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Abstract

Inequalities of Jackson and Bernstein type are derived for polynomial ap-
proximation on simplices with respect to Sobolev norms. Although we do
not find simple bases when looking at 120 years of research of orthogonal
polynomials on triangles, sharp estimates are obtained from a decomposition
into orthogonal subspaces. The formulas reflect the symmetries of simplices,
but analogous estimates on rectangles show that we cannot expect rotational
invariance of the terms with derivatives. An essential tool are selfadjoint dif-
ferential operators that have already been used by other authors for the
study of various approximation properties.

1 Introduction

The approximation of functions by polynomials with respect to a weighted Lo-
norm is strongly related to orthogonal polynomials. This is well known for functions
on the real interval [—1,41]. The orthogonal polynomials for constant weights are
the Legendre polynomials P,, which satisfy
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The Legendre polynomials are eigenfunctions of the singular Legendre differential
operator,
LP, = pnPpn, pn=n(n+1)

where £ is given by (Lv)(z) := —((1 — 2%)v’)’. We therefore have also orthogo-
nality of the derivatives with respect to a weight function which vanishes at the
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If we expand an Lo-function with respect to the Legendre polynomials for the

natural normalization v = > by (k + %)1/2 Py, then we have obviously,
k=0
+1 oo
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and more generally, for any ¢ € Ny,
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which is to be understood in the sense that the series converge if and only if |v]g,,
is finite. We obtain from the definitions for v, with |v],, .« < o0, £,m € Ny, m > £,
the approzimation property (direct estimate)

inf - w < n —(m=6)/2 m,w 2
nf o= plew < (unsr) [olm, e

and the inverse estimate

(m—0)/2

|p|m,w < (Un) |p‘f,w for pE Py (3)

Remark 1.1 This fits into the following general framework. Let X be a Banach
space which is compactly imbedded into Y. Therefore || - || x is a finer norm than
Il lly- Moreover, let Vi, m € N be a family of finite dimensional subspaces of X .
The pair X,Y is appropriate for the family (Vi) if there are parameters ¢, and
a constant C such that the direct approximation property

inf [jv—plly <cmlv]lx YveX (4)
PEVm

and the inverse estimate
Iplx < Cextlplly  Vp € Vi

hold. [We note that we cannot have ||p]lx < o(c;Hplly Vp € Vi together with
(??).] - Classical pairs of spaces that fit in this sense are given by C° and C™ due to
Jackson’s and Bernstein’s theorems. Finite element spaces are another example; see
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e.g. [4, p. 85] for h-FEM, i. e. when convergence is achieved by refinements of the
meshes. Recently the p-FEM has attracted much interest, i. e. the approximation
is improved by increasing the degree of the polynomials [21]. Here the theory is less
complete.

Direct and inverse estimates for the rectangle are easily obtained from these
results by tensor product arguments [5]. Those results show already that we cannot
expect rotational invariance of the inequalities.

The situation on triangles and more generally on simplices in R? is more
involved. There are two approaches in the literature for orthogonal polynomials
on triangles/simplices, but none of them can be used directly for our purpose.
We will demonstrate that by an algebraic counterpart. The remedy is that we are
content with a decomposition into orthogonal subspaces. In particular, we will use
some selfadjoint differential operators that have been discovered independently by
several authors for different purposes.

2 Orthogonal Polynomials on Triangles

The one-dimensional example in the introduction showed already the relation be-
tween orthogonal polynomials and the approximation problem under considera-
tion. There are two different approaches to orthogonal polynomials on triangles.
In 1881 Appell [1] introduced polynomials F,,, which give rise to a biorthogo-
nal system F,,,,, and E,,,, on triangles. The polynomials (and some generalizations)

8m+n

Frn(@,) 1= gz [27" (L2 = 9)"+]

™ Oy™
are now called Appell’s polynomials. Obviously F),, is a polynomial of degree
m + n.
Let

Py = span{z™y"; m+n < N} and Q =Py N Py_;.

Then Fy,, is orthogonal to Puyin—1-

We provide the (simple) proof since the technique (from 1881) is typical also
for recent constructions. It is sufficient to verify the orthogonality for monomials
xFy! with k +1 < m + n. Without loss of generality we assume that k < m. By
partial integration we obtain

Y g 0T +a,n+B +nt
m-ro, n m-rn

m Y am k 1l an m+a, n+3 m-4+n+
= [ () g M ) o
=0



4 Dietrich Braess

for 0 < y < 1. This is a standard argument with Rodriguez’ formula. After inte-
grating over y we have the orthogonality. W

Although Appell’s polynomials Fi,,,,, m+n < N, span Qp, the polynomials
Fo and Fyy with k+1 =m+n and (k, 1) # (m,n) are unfortunately not orthogo-
nal. It is difficult to provide an orthogonal basis without destroying the symmetry
of the triangle.

[The situation is comparable to that of the eigenvalue problem with the ma-
trix

The matrix is invariant under permutations of the coordinates. There is an eigen-
vector (1,1,1) with the eigenvalue 0. The orthogonal subspace consists of eigen-
vectors, but we cannot provide a basis without destroying the symmetry.] — We
will refer to invariant subspaces due to this feature.

Investigations of orthogonal polynomials based on Appell’s polynomials were
done e. g. by Appell and Kampé de Fériet (1926), Grobner (1948), Erdélyi, Magnus,
Oberhettinger, and Tricomi (1953), Fackerell and Littler (1974), Derriennic (1985).

