generic constants.

Theorem 2. Let uCR be the finite element solution with the noncon-
forming P1 element. Then

|u− uCR|1,h ≤ ‖∇uCR − σRT‖0,h + ‖σRT −∇u1‖0 . (8)

Proof. Since u1 ∈ H1
0 (Ω) and σRT is equilibrated, the theorem of

Prager and Synge yields ‖σRT−∇u‖0 ≤ ‖σRT−∇u1‖0. The triangle
inequality, applied to

∇(u− uCR) = [∇u− σRT] + [σRT −∇uCR],

completes the proof of (8).
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Remark 1. We recall that f is assumed to be piecewise constant.
Otherwise a higher order term ch‖forig−f‖0 resulting from the data
oscillation has to be added in (8); cf. [3, p. 174].

Remark 2. Due to (6) the first term of the estimator can be deter-
mined before uCR and σRT are computed:

‖∇uCR − σRT‖0,h =
1

2
‖fT (x− xT )‖0,h . (9)

The second term of the estimator is the reliable and efficient error
estimate for the Raviart–Thomas element derived by Ainsworth using
(implicitly) the hypercircle method [1, Theorem 3]

c−1 ‖σRT −∇u1‖0 ≤ ‖σRT −∇u‖0 ≤ ‖σRT −∇u1‖0 . (10)

The result (8) remains true if we determine u1 by averaging uCR

instead of u0. (For this reason, we did not adopt all of the notation
of [1].) The present choice, however, avoids that we have to adjust
results from [1] when proving efficiency of the error estimate defined
in Theorem 2.

3. Efficiency

The a posteriori estimate in Theorem 2 is considered as efficient if a
multiple of the right-hand side of (8) is a lower bound of the error.
Here, the factor in the inequality may depend only on the shape
parameter of the triangulation Th and possibly on the domain Ω (as
generic constants usually do).

We recall that residual a posteriori error estimates for the Crouzeix–
Raviart element contain area-based terms as hT ‖f‖0,T and appropri-
ately scaled jumps of uCR on the edges. Obviously, the contributions
in (8) can be bounded by those residuals. Therefore, the efficiency of
the new estimators will be no surprise.

Lemma 1. There is a constant c that depends only on the shape
parameter of Th such that

‖σRT −∇uCR‖0,T ≤ c ‖∇(u− uCR)‖0,T (11)

holds for each T ∈ Th.

Proof. The proof repeats some standard arguments from the theory
of a posteriori error estimates and is given only for completeness.

Let ΦT be the cubic bubble function with the properties

0 ≤ ΦT ≤ 1 = max
z∈T

ΦT (z), suppΦT = T.
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Since Ω ⊂ R2, the normalization implies ‖∇ΦT ‖0 ≤ c. It follows
from the equivalence of norms on the 3-dimensional space of linear
polynomials that

‖Φ1/2
T p‖0,T ≥ c‖p‖0,T ∀p ∈ P1 .

Set w := fTΦT . Since w ∈ H1
0 (T ), partial integration yields

∫
T ∇wdx =

0 and

c−1‖fT ‖20,T ≤ ‖Φ
1/2
T fT ‖20,T

= (fT , w)0,T = (∇(u− uCR),∇w)0,T + (∇uCR,∇w)0,T

≤ ‖∇(u− uCR)‖0,T fT ‖∇ΦT ‖0,T +∇uCR
|T

∫
T
∇w dx

≤ c‖∇(u− uCR)‖0,Th−1T ‖fT ‖0,T .

After dividing by ‖fT ‖0,T we have

hT ‖fT ‖0,T ≤ c |u− uCR|1,T .

Combining the observation 1
2‖fT (x − xT )‖0,T ≤ hT ‖fT ‖0,T with (9)

and summing over all triangles we complete the proof.

Now we are in a position to establish the lower bound in order to
show the efficiency of the error estimate.

Theorem 3. Let uCR be the finite element solution with the noncon-
forming P1 element. Then

c|u− uCR|1,h ≥ ‖∇uCR − σRT‖0,h + ‖σRT −∇u1‖0 . (12)

Proof. It follows from (10) that

‖∇uCR − σRT‖0,h + ‖σRT −∇u1‖0
≤ ‖∇uCR − σRT‖0,h + c‖σRT −∇u‖0
≤ ‖∇uCR − σRT‖0,h + c(‖σRT −∇uCR‖0,h + c‖∇(uCR − u)‖0,h) .

The preceding lemma guarantees that all terms can be bounded by
multiples of ‖∇(u− uCR)|0,h, and the proof is complete.

There is not only the algebraic relation (5) between the Crouzeix–
Raviart element and the Raviart–Thomas element. The errors of the
solutions are also related. Eventually, we compare the errors of four
finite elements. The relations in (13) are understood as inequalities
modulo generic constants.
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Theorem 4. Let uconf1 and uconf2 be the solutions with linear and
quadratic finite elements, respectively. If f is piecewise constant, then

‖∇(u− uconf2)‖0 � ‖∇u− σRT‖0 � |u− uCR|1,h � ‖∇(u− uconf1‖0 .
(13)

Proof. Since u1 is a P2 element, it follows from Remark 1 that

‖∇(u− uconf2)‖0 ≤ ‖∇(u− u1)‖0
≤ ‖∇u− σRT‖0 + ‖σRT −∇u1‖0
≤ ‖∇u− σRT‖0 + c‖σRT −∇u‖0 .

This proves the first inequality.
By Lemma 1

‖∇u− σRT‖0 ≤ ‖∇u−∇uCR‖0,h + ‖∇uCR − σRT‖0,h
≤ ‖∇u−∇uCR‖0,h + c‖∇u−∇uCR‖0,h .

This proves the second inequality.
Recalling ∇uCR = σRT + 1

2fT (x− xT ) we have

‖∇u−∇uCR‖0,h ≤ ‖∇u− σRT‖0 + h‖f‖0 .

By theorem III.5.6 in [3] we know that ‖∇u − σRT‖0,h ≤ ‖∇u −
∇uconf1‖0. The term h‖f‖0 is a typical term in the residual estimator
for the conforming P1 element. Its efficiency implies h‖f‖0 ≤ c‖∇u−
∇uconf1‖0, and also the proof of the last inequality is complete.

Marini [6] noted that the construction of the finite element so-
lution for the Raviart–Thomas element from the Crouzeix–Raviart
element is cheaper than the direct implementation of (4). A prefer-
ence for the result of the Raviart–Thomas element is consistent with
the comparison in Theorem 13.
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