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Bn[f ](x1) = Bn[f − Q1](x1) + Bn[Q1](x1) ≤ Bn[Q1](x1) = Q1(x1)
= f(x1).

This holds for any x1 ∈ [0, 1], and the proof is complete. �

A direct consequence is the following.

Corollary 3 Let n ≥ 4 be an even number, f (n) ≤ 0 in (0, 1) and Q







The handling of the Binomial coefficients will be simplified by the notation;
cf. [1]
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Therefore, g(1 − x) does not contribute to the asymptotics and

lim
n→∞ n{f − Bn[f ]}

( z

n

)
= L(z) = −z log z + ze−z

∞∑
k=1

zk

k!
log(k + 1).

The function L(z) is depicted in Figure 1.





the interior of the triangle. Also note that at the boundary the univariate
approximation behavior is visible, now however with the associated limit value
1
2 .

In the following lemma we will state an elementary identity which will allow
us to reduce the approximation of the function f from (4.1) to the univariate
case.

Lemma 6 For any set of functions Gj : [0, 1] × N0 → R we have

∑
α∈Km,n

Bα(u)
m∑

j=0
Gj (uj, αj







Now, an appropriate rule k �→ Q(k)



by applying a suitable functional and the add-one rule.

We will close the gap by applying Theorem 1; cf. [5]. Our point of departure
is the add-3/4 rule. This rule is optimal in the interior, and it will be modified
later to cover also the subdomain next to the boundary. — Since we fix the
parameters in the one-dimensional case such that q







The shifts will be bounded by 1/n. Hence,
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which realizes the decomposition of F ∗
n into barycentric coordinates: F ∗

n(x) =
G̃n(x) + G̃n(1 − x). Based on the preceding estimates we can immediately
establish the inequality

G̃n(x) ≤ 1
n

(−1
4 + x) + o(n−1) for 0 ≤ x ≤ 1, (5.21)

where the o(n−1) term is independent of x.

Indeed, if x ≥ 15
n

, then (5.21) follows from G̃n(x) ≤ G�

��

(x



as already mentioned above. Since the probability of α to appear is Bα(p), the
average deviation from entropy is thus computed as

Fn(p) = Fn,q(p) =
∑

α∈Km,n

Bα(p)
m∑





Fn,q(u) =
m∑

j=0