Another approach to orthogonal polynomials is obtained from a transforma-
tion of the triangle to the square; see Proriol (1957), Karlin and McGregor (1964),
Szegé (1974), Koornwinder (1975), Mysovski (1981), Dunkl (1984), Suetin (1988),
Dubiner (1991), Xu (1998). Consider the product

)= ) () (5)

where p,,, is the m-th orthogonal polynomial for the weight 1 and ¢y, , is the n-th
orthogonal polynomial for the weight (1 — y)™. Obviously the products provide
orthogonal polynomial for the triangle and can be expressed in terms of Jacobi
polynomials. Unfortunately these polynomials are less suited for our intention since
the transformation makes that the derivatives of the fractions in (?7) give rise to
expressions that are more involved.

For completeness we also refer to [17].

Pm(

3 Estimates on the Simplex in R?

Now we are prepared to consider the original approximation problem on a d-

simplex S?¢. The simplex is the convex hull of its d 4+ 1 vertices ag, a1, ..., aq € R?
which do not lie on a (d—1)-dimensional hyperplane. In order to keep the symmetry
we refer to the barycentric coordinates Ag, A1, ..., Aq of the points x = Zj Ajaj €

S?. Specifically we have
Aj>0,5=01,....d Y \=1,

J
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We will make use of multiindex notation, in particular
)\m = )\810)\717741“.)\31(17 Aa:)\go)\ixl.“)\gd’

and |m| = >>.mj, |af = >0 a;. We assume that a; > —1 for all j. Hence,
W, := A% is a weight function for which the inner product

(f,9) = / fgwa (6)
Sd
and the weighted Ly-norm ||| ,, := (f, f) is well defined. As before, we set
P, :=span{\™; |m| <n} and Q, :=P,NPL,.

Due to the condition > A; = 1, the representation of a function given in terms
of barycentric coordinates is not unique. Nevertheless we can write the directional
derivative for the direction from ay to a; in the form

0 9]

87)\3' “ o or for short 9; — 0.

Lemma 3.1 Let j # k. Then the differential operator of second order
Ly = —/\_‘"(8]- - 8k) )\j)\k)\a (@ — 8k) (7)

is selfadjoint with respect to the inner product (-,-). It maps P, into P, and Q,
into Q,,.

Sketch of proof. Consider a segment on a line parallel to the direction from ax to
a;. The product A;\; vanishes at the two points at which the line intersects the
boundary of S¢. No boundary terms occur when performing partial integration.
Therefore Ly is selfadjoint.

The degree of a polynomial is not augmented by the application of Ly since
the multiplication by the quadratic polynomials is compensated by two differenti-
ations. The arguments of Appell show that also the orthogonal complement Q,, is
mapped into itself. B

Now combinations of the differential operators of the form (5) have been used
for several purposes [3, 5, 6, 8, 7, 14, 20, 24]. In particular,

Lo = =X""> (05 — )N AeA*(0; — O) (8)
j<k
can be regarded as a Laplacian for the simplex due to its symmetry. Special cases
of the eigenvalue problem (7) have already been stated by Appell and Kampé de
Fériet [2] in terms of Appell’s polynomials. Proofs can be found in the literature
cited above. A simple proof in [5] makes use of the fact that £, maps Q, into
itself and that it is sufficient to determine the image L£,,p merely modulo P, _;.
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Theorem 3.2 The operator L., is selfadjoint and
Lop=ppp forallpe Q,. (9)
with the eigenvalues p,, explicitly given by
pn = pn(d,a) :=n(n+d+|a]), n=12,... (10)

In accordance with (1) we now define a weighted H!'-seminorm which will
form an appropriate pair together with || - ||

=3 [ 10 = 200PA A

i<k

We obtain our essential tool from the fact that £,, is selfadjoint

= [ £t (1)

In particular assume that f is expanded into polynomials from the orthogonal
subspaces

[= Zpkz with pi € Qk.

k=0
From the orthogonality of Q. and Q;, k # [, and Theorem 3.2 we conclude that

0o
> sl s
k=0

o0 o0
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k=0 S? k=0

115,

and, more generally, for any ¢ € Ny,

o= [ plChmn = 3
k=0 —

k=0

2
0,w-"

The last equality is understood in the sense that the infinite series converges if and
only if | fl¢, is finite. Similar to |f|1 ., the seminorm |f|g,., admits the following
representation in terms of f and its derivatives:

m 2 i —
. /d(ﬁwf) w F0=2m, )

low
j(ﬁlﬁf)ﬁw(ﬁzﬁf)wa if £ =2m + 1.
S

d

|f
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Accordingly, for m € Ny, we define the weighted spaces
V(8% == {v € L*(8%); |flow < 0o for £=0,1,...,m}.

In the literature cited above there are several results on the approximation by
polynomials on simplices. The following theorem from [5] fits into the framework
of Remark 1.1 and admits a formulation such that there is no gap between the
direct and the inverse estimate.

Theorem 3.3 Let {,m be nonnegative integers and m > £ and denote by p, =
n(n+d+|al) the eigenvalues of L. Then, for any v € V,™(S4), the approzimation
property

inf v —plew < (Uns1) ™2 0w n=0,1,2,...

PEPn

holds, and for any p € P,, we have the inverse estimate

|p‘m,w < (Mn)(m_@/z |p|€,w-
Both inequalities are sharp.

The operator £, annihilates constants, but its k-th power does not annihilate
Pr—1. Recently, Jetter and Stockler [14] have constructed symmetric differential
operators of higher order which do not have this defect. Their operators can be
used for improving the results of Theorem 3.3.
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